1 | /* |
2 | * IBM Accurate Mathematical Library |
3 | * written by International Business Machines Corp. |
4 | * Copyright (C) 2001-2021 Free Software Foundation, Inc. |
5 | * |
6 | * This program is free software; you can redistribute it and/or modify |
7 | * it under the terms of the GNU Lesser General Public License as published by |
8 | * the Free Software Foundation; either version 2.1 of the License, or |
9 | * (at your option) any later version. |
10 | * |
11 | * This program is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | * GNU Lesser General Public License for more details. |
15 | * |
16 | * You should have received a copy of the GNU Lesser General Public License |
17 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
18 | */ |
19 | /****************************************************************************/ |
20 | /* MODULE_NAME:mpsqrt.c */ |
21 | /* */ |
22 | /* FUNCTION:mpsqrt */ |
23 | /* fastiroot */ |
24 | /* */ |
25 | /* FILES NEEDED:endian.h mpa.h mpsqrt.h */ |
26 | /* mpa.c */ |
27 | /* Multi-Precision square root function subroutine for precision p >= 4. */ |
28 | /* The relative error is bounded by 3.501*r**(1-p), where r=2**24. */ |
29 | /* */ |
30 | /****************************************************************************/ |
31 | #include "endian.h" |
32 | #include "mpa.h" |
33 | |
34 | #ifndef SECTION |
35 | # define SECTION |
36 | #endif |
37 | |
38 | #include "mpsqrt.h" |
39 | |
40 | /****************************************************************************/ |
41 | /* Multi-Precision square root function subroutine for precision p >= 4. */ |
42 | /* The relative error is bounded by 3.501*r**(1-p), where r=2**24. */ |
43 | /* Routine receives two pointers to Multi Precision numbers: */ |
44 | /* x (left argument) and y (next argument). Routine also receives precision */ |
45 | /* p as integer. Routine computes sqrt(*x) and stores result in *y */ |
46 | /****************************************************************************/ |
47 | |
48 | static double fastiroot (double); |
49 | |
50 | void |
51 | SECTION |
52 | __mpsqrt (mp_no *x, mp_no *y, int p) |
53 | { |
54 | int i, m, ey; |
55 | double dx, dy; |
56 | static const mp_no mphalf = {0, {1.0, HALFRAD}}; |
57 | static const mp_no mp3halfs = {1, {1.0, 1.0, HALFRAD}}; |
58 | mp_no mpxn, mpz, mpu, mpt1, mpt2; |
59 | |
60 | ey = EX / 2; |
61 | __cpy (x, &mpxn, p); |
62 | mpxn.e -= (ey + ey); |
63 | __mp_dbl (&mpxn, &dx, p); |
64 | dy = fastiroot (dx); |
65 | __dbl_mp (dy, &mpu, p); |
66 | __mul (&mpxn, &mphalf, &mpz, p); |
67 | |
68 | m = __mpsqrt_mp[p]; |
69 | for (i = 0; i < m; i++) |
70 | { |
71 | __sqr (&mpu, &mpt1, p); |
72 | __mul (&mpt1, &mpz, &mpt2, p); |
73 | __sub (&mp3halfs, &mpt2, &mpt1, p); |
74 | __mul (&mpu, &mpt1, &mpt2, p); |
75 | __cpy (&mpt2, &mpu, p); |
76 | } |
77 | __mul (&mpxn, &mpu, y, p); |
78 | EY += ey; |
79 | } |
80 | |
81 | /***********************************************************/ |
82 | /* Compute a double precision approximation for 1/sqrt(x) */ |
83 | /* with the relative error bounded by 2**-51. */ |
84 | /***********************************************************/ |
85 | static double |
86 | SECTION |
87 | fastiroot (double x) |
88 | { |
89 | union |
90 | { |
91 | int i[2]; |
92 | double d; |
93 | } p, q; |
94 | double y, z, t; |
95 | int n; |
96 | static const double c0 = 0.99674, c1 = -0.53380; |
97 | static const double c2 = 0.45472, c3 = -0.21553; |
98 | |
99 | p.d = x; |
100 | p.i[HIGH_HALF] = (p.i[HIGH_HALF] & 0x3FFFFFFF) | 0x3FE00000; |
101 | q.d = x; |
102 | y = p.d; |
103 | z = y - 1.0; |
104 | n = (q.i[HIGH_HALF] - p.i[HIGH_HALF]) >> 1; |
105 | z = ((c3 * z + c2) * z + c1) * z + c0; /* 2**-7 */ |
106 | z = z * (1.5 - 0.5 * y * z * z); /* 2**-14 */ |
107 | p.d = z * (1.5 - 0.5 * y * z * z); /* 2**-28 */ |
108 | p.i[HIGH_HALF] -= n; |
109 | t = x * p.d; |
110 | return p.d * (1.5 - 0.5 * p.d * t); |
111 | } |
112 | |