1 | /* e_j0f.c -- float version of e_j0.c. |
2 | * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
3 | */ |
4 | |
5 | /* |
6 | * ==================================================== |
7 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
8 | * |
9 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
10 | * Permission to use, copy, modify, and distribute this |
11 | * software is freely granted, provided that this notice |
12 | * is preserved. |
13 | * ==================================================== |
14 | */ |
15 | |
16 | #include <math.h> |
17 | #include <math-barriers.h> |
18 | #include <math_private.h> |
19 | #include <libm-alias-finite.h> |
20 | |
21 | static float pzerof(float), qzerof(float); |
22 | |
23 | static const float |
24 | huge = 1e30, |
25 | one = 1.0, |
26 | invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */ |
27 | tpi = 6.3661974669e-01, /* 0x3f22f983 */ |
28 | /* R0/S0 on [0, 2.00] */ |
29 | R02 = 1.5625000000e-02, /* 0x3c800000 */ |
30 | R03 = -1.8997929874e-04, /* 0xb947352e */ |
31 | R04 = 1.8295404516e-06, /* 0x35f58e88 */ |
32 | R05 = -4.6183270541e-09, /* 0xb19eaf3c */ |
33 | S01 = 1.5619102865e-02, /* 0x3c7fe744 */ |
34 | S02 = 1.1692678527e-04, /* 0x38f53697 */ |
35 | S03 = 5.1354652442e-07, /* 0x3509daa6 */ |
36 | S04 = 1.1661400734e-09; /* 0x30a045e8 */ |
37 | |
38 | static const float zero = 0.0; |
39 | |
40 | float |
41 | __ieee754_j0f(float x) |
42 | { |
43 | float z, s,c,ss,cc,r,u,v; |
44 | int32_t hx,ix; |
45 | |
46 | GET_FLOAT_WORD(hx,x); |
47 | ix = hx&0x7fffffff; |
48 | if(ix>=0x7f800000) return one/(x*x); |
49 | x = fabsf(x); |
50 | if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
51 | __sincosf (x, &s, &c); |
52 | ss = s-c; |
53 | cc = s+c; |
54 | if(ix<0x7f000000) { /* make sure x+x not overflow */ |
55 | z = -__cosf(x+x); |
56 | if ((s*c)<zero) cc = z/ss; |
57 | else ss = z/cc; |
58 | } else { |
59 | /* We subtract (exactly) a value x0 such that |
60 | cos(x0)+sin(x0) is very near to 0, and use the identity |
61 | sin(x-x0) = sin(x)*cos(x0)-cos(x)*sin(x0) to get |
62 | sin(x) + cos(x) with extra accuracy. */ |
63 | float x0 = 0xe.d4108p+124f; |
64 | float y = x - x0; /* exact */ |
65 | /* sin(y) = sin(x)*cos(x0)-cos(x)*sin(x0) */ |
66 | z = __sinf (y); |
67 | float eps = 0x1.5f263ep-24f; |
68 | /* cos(x0) ~ -sin(x0) + eps */ |
69 | z += eps * __cosf (x); |
70 | /* now z ~ (sin(x)-cos(x))*cos(x0) */ |
71 | float cosx0 = -0xb.504f3p-4f; |
72 | cc = z / cosx0; |
73 | } |
74 | /* |
75 | * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) |
76 | * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) |
77 | */ |
78 | if(ix>0x5c000000) z = (invsqrtpi*cc)/sqrtf(x); |
79 | else { |
80 | u = pzerof(x); v = qzerof(x); |
81 | z = invsqrtpi*(u*cc-v*ss)/sqrtf(x); |
82 | } |
83 | return z; |
84 | } |
85 | if(ix<0x39000000) { /* |x| < 2**-13 */ |
86 | math_force_eval(huge+x); /* raise inexact if x != 0 */ |
87 | if(ix<0x32000000) return one; /* |x|<2**-27 */ |
88 | else return one - (float)0.25*x*x; |
89 | } |
90 | z = x*x; |
91 | r = z*(R02+z*(R03+z*(R04+z*R05))); |
92 | s = one+z*(S01+z*(S02+z*(S03+z*S04))); |
93 | if(ix < 0x3F800000) { /* |x| < 1.00 */ |
94 | return one + z*((float)-0.25+(r/s)); |
