| 1 | /* |
| 2 | * IBM Accurate Mathematical Library |
| 3 | * written by International Business Machines Corp. |
| 4 | * Copyright (C) 2001-2021 Free Software Foundation, Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU Lesser General Public License as published by |
| 8 | * the Free Software Foundation; either version 2.1 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU Lesser General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Lesser General Public License |
| 17 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | /****************************************************************/ |
| 20 | /* MODULE_NAME: sincos32.c */ |
| 21 | /* */ |
| 22 | /* FUNCTIONS: ss32 */ |
| 23 | /* cc32 */ |
| 24 | /* c32 */ |
| 25 | /* sin32 */ |
| 26 | /* cos32 */ |
| 27 | /* mpsin */ |
| 28 | /* mpcos */ |
| 29 | /* mpranred */ |
| 30 | /* mpsin1 */ |
| 31 | /* mpcos1 */ |
| 32 | /* */ |
| 33 | /* FILES NEEDED: endian.h mpa.h sincos32.h */ |
| 34 | /* mpa.c */ |
| 35 | /* */ |
| 36 | /* Multi Precision sin() and cos() function with p=32 for sin()*/ |
| 37 | /* cos() arcsin() and arccos() routines */ |
| 38 | /* In addition mpranred() routine performs range reduction of */ |
| 39 | /* a double number x into multi precision number y, */ |
| 40 | /* such that y=x-n*pi/2, abs(y)<pi/4, n=0,+-1,+-2,.... */ |
| 41 | /****************************************************************/ |
| 42 | #include "endian.h" |
| 43 | #include "mpa.h" |
| 44 | #include "sincos32.h" |
| 45 | #include <math.h> |
| 46 | #include <math_private.h> |
| 47 | #include <stap-probe.h> |
| 48 | |
| 49 | #ifndef SECTION |
| 50 | # define SECTION |
| 51 | #endif |
| 52 | |
| 53 | /* Compute Multi-Precision sin() function for given p. Receive Multi Precision |
| 54 | number x and result stored at y. */ |
| 55 | static void |
| 56 | SECTION |
| 57 | ss32 (mp_no *x, mp_no *y, int p) |
| 58 | { |
| 59 | int i; |
| 60 | double a; |
| 61 | mp_no mpt1, x2, gor, sum, mpk = {1, {1.0}}; |
| 62 | for (i = 1; i <= p; i++) |
| 63 | mpk.d[i] = 0; |
| 64 | |
| 65 | __sqr (x, &x2, p); |
| 66 | __cpy (&oofac27, &gor, p); |
| 67 | __cpy (&gor, &sum, p); |
| 68 | for (a = 27.0; a > 1.0; a -= 2.0) |
| 69 | { |
| 70 | mpk.d[1] = a * (a - 1.0); |
| 71 | __mul (&gor, &mpk, &mpt1, p); |
| 72 | __cpy (&mpt1, &gor, p); |
| 73 | __mul (&x2, &sum, &mpt1, p); |
| 74 | __sub (&gor, &mpt1, &sum, p); |
| 75 | } |
| 76 | __mul (x, &sum, y, p); |
| 77 | } |
| 78 | |
| 79 | /* Compute Multi-Precision cos() function for given p. Receive Multi Precision |
| 80 | number x and result stored at y. */ |
| 81 | static void |
| 82 | SECTION |
| 83 | cc32 (mp_no *x, mp_no *y, int p) |
| 84 | { |
| 85 | int i; |
| 86 | double a; |
| 87 | mp_no mpt1, x2, gor, sum, mpk = {1, {1.0}}; |
| 88 | for (i = 1; i <= p; i++) |
| 89 | mpk.d[i] = 0; |
| 90 | |
| 91 | __sqr (x, &x2, p); |
| 92 | mpk.d[1] = 27.0; |
| 93 | __mul (&oofac27, &mpk, &gor, p); |
