| 1 | /* |
| 2 | * IBM Accurate Mathematical Library |
| 3 | * written by International Business Machines Corp. |
| 4 | * Copyright (C) 2001-2021 Free Software Foundation, Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU Lesser General Public License as published by |
| 8 | * the Free Software Foundation; either version 2.1 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU Lesser General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Lesser General Public License |
| 17 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | /************************************************************************/ |
| 20 | /* MODULE_NAME: atnat.c */ |
| 21 | /* */ |
| 22 | /* FUNCTIONS: uatan */ |
| 23 | /* atanMp */ |
| 24 | /* signArctan */ |
| 25 | /* */ |
| 26 | /* */ |
| 27 | /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat.h */ |
| 28 | /* mpatan.c mpatan2.c mpsqrt.c */ |
| 29 | /* uatan.tbl */ |
| 30 | /* */ |
| 31 | /* An ultimate atan() routine. Given an IEEE double machine number x */ |
| 32 | /* it computes the correctly rounded (to nearest) value of atan(x). */ |
| 33 | /* */ |
| 34 | /* Assumption: Machine arithmetic operations are performed in */ |
| 35 | /* round to nearest mode of IEEE 754 standard. */ |
| 36 | /* */ |
| 37 | /************************************************************************/ |
| 38 | |
| 39 | #include <dla.h> |
| 40 | #include "mpa.h" |
| 41 | #include "MathLib.h" |
| 42 | #include "uatan.tbl" |
| 43 | #include "atnat.h" |
| 44 | #include <fenv.h> |
| 45 | #include <float.h> |
| 46 | #include <libm-alias-double.h> |
| 47 | #include <math.h> |
| 48 | #include <fenv_private.h> |
| 49 | #include <math-underflow.h> |
| 50 | #include <stap-probe.h> |
| 51 | |
| 52 | void __mpatan (mp_no *, mp_no *, int); /* see definition in mpatan.c */ |
| 53 | static double atanMp (double, const int[]); |
| 54 | |
| 55 | /* Fix the sign of y and return */ |
| 56 | static double |
| 57 | __signArctan (double x, double y) |
| 58 | { |
| 59 | return copysign (y, x); |
| 60 | } |
| 61 | |
| 62 | |
| 63 | /* An ultimate atan() routine. Given an IEEE double machine number x, */ |
| 64 | /* routine computes the correctly rounded (to nearest) value of atan(x). */ |
| 65 | double |
| 66 | __atan (double x) |
| 67 | { |
| 68 | double cor, s1, ss1, s2, ss2, t1, t2, t3, t4, u, u2, u3, |
| 69 | v, vv, w, ww, y, yy, z, zz; |
| 70 | int i, ux, dx; |
| 71 | static const int pr[M] = { 6, 8, 10, 32 }; |
| 72 | number num; |
| 73 | |
| 74 | num.d = x; |
| 75 | ux = num.i[HIGH_HALF]; |
| 76 | dx = num.i[LOW_HALF]; |
| 77 | |
| 78 | /* x=NaN */ |
| 79 | if (((ux & 0x7ff00000) == 0x7ff00000) |
| 80 | && (((ux & 0x000fffff) | dx) != 0x00000000)) |
| 81 | return x + x; |
| 82 | |
| 83 | /* Regular values of x, including denormals +-0 and +-INF */ |
| 84 | SET_RESTORE_ROUND (FE_TONEAREST); |
| 85 | u = (x < 0) ? -x : x; |
| 86 | if (u < C) |
| 87 | { |
| 88 | if (u < B) |
| 89 | { |
| 90 | if (u < A) |
| 91 | { |
| 92 | math_check_force_underflow_nonneg (u); |
| 93 | return x; |
| 94 | } |
| 95 | else |
| 96 | { /* A <= u < B */ |
| 97 | v = x * x; |
| 98 | yy = d11.d + v * d13.d; |
| 99 | yy = d9.d + v * yy; |
| 100 | yy = d7.d + v * yy; |
| 101 | yy = d5.d + v * yy; |
| 102 | yy = d3.d + v * yy; |
| 103 | yy *= x * v; |
| 104 | |
| 105 | if ((y = x + (yy - U1 * x)) == x + (yy + U1 * x)) |
| 106 | return y; |
| 107 | |
| 108 | EMULV (x, x, v, vv); /* v+vv=x^2 */ |
| 109 | |
| 110 | s1 = f17.d + v * f19.d; |
| 111 | s1 = f15.d + v * s1; |
| 112 | s1 = f13.d + v * s1; |
| 113 | s1 = f11.d + v * s1; |