95 | } else { |
96 | u = (float)0.5*x; |
97 | return((one+u)*(one-u)+z*(r/s)); |
98 | } |
99 | } |
100 | libm_alias_finite (__ieee754_j0f, __j0f) |
101 | |
102 | static const float |
103 | u00 = -7.3804296553e-02, /* 0xbd9726b5 */ |
104 | u01 = 1.7666645348e-01, /* 0x3e34e80d */ |
105 | u02 = -1.3818567619e-02, /* 0xbc626746 */ |
106 | u03 = 3.4745343146e-04, /* 0x39b62a69 */ |
107 | u04 = -3.8140706238e-06, /* 0xb67ff53c */ |
108 | u05 = 1.9559013964e-08, /* 0x32a802ba */ |
109 | u06 = -3.9820518410e-11, /* 0xae2f21eb */ |
110 | v01 = 1.2730483897e-02, /* 0x3c509385 */ |
111 | v02 = 7.6006865129e-05, /* 0x389f65e0 */ |
112 | v03 = 2.5915085189e-07, /* 0x348b216c */ |
113 | v04 = 4.4111031494e-10; /* 0x2ff280c2 */ |
114 | |
115 | float |
116 | __ieee754_y0f(float x) |
117 | { |
118 | float z, s,c,ss,cc,u,v; |
119 | int32_t hx,ix; |
120 | |
121 | GET_FLOAT_WORD(hx,x); |
122 | ix = 0x7fffffff&hx; |
123 | /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0, y0(0) is -inf. */ |
124 | if(ix>=0x7f800000) return one/(x+x*x); |
125 | if(ix==0) return -1/zero; /* -inf and divide by zero exception. */ |
126 | if(hx<0) return zero/(zero*x); |
127 | if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
128 | /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0)) |
129 | * where x0 = x-pi/4 |
130 | * Better formula: |
131 | * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) |
132 | * = 1/sqrt(2) * (sin(x) + cos(x)) |
133 | * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) |
134 | * = 1/sqrt(2) * (sin(x) - cos(x)) |
135 | * To avoid cancellation, use |
136 | * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
137 | * to compute the worse one. |
138 | */ |
139 | __sincosf (x, &s, &c); |
140 | ss = s-c; |
141 | cc = s+c; |
142 | /* |
143 | * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) |
144 | * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) |
145 | */ |
146 | if(ix<0x7f000000) { /* make sure x+x not overflow */ |
147 | z = -__cosf(x+x); |
148 | if ((s*c)<zero) cc = z/ss; |
149 | else ss = z/cc; |
150 | } |
151 | if(ix>0x5c000000) z = (invsqrtpi*ss)/sqrtf(x); |
152 | else { |
153 | u = pzerof(x); v = qzerof(x); |
154 | z = invsqrtpi*(u*ss+v*cc)/sqrtf(x); |
155 | } |
156 | return z; |
157 | } |
158 | if(ix<=0x39800000) { /* x < 2**-13 */ |
159 | return(u00 + tpi*__ieee754_logf(x)); |
160 | } |
161 | z = x*x; |
162 | u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); |
163 | v = one+z*(v01+z*(v02+z*(v03+z*v04))); |
164 | return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x))); |
165 | } |
166 | libm_alias_finite (__ieee754_y0f, __y0f) |
167 | |
168 | /* The asymptotic expansions of pzero is |
169 | * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. |
170 | * For x >= 2, We approximate pzero by |
171 | * pzero(x) = 1 + (R/S) |
172 | * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 |
173 | * S = 1 + pS0*s^2 + ... + pS4*s^10 |
174 | * and |
175 | * | pzero(x)-1-R/S | <= 2 ** ( -60.26) |
176 | */ |
177 | static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
178 | 0.0000000000e+00, /* 0x00000000 */ |
179 | -7.0312500000e-02, /* 0xbd900000 */ |
180 | -8.0816707611e+00, /* 0xc1014e86 */ |
181 | -2.5706311035e+02, /* 0xc3808814 */ |