| 94 | __cpy (&gor, &sum, p); |
| 95 | for (a = 26.0; a > 2.0; a -= 2.0) |
| 96 | { |
| 97 | mpk.d[1] = a * (a - 1.0); |
| 98 | __mul (&gor, &mpk, &mpt1, p); |
| 99 | __cpy (&mpt1, &gor, p); |
| 100 | __mul (&x2, &sum, &mpt1, p); |
| 101 | __sub (&gor, &mpt1, &sum, p); |
| 102 | } |
| 103 | __mul (&x2, &sum, y, p); |
| 104 | } |
| 105 | |
| 106 | /* Compute both sin(x), cos(x) as Multi precision numbers. */ |
| 107 | void |
| 108 | SECTION |
| 109 | __c32 (mp_no *x, mp_no *y, mp_no *z, int p) |
| 110 | { |
| 111 | mp_no u, t, t1, t2, c, s; |
| 112 | int i; |
| 113 | __cpy (x, &u, p); |
| 114 | u.e = u.e - 1; |
| 115 | cc32 (&u, &c, p); |
| 116 | ss32 (&u, &s, p); |
| 117 | for (i = 0; i < 24; i++) |
| 118 | { |
| 119 | __mul (&c, &s, &t, p); |
| 120 | __sub (&s, &t, &t1, p); |
| 121 | __add (&t1, &t1, &s, p); |
| 122 | __sub (&__mptwo, &c, &t1, p); |
| 123 | __mul (&t1, &c, &t2, p); |
| 124 | __add (&t2, &t2, &c, p); |
| 125 | } |
| 126 | __sub (&__mpone, &c, y, p); |
| 127 | __cpy (&s, z, p); |
| 128 | } |
| 129 | |
| 130 | /* Compute sin() of double-length number (X + DX) as Multi Precision number and |
| 131 | return result as double. If REDUCE_RANGE is true, X is assumed to be the |
| 132 | original input and DX is ignored. */ |
| 133 | double |
| 134 | SECTION |
| 135 | __mpsin (double x, double dx, bool reduce_range) |
| 136 | { |
| 137 | double y; |
| 138 | mp_no a, b, c, s; |
| 139 | int n; |
| 140 | int p = 32; |
| 141 | |
| 142 | if (reduce_range) |
| 143 | { |
| 144 | n = __mpranred (x, &a, p); /* n is 0, 1, 2 or 3. */ |
| 145 | __c32 (&a, &c, &s, p); |
| 146 | } |
| 147 | else |
| 148 | { |
| 149 | n = -1; |
| 150 | __dbl_mp (x, &b, p); |
| 151 | __dbl_mp (dx, &c, p); |
| 152 | __add (&b, &c, &a, p); |
| 153 | if (x > 0.8) |
| 154 | { |
| 155 | __sub (&hp, &a, &b, p); |
| 156 | __c32 (&b, &s, &c, p); |
| 157 | } |
| 158 | else |
| 159 | __c32 (&a, &c, &s, p); /* b = sin(x+dx) */ |
| 160 | } |
| 161 | |
| 162 | /* Convert result based on which quarter of unit circle y is in. */ |
| 163 | switch (n) |
| 164 | { |
| 165 | case 1: |
| 166 | __mp_dbl (&c, &y, p); |
| 167 | break; |
| 168 | |
| 169 | case 3: |
| 170 | __mp_dbl (&c, &y, p); |
| 171 | y = -y; |
| 172 | break; |
| 173 | |
| 174 | case 2: |
| 175 | __mp_dbl (&s, &y, p); |
| 176 | y = -y; |
| 177 | break; |
| 178 | |
| 179 | /* Quadrant not set, so the result must be sin (X + DX), which is also in |
| 180 | S. */ |
| 181 | case 0: |
| 182 | default: |
| 183 | __mp_dbl (&s, &y, p); |
| 184 | } |
| 185 | LIBC_PROBE (slowsin, 3, &x, &dx, &y); |
| 186 | return y; |
| 187 | } |
| 188 | |
| 189 | /* Compute cos() of double-length number (X + DX) as Multi Precision number and |
| 190 | return result as double. If REDUCE_RANGE is true, X is assumed to be the |
| 191 | original input and DX is ignored. */ |
| 192 | double |
| 193 | SECTION |
| 194 | __mpcos (double x, double dx, bool reduce_range) |