| 114 | s1 *= v; |
| 115 | |
| 116 | ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2); |
| 117 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 118 | ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2); |
| 119 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 120 | ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2); |
| 121 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 122 | ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2); |
| 123 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 124 | MUL2 (x, 0, s1, ss1, s2, ss2, t1, t2); |
| 125 | ADD2 (x, 0, s2, ss2, s1, ss1, t1, t2); |
| 126 | if ((y = s1 + (ss1 - U5 * s1)) == s1 + (ss1 + U5 * s1)) |
| 127 | return y; |
| 128 | |
| 129 | return atanMp (x, pr); |
| 130 | } |
| 131 | } |
| 132 | else |
| 133 | { /* B <= u < C */ |
| 134 | i = (TWO52 + TWO8 * u) - TWO52; |
| 135 | i -= 16; |
| 136 | z = u - cij[i][0].d; |
| 137 | yy = cij[i][5].d + z * cij[i][6].d; |
| 138 | yy = cij[i][4].d + z * yy; |
| 139 | yy = cij[i][3].d + z * yy; |
| 140 | yy = cij[i][2].d + z * yy; |
| 141 | yy *= z; |
| 142 | |
| 143 | t1 = cij[i][1].d; |
| 144 | if (i < 112) |
| 145 | { |
| 146 | if (i < 48) |
| 147 | u2 = U21; /* u < 1/4 */ |
| 148 | else |
| 149 | u2 = U22; |
| 150 | } /* 1/4 <= u < 1/2 */ |
| 151 | else |
| 152 | { |
| 153 | if (i < 176) |
| 154 | u2 = U23; /* 1/2 <= u < 3/4 */ |
| 155 | else |
| 156 | u2 = U24; |
| 157 | } /* 3/4 <= u <= 1 */ |
| 158 | if ((y = t1 + (yy - u2 * t1)) == t1 + (yy + u2 * t1)) |
| 159 | return __signArctan (x, y); |
| 160 | |
| 161 | z = u - hij[i][0].d; |
| 162 | |
| 163 | s1 = hij[i][14].d + z * hij[i][15].d; |
| 164 | s1 = hij[i][13].d + z * s1; |
| 165 | s1 = hij[i][12].d + z * s1; |
| 166 | s1 = hij[i][11].d + z * s1; |
| 167 | s1 *= z; |
| 168 | |
| 169 | ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2); |
| 170 | MUL2 (z, 0, s2, ss2, s1, ss1, t1, t2); |
| 171 | ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2); |
| 172 | MUL2 (z, 0, s2, ss2, s1, ss1, t1, t2); |
| 173 | ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2); |
| 174 | MUL2 (z, 0, s2, ss2, s1, ss1, t1, t2); |
| 175 | ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2); |
| 176 | MUL2 (z, 0, s2, ss2, s1, ss1, t1, t2); |
| 177 | ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2); |
| 178 | if ((y = s2 + (ss2 - U6 * s2)) == s2 + (ss2 + U6 * s2)) |
| 179 | return __signArctan (x, y); |
| 180 | |
| 181 | return atanMp (x, pr); |
| 182 | } |
| 183 | } |
| 184 | else |
| 185 | { |
| 186 | if (u < D) |
| 187 | { /* C <= u < D */ |
| 188 | w = 1 / u; |
| 189 | EMULV (w, u, t1, t2); |
| 190 | ww = w * ((1 - t1) - t2); |
| 191 | i = (TWO52 + TWO8 * w) - TWO52; |
| 192 | i -= 16; |
| 193 | z = (w - cij[i][0].d) + ww; |
| 194 | |
| 195 | yy = cij[i][5].d + z * cij[i][6].d; |
| 196 | yy = cij[i][4].d + z * yy; |
| 197 | yy = cij[i][3].d + z * yy; |
| 198 | yy = cij[i][2].d + z * yy; |
| 199 | yy = HPI1 - z * yy; |
| 200 | |
| 201 | t1 = HPI - cij[i][1].d; |
| 202 | if (i < 112) |
| 203 | u3 = U31; /* w < 1/2 */ |
| 204 | else |
| 205 | u3 = U32; /* w >= 1/2 */ |
| 206 | if ((y = t1 + (yy - u3)) == t1 + (yy + u3)) |
| 207 | return __signArctan (x, y); |
| 208 | |
| 209 | DIV2 (1, 0, u, 0, w, ww, t1, t2, t3, t4); |
| 210 | t1 = w - hij[i][0].d; |
| 211 | EADD (t1, ww, z, zz); |
| 212 | |
| 213 | s1 = hij[i][14].d + z * hij[i][15].d; |
| 214 | s1 = hij[i][13].d + z * s1; |
| 215 | s1 = hij[i][12].d + z * s1; |
| 216 | s1 = hij[i][11].d + z * s1; |
| 217 | s1 *= z; |
| 218 | |
