1 | /* Software floating-point emulation. |
2 | Basic two-word fraction declaration and manipulation. |
3 | Copyright (C) 1997-2021 Free Software Foundation, Inc. |
4 | This file is part of the GNU C Library. |
5 | Contributed by Richard Henderson (rth@cygnus.com), |
6 | Jakub Jelinek (jj@ultra.linux.cz), |
7 | David S. Miller (davem@redhat.com) and |
8 | Peter Maydell (pmaydell@chiark.greenend.org.uk). |
9 | |
10 | The GNU C Library is free software; you can redistribute it and/or |
11 | modify it under the terms of the GNU Lesser General Public |
12 | License as published by the Free Software Foundation; either |
13 | version 2.1 of the License, or (at your option) any later version. |
14 | |
15 | In addition to the permissions in the GNU Lesser General Public |
16 | License, the Free Software Foundation gives you unlimited |
17 | permission to link the compiled version of this file into |
18 | combinations with other programs, and to distribute those |
19 | combinations without any restriction coming from the use of this |
20 | file. (The Lesser General Public License restrictions do apply in |
21 | other respects; for example, they cover modification of the file, |
22 | and distribution when not linked into a combine executable.) |
23 | |
24 | The GNU C Library is distributed in the hope that it will be useful, |
25 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
26 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
27 | Lesser General Public License for more details. |