182 | -2.4852163086e+03, /* 0xc51b5376 */ |
183 | -5.2530439453e+03, /* 0xc5a4285a */ |
184 | }; |
185 | static const float pS8[5] = { |
186 | 1.1653436279e+02, /* 0x42e91198 */ |
187 | 3.8337448730e+03, /* 0x456f9beb */ |
188 | 4.0597855469e+04, /* 0x471e95db */ |
189 | 1.1675296875e+05, /* 0x47e4087c */ |
190 | 4.7627726562e+04, /* 0x473a0bba */ |
191 | }; |
192 | static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
193 | -1.1412546255e-11, /* 0xad48c58a */ |
194 | -7.0312492549e-02, /* 0xbd8fffff */ |
195 | -4.1596107483e+00, /* 0xc0851b88 */ |
196 | -6.7674766541e+01, /* 0xc287597b */ |
197 | -3.3123129272e+02, /* 0xc3a59d9b */ |
198 | -3.4643338013e+02, /* 0xc3ad3779 */ |
199 | }; |
200 | static const float pS5[5] = { |
201 | 6.0753936768e+01, /* 0x42730408 */ |
202 | 1.0512523193e+03, /* 0x44836813 */ |
203 | 5.9789707031e+03, /* 0x45bad7c4 */ |
204 | 9.6254453125e+03, /* 0x461665c8 */ |
205 | 2.4060581055e+03, /* 0x451660ee */ |
206 | }; |
207 | |
208 | static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
209 | -2.5470459075e-09, /* 0xb12f081b */ |
210 | -7.0311963558e-02, /* 0xbd8fffb8 */ |
211 | -2.4090321064e+00, /* 0xc01a2d95 */ |
212 | -2.1965976715e+01, /* 0xc1afba52 */ |
213 | -5.8079170227e+01, /* 0xc2685112 */ |
214 | -3.1447946548e+01, /* 0xc1fb9565 */ |
215 | }; |
216 | static const float pS3[5] = { |
217 | 3.5856033325e+01, /* 0x420f6c94 */ |
218 | 3.6151397705e+02, /* 0x43b4c1ca */ |
219 | 1.1936077881e+03, /* 0x44953373 */ |
220 | 1.1279968262e+03, /* 0x448cffe6 */ |
221 | 1.7358093262e+02, /* 0x432d94b8 */ |
222 | }; |
223 | |
224 | static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
225 | -8.8753431271e-08, /* 0xb3be98b7 */ |
226 | -7.0303097367e-02, /* 0xbd8ffb12 */ |
227 | -1.4507384300e+00, /* 0xbfb9b1cc */ |
228 | -7.6356959343e+00, /* 0xc0f4579f */ |
229 | -1.1193166733e+01, /* 0xc1331736 */ |
230 | -3.2336456776e+00, /* 0xc04ef40d */ |
231 | }; |
232 | static const float pS2[5] = { |
233 | 2.2220300674e+01, /* 0x41b1c32d */ |
234 | 1.3620678711e+02, /* 0x430834f0 */ |
235 | 2.7047027588e+02, /* 0x43873c32 */ |
236 | 1.5387539673e+02, /* 0x4319e01a */ |
237 | 1.4657617569e+01, /* 0x416a859a */ |
238 | }; |
239 | |
240 | static float |
241 | pzerof(float x) |
242 | { |
243 | const float *p,*q; |
244 | float z,r,s; |
245 | int32_t ix; |
246 | GET_FLOAT_WORD(ix,x); |
247 | ix &= 0x7fffffff; |
248 | /* ix >= 0x40000000 for all calls to this function. */ |
249 | if(ix>=0x41000000) {p = pR8; q= pS8;} |
250 | else if(ix>=0x40f71c58){p = pR5; q= pS5;} |
251 | else if(ix>=0x4036db68){p = pR3; q= pS3;} |
252 | else {p = pR2; q= pS2;} |
253 | z = one/(x*x); |
254 | r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
255 | s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); |
256 | return one+ r/s; |
257 | } |
258 | |
259 | |
260 | /* For x >= 8, the asymptotic expansions of qzero is |
261 | * -1/8 s + 75/1024 s^3 - ..., where s = 1/x. |
262 | * We approximate pzero by |
263 | * qzero(x) = s*(-1.25 + (R/S)) |
264 | * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 |
265 | * S = 1 + qS0*s^2 + ... + qS5*s^12 |
266 | * and |
267 | * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) |
268 | */ |