| 195 | { |
| 196 | double y; |
| 197 | mp_no a, b, c, s; |
| 198 | int n; |
| 199 | int p = 32; |
| 200 | |
| 201 | if (reduce_range) |
| 202 | { |
| 203 | n = __mpranred (x, &a, p); /* n is 0, 1, 2 or 3. */ |
| 204 | __c32 (&a, &c, &s, p); |
| 205 | } |
| 206 | else |
| 207 | { |
| 208 | n = -1; |
| 209 | __dbl_mp (x, &b, p); |
| 210 | __dbl_mp (dx, &c, p); |
| 211 | __add (&b, &c, &a, p); |
| 212 | if (x > 0.8) |
| 213 | { |
| 214 | __sub (&hp, &a, &b, p); |
| 215 | __c32 (&b, &s, &c, p); |
| 216 | } |
| 217 | else |
| 218 | __c32 (&a, &c, &s, p); /* a = cos(x+dx) */ |
| 219 | } |
| 220 | |
| 221 | /* Convert result based on which quarter of unit circle y is in. */ |
| 222 | switch (n) |
| 223 | { |
| 224 | case 1: |
| 225 | __mp_dbl (&s, &y, p); |
| 226 | y = -y; |
| 227 | break; |
| 228 | |
| 229 | case 3: |
| 230 | __mp_dbl (&s, &y, p); |
| 231 | break; |
| 232 | |
| 233 | case 2: |
| 234 | __mp_dbl (&c, &y, p); |
| 235 | y = -y; |
| 236 | break; |
| 237 | |
| 238 | /* Quadrant not set, so the result must be cos (X + DX), which is also |
| 239 | stored in C. */ |
| 240 | case 0: |
| 241 | default: |
| 242 | __mp_dbl (&c, &y, p); |
| 243 | } |
| 244 | LIBC_PROBE (slowcos, 3, &x, &dx, &y); |
| 245 | return y; |
| 246 | } |
| 247 | |
| 248 | /* Perform range reduction of a double number x into multi precision number y, |
| 249 | such that y = x - n * pi / 2, abs (y) < pi / 4, n = 0, +-1, +-2, ... |
| 250 | Return int which indicates in which quarter of circle x is. */ |
| 251 | int |
| 252 | SECTION |
| 253 | __mpranred (double x, mp_no *y, int p) |
| 254 | { |
| 255 | number v; |
| 256 | double t, xn; |
| 257 | int i, k, n; |
| 258 | mp_no a, b, c; |
| 259 | |
| 260 | if (fabs (x) < 2.8e14) |
| 261 | { |
| 262 | t = (x * hpinv.d + toint.d); |
| 263 | xn = t - toint.d; |
| 264 | v.d = t; |
| 265 | n = v.i[LOW_HALF] & 3; |
| 266 | __dbl_mp (xn, &a, p); |
| 267 | __mul (&a, &hp, &b, p); |
| 268 | __dbl_mp (x, &c, p); |
| 269 | __sub (&c, &b, y, p); |
| 270 | return n; |
| 271 | } |
| 272 | else |
| 273 | { |
| 274 | /* If x is very big more precision required. */ |
| 275 | __dbl_mp (x, &a, p); |
| 276 | a.d[0] = 1.0; |
| 277 | k = a.e - 5; |
| 278 | if (k < 0) |
| 279 | k = 0; |
| 280 | b.e = -k; |
| 281 | b.d[0] = 1.0; |
| 282 | for (i = 0; i < p; i++) |
| 283 | b.d[i + 1] = toverp[i + k]; |
| 284 | __mul (&a, &b, &c, p); |
| 285 | t = c.d[c.e]; |
| 286 | for (i = 1; i <= p - c.e; i++) |
| 287 | c.d[i] = c.d[i + c.e]; |
| 288 | for (i = p + 1 - c.e; i <= p; i++) |
| 289 | c.d[i] = 0; |
| 290 | c.e = 0; |
| 291 | if (c.d[1] >= HALFRAD) |
| 292 | { |
| 293 | t += 1.0; |
| 294 | __sub (&c, &__mpone, &b, p); |
| 295 | __mul (&b, &hp, y, p); |
| 296 | } |
| 297 | else |
| 298 | __mul (&c, &hp, y, p); |
| 299 | n = (int) t; |
| 300 | if (x < 0) |
| 301 | { |
| 302 | y->d[0] = -y->d[0]; |
| 303 | n = -n; |
| 304 | } |
| 305 | return (n & 3); |
| 306 | } |
| 307 | } |
| 308 | |