| 219 | ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2); |
| 220 | MUL2 (z, zz, s2, ss2, s1, ss1, t1, t2); |
| 221 | ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2); |
| 222 | MUL2 (z, zz, s2, ss2, s1, ss1, t1, t2); |
| 223 | ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2); |
| 224 | MUL2 (z, zz, s2, ss2, s1, ss1, t1, t2); |
| 225 | ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2); |
| 226 | MUL2 (z, zz, s2, ss2, s1, ss1, t1, t2); |
| 227 | ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2); |
| 228 | SUB2 (HPI, HPI1, s2, ss2, s1, ss1, t1, t2); |
| 229 | if ((y = s1 + (ss1 - U7)) == s1 + (ss1 + U7)) |
| 230 | return __signArctan (x, y); |
| 231 | |
| 232 | return atanMp (x, pr); |
| 233 | } |
| 234 | else |
| 235 | { |
| 236 | if (u < E) |
| 237 | { /* D <= u < E */ |
| 238 | w = 1 / u; |
| 239 | v = w * w; |
| 240 | EMULV (w, u, t1, t2); |
| 241 | |
| 242 | yy = d11.d + v * d13.d; |
| 243 | yy = d9.d + v * yy; |
| 244 | yy = d7.d + v * yy; |
| 245 | yy = d5.d + v * yy; |
| 246 | yy = d3.d + v * yy; |
| 247 | yy *= w * v; |
| 248 | |
| 249 | ww = w * ((1 - t1) - t2); |
| 250 | ESUB (HPI, w, t3, cor); |
| 251 | yy = ((HPI1 + cor) - ww) - yy; |
| 252 | if ((y = t3 + (yy - U4)) == t3 + (yy + U4)) |
| 253 | return __signArctan (x, y); |
| 254 | |
| 255 | DIV2 (1, 0, u, 0, w, ww, t1, t2, t3, t4); |
| 256 | MUL2 (w, ww, w, ww, v, vv, t1, t2); |
| 257 | |
| 258 | s1 = f17.d + v * f19.d; |
| 259 | s1 = f15.d + v * s1; |
| 260 | s1 = f13.d + v * s1; |
| 261 | s1 = f11.d + v * s1; |
| 262 | s1 *= v; |
| 263 | |
| 264 | ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2); |
| 265 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 266 | ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2); |
| 267 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 268 | ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2); |
| 269 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 270 | ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2); |
| 271 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 272 | MUL2 (w, ww, s1, ss1, s2, ss2, t1, t2); |
| 273 | ADD2 (w, ww, s2, ss2, s1, ss1, t1, t2); |
| 274 | SUB2 (HPI, HPI1, s1, ss1, s2, ss2, t1, t2); |
| 275 | |
| 276 | if ((y = s2 + (ss2 - U8)) == s2 + (ss2 + U8)) |
| 277 | return __signArctan (x, y); |
| 278 | |
| 279 | return atanMp (x, pr); |
| 280 | } |
| 281 | else |
| 282 | { |
| 283 | /* u >= E */ |
| 284 | if (x > 0) |
| 285 | return HPI; |
| 286 | else |
| 287 | return MHPI; |
| 288 | } |
| 289 | } |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | /* Final stages. Compute atan(x) by multiple precision arithmetic */ |
| 294 | static double |
| 295 | atanMp (double x, const int pr[]) |
| 296 | { |
| 297 | mp_no mpx, mpy, mpy2, mperr, mpt1, mpy1; |
| 298 | double y1, y2; |
| 299 | int i, p; |
| 300 | |
| 301 | for (i = 0; i < M; i++) |
| 302 | { |
| 303 | p = pr[i]; |
| 304 | __dbl_mp (x, &mpx, p); |
| 305 | __mpatan (&mpx, &mpy, p); |
| 306 | __dbl_mp (u9[i].d, &mpt1, p); |
| 307 | __mul (&mpy, &mpt1, &mperr, p); |
| 308 | __add (&mpy, &mperr, &mpy1, p); |
| 309 | __sub (&mpy, &mperr, &mpy2, p); |
| 310 | __mp_dbl (&mpy1, &y1, p); |
| 311 | __mp_dbl (&mpy2, &y2, p); |
| 312 | if (y1 == y2) |
| 313 | { |
| 314 | LIBC_PROBE (slowatan, 3, &p, &x, &y1); |
| 315 | return y1; |
| 316 | } |
| 317 | } |
| 318 | LIBC_PROBE (slowatan_inexact, 3, &p, &x, &y1); |
| 319 | return y1; /*if impossible to do exact computing */ |
| 320 | } |
| 321 | |
| 322 | #ifndef __atan |
| 323 | libm_alias_double (__atan, atan) |
| 324 | #endif |
| 325 | |