| 1 | /* |
| 2 | * IBM Accurate Mathematical Library |
| 3 | * written by International Business Machines Corp. |
| 4 | * Copyright (C) 2001-2021 Free Software Foundation, Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU Lesser General Public License as published by |
| 8 | * the Free Software Foundation; either version 2.1 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU Lesser General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Lesser General Public License |
| 17 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | /**************************************************************************/ |
| 20 | /* MODULE_NAME urem.c */ |
| 21 | /* */ |
| 22 | /* FUNCTION: uremainder */ |
| 23 | /* */ |
| 24 | /* An ultimate remainder routine. Given two IEEE double machine numbers x */ |
| 25 | /* ,y it computes the correctly rounded (to nearest) value of remainder */ |
| 26 | /* of dividing x by y. */ |
| 27 | /* Assumption: Machine arithmetic operations are performed in */ |
| 28 | /* round to nearest mode of IEEE 754 standard. */ |
| 29 | /* */ |
| 30 | /* ************************************************************************/ |
| 31 | |
| 32 | #include "endian.h" |
| 33 | #include "mydefs.h" |
| 34 | #include "urem.h" |
| 35 | #include "MathLib.h" |
| 36 | #include <math.h> |
| 37 | #include <math_private.h> |
| 38 | #include <fenv_private.h> |
| 39 | #include <libm-alias-finite.h> |
| 40 | |
| 41 | /**************************************************************************/ |
| 42 | /* An ultimate remainder routine. Given two IEEE double machine numbers x */ |
| 43 | /* ,y it computes the correctly rounded (to nearest) value of remainder */ |
| 44 | /**************************************************************************/ |
| 45 | double |
| 46 | __ieee754_remainder (double x, double y) |
| 47 | { |
| 48 | double z, d, xx; |
| 49 | int4 kx, ky, n, nn, n1, m1, l; |
| 50 | mynumber u, t, w = { { 0, 0 } }, v = { { 0, 0 } }, ww = { { 0, 0 } }, r; |
| 51 | u.x = x; |
| 52 | t.x = y; |
| 53 | kx = u.i[HIGH_HALF] & 0x7fffffff; /* no sign for x*/ |
| 54 | t.i[HIGH_HALF] &= 0x7fffffff; /*no sign for y */ |
| 55 | ky = t.i[HIGH_HALF]; |
| 56 | /*------ |x| < 2^1023 and 2^-970 < |y| < 2^1024 ------------------*/ |
| 57 | if (kx < 0x7fe00000 && ky < 0x7ff00000 && ky >= 0x03500000) |
| 58 | { |
| 59 | SET_RESTORE_ROUND_NOEX (FE_TONEAREST); |
| 60 | if (kx + 0x00100000 < ky) |
| 61 | return x; |
| 62 | if ((kx - 0x01500000) < ky) |
| 63 | { |
| 64 | z = x / t.x; |
| 65 | v.i[HIGH_HALF] = t.i[HIGH_HALF]; |
| 66 | d = (z + big.x) - big.x; |
| 67 | xx = (x - d * v.x) - d * (t.x - v.x); |
| 68 | if (d - z != 0.5 && d - z != -0.5) |
| 69 | return (xx != 0) ? xx : ((x > 0) ? ZERO.x : nZERO.x); |
| 70 | else |
| 71 | { |
| 72 | if (fabs (xx) > 0.5 * t.x) |
| 73 | return (z > d) ? xx - t.x : xx + t.x; |
| 74 | else |
| 75 | return xx; |
| 76 | } |
| 77 | } /* (kx<(ky+0x01500000)) */ |
| 78 | else |
| 79 | { |
| 80 | r.x = 1.0 / t.x; |
| 81 | n = t.i[HIGH_HALF]; |
| 82 | nn = (n & 0x7ff00000) + 0x01400000; |
| 83 | w.i[HIGH_HALF] = n; |
| 84 | ww.x = t.x - w.x; |
| 85 | l = (kx - nn) & 0xfff00000; |
| 86 | n1 = ww.i[HIGH_HALF]; |
| 87 | m1 = r.i[HIGH_HALF]; |
| 88 | while (l > 0) |
| 89 | { |
| 90 | r.i[HIGH_HALF] = m1 - l; |
| 91 | z = u.x * r.x; |
| 92 | w.i[HIGH_HALF] = n + l; |
| 93 | ww.i[HIGH_HALF] = (n1) ? n1 + l : n1; |
| 94 | d = (z + big.x) - big.x; |
| 95 | u.x = (u.x - d * w.x) - d * ww.x; |
| 96 | l = (u.i[HIGH_HALF] & 0x7ff00000) - nn; |
| 97 | } |
| 98 | r.i[HIGH_HALF] = m1; |
| 99 | w.i[HIGH_HALF] = n; |
| 100 | ww.i[HIGH_HALF] = n1; |
| 101 | z = u.x * r.x; |
| 102 | d = (z + big.x) - big.x; |
| 103 | u.x = (u.x - d * w.x) - d * ww.x; |
| 104 | if (fabs (u.x) < 0.5 * t.x) |
| 105 | return (u.x != 0) ? u.x : ((x > 0) ? ZERO.x : nZERO.x); |
| 106 | else |
| 107 | if (fabs (u.x) > 0.5 * t.x) |
| 108 | return (d > z) ? u.x + t.x : u.x - t.x; |
| 109 | else |
| 110 | { |
| 111 | z = u.x / t.x; d = (z + big.x) - big.x; |
| 112 | return ((u.x - d * w.x) - d * ww.x); |
| 113 | } |
| 114 | } |
| 115 | } /* (kx<0x7fe00000&&ky<0x7ff00000&&ky>=0x03500000) */ |
| 116 | else |
| 117 | { |
| 118 | if (kx < 0x7fe00000 && ky < 0x7ff00000 && (ky > 0 || t.i[LOW_HALF] != 0)) |
| 119 | { |
| 120 | y = fabs (y) * t128.x; |
| 121 | z = __ieee754_remainder (x, y) * t128.x; |
| 122 | z = __ieee754_remainder (z, y) * tm128.x; |
| 123 | return z; |
| 124 | } |
| 125 | else |
| 126 | { |
| 127 | if ((kx & 0x7ff00000) == 0x7fe00000 && ky < 0x7ff00000 && |
| 128 | (ky > 0 || t.i[LOW_HALF] != 0)) |
| 129 | { |
| 130 | y = fabs (y); |
| 131 | z = 2.0 * __ieee754_remainder (0.5 * x, y); |
| 132 | d = fabs (z); |
| 133 | if (d <= fabs (d - y)) |
| 134 | return z; |
| 135 | else if (d == y) |
| 136 | return 0.0 * x; |
| 137 | else |
| 138 | return (z > 0) ? z - y : z + y; |
| 139 | } |
| 140 | else /* if x is too big */ |
| 141 | { |
| 142 | if (ky == 0 && t.i[LOW_HALF] == 0) /* y = 0 */ |
| 143 | return (x * y) / (x * y); |
| 144 | else if (kx >= 0x7ff00000 /* x not finite */ |
| 145 | || (ky > 0x7ff00000 /* y is NaN */ |
| 146 | || (ky == 0x7ff00000 && t.i[LOW_HALF] != 0))) |
| 147 | return (x * y) / (x * y); |
| 148 | else |
| 149 | return x; |
| 150 | } |
| 151 | } |
| 152 | } |
| 153 | } |
| 154 | libm_alias_finite (__ieee754_remainder, __remainder) |
| 155 | |