269 | static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
270 | 0.0000000000e+00, /* 0x00000000 */ |
271 | 7.3242187500e-02, /* 0x3d960000 */ |
272 | 1.1768206596e+01, /* 0x413c4a93 */ |
273 | 5.5767340088e+02, /* 0x440b6b19 */ |
274 | 8.8591972656e+03, /* 0x460a6cca */ |
275 | 3.7014625000e+04, /* 0x471096a0 */ |
276 | }; |
277 | static const float qS8[6] = { |
278 | 1.6377603149e+02, /* 0x4323c6aa */ |
279 | 8.0983447266e+03, /* 0x45fd12c2 */ |
280 | 1.4253829688e+05, /* 0x480b3293 */ |
281 | 8.0330925000e+05, /* 0x49441ed4 */ |
282 | 8.4050156250e+05, /* 0x494d3359 */ |
283 | -3.4389928125e+05, /* 0xc8a7eb69 */ |
284 | }; |
285 | |
286 | static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
287 | 1.8408595828e-11, /* 0x2da1ec79 */ |
288 | 7.3242180049e-02, /* 0x3d95ffff */ |
289 | 5.8356351852e+00, /* 0x40babd86 */ |
290 | 1.3511157227e+02, /* 0x43071c90 */ |
291 | 1.0272437744e+03, /* 0x448067cd */ |
292 | 1.9899779053e+03, /* 0x44f8bf4b */ |
293 | }; |
294 | static const float qS5[6] = { |
295 | 8.2776611328e+01, /* 0x42a58da0 */ |
296 | 2.0778142090e+03, /* 0x4501dd07 */ |
297 | 1.8847289062e+04, /* 0x46933e94 */ |
298 | 5.6751113281e+04, /* 0x475daf1d */ |
299 | 3.5976753906e+04, /* 0x470c88c1 */ |
300 | -5.3543427734e+03, /* 0xc5a752be */ |
301 | }; |
302 | |
303 | static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
304 | 4.3774099900e-09, /* 0x3196681b */ |
305 | 7.3241114616e-02, /* 0x3d95ff70 */ |
306 | 3.3442313671e+00, /* 0x405607e3 */ |
307 | 4.2621845245e+01, /* 0x422a7cc5 */ |
308 | 1.7080809021e+02, /* 0x432acedf */ |
309 | 1.6673394775e+02, /* 0x4326bbe4 */ |
310 | }; |
311 | static const float qS3[6] = { |
312 | 4.8758872986e+01, /* 0x42430916 */ |
313 | 7.0968920898e+02, /* 0x44316c1c */ |
314 | 3.7041481934e+03, /* 0x4567825f */ |
315 | 6.4604252930e+03, /* 0x45c9e367 */ |
316 | 2.5163337402e+03, /* 0x451d4557 */ |
317 | -1.4924745178e+02, /* 0xc3153f59 */ |
318 | }; |
319 | |
320 | static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
321 | 1.5044444979e-07, /* 0x342189db */ |
322 | 7.3223426938e-02, /* 0x3d95f62a */ |
323 | 1.9981917143e+00, /* 0x3fffc4bf */ |
324 | 1.4495602608e+01, /* 0x4167edfd */ |
325 | 3.1666231155e+01, /* 0x41fd5471 */ |
326 | 1.6252708435e+01, /* 0x4182058c */ |
327 | }; |
328 | static const float qS2[6] = { |
329 | 3.0365585327e+01, /* 0x41f2ecb8 */ |
330 | 2.6934811401e+02, /* 0x4386ac8f */ |
331 | 8.4478375244e+02, /* 0x44533229 */ |
332 | 8.8293585205e+02, /* 0x445cbbe5 */ |
333 | 2.1266638184e+02, /* 0x4354aa98 */ |
334 | -5.3109550476e+00, /* 0xc0a9f358 */ |
335 | }; |
336 | |
337 | static float |
338 | qzerof(float x) |
339 | { |
340 | const float *p,*q; |
341 | float s,r,z; |
342 | int32_t ix; |
343 | GET_FLOAT_WORD(ix,x); |
344 | ix &= 0x7fffffff; |
345 | /* ix >= 0x40000000 for all calls to this function. */ |
346 | if(ix>=0x41000000) {p = qR8; q= qS8;} |
347 | else if(ix>=0x40f71c58){p = qR5; q= qS5;} |
348 | else if(ix>=0x4036db68){p = qR3; q= qS3;} |
349 | else {p = qR2; q= qS2;} |
350 | z = one/(x*x); |
351 | r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
352 | s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); |
353 | return (-(float).125 + r/s)/x; |
354 | } |
355 | |