1 | /* |
2 | * IBM Accurate Mathematical Library |
3 | * written by International Business Machines Corp. |
4 | * Copyright (C) 2001-2021 Free Software Foundation, Inc. |
5 | * |
6 | * This program is free software; you can redistribute it and/or modify |
7 | * it under the terms of the GNU Lesser General Public License as published by |
8 | * the Free Software Foundation; either version 2.1 of the License, or |
9 | * (at your option) any later version. |
10 | * |
11 | * This program is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | * GNU Lesser General Public License for more details. |
15 | * |
16 | * You should have received a copy of the GNU Lesser General Public License |
17 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
18 | */ |
19 | /******************************************************************/ |
20 | /* */ |
21 | /* MODULE_NAME:mpatan.c */ |
22 | /* */ |
23 | /* FUNCTIONS:mpatan */ |
24 | /* */ |
25 | /* FILES NEEDED: mpa.h endian.h mpatan.h */ |
26 | /* mpa.c */ |
27 | /* */ |
28 | /* Multi-Precision Atan function subroutine, for precision p >= 4.*/ |
29 | /* The relative error of the result is bounded by 34.32*r**(1-p), */ |
30 | /* where r=2**24. */ |
31 | /******************************************************************/ |
32 | |
33 | #include "endian.h" |
34 | #include "mpa.h" |
35 | #include <math.h> |
36 | |
37 | #ifndef SECTION |
38 | # define SECTION |
39 | #endif |
40 | |
41 | #include "mpatan.h" |
42 | |
43 | void |
44 | SECTION |
45 | __mpatan (mp_no *x, mp_no *y, int p) |
46 | { |
47 | int i, m, n; |
48 | double dx; |
49 | mp_no mptwoim1 = |
50 | { |
51 | 0, |
52 | { |
53 | 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, |
54 | 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, |
55 | 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 |
56 | } |
57 | }; |
58 | |
59 | mp_no mps, mpsm, mpt, mpt1, mpt2, mpt3; |
60 | |
61 | /* Choose m and initiate mptwoim1. */ |
62 | if (EX > 0) |
63 | m = 7; |
64 | else if (EX < 0) |
65 | m = 0; |
66 | else |
67 | { |
68 | __mp_dbl (x, &dx, p); |
69 | dx = fabs (dx); |
70 | for (m = 6; m > 0; m--) |
71 | { |
72 | if (dx > __atan_xm[m].d) |
73 | break; |
74 | } |
75 | } |
76 | mptwoim1.e = 1; |
77 | mptwoim1.d[0] = 1; |
78 | |
79 | /* Reduce x m times. */ |
80 | __sqr (x, &mpsm, p); |
81 | if (m == 0) |
82 | __cpy (x, &mps, p); |
83 | else |
84 | { |
85 | for (i = 0; i < m; i++) |
86 | { |
87 | __add (&__mpone, &mpsm, &mpt1, p); |
88 | __mpsqrt (&mpt1, &mpt2, p); |
89 | __add (&mpt2, &mpt2, &mpt1, p); |
90 | __add (&__mptwo, &mpsm, &mpt2, p); |
91 | __add (&mpt1, &mpt2, &mpt3, p); |
92 | __dvd (&mpsm, &mpt3, &mpt1, p); |
93 | __cpy (&mpt1, &mpsm, p); |
94 | } |
95 | __mpsqrt (&mpsm, &mps, p); |
96 | mps.d[0] = X[0]; |
97 | } |
98 | |
99 | /* Evaluate a truncated power series for Atan(s). */ |
100 | n = __atan_np[p]; |
101 | mptwoim1.d[1] = __atan_twonm1[p].d; |
102 | __dvd (&mpsm, &mptwoim1, &mpt, p); |
103 | for (i = n - 1; i > 1; i--) |
104 | { |
105 | mptwoim1.d[1] -= 2; |
106 | __dvd (&mpsm, &mptwoim1, &mpt1, p); |
107 | __mul (&mpsm, &mpt, &mpt2, p); |
108 | __sub (&mpt1, &mpt2, &mpt, p); |
109 | } |
110 | __mul (&mps, &mpt, &mpt1, p); |
111 | __sub (&mps, &mpt1, &mpt, p); |
112 | |
113 | /* Compute Atan(x). */ |
114 | mptwoim1.d[1] = 1 << m; |
115 | __mul (&mptwoim1, &mpt, y, p); |
116 | } |
117 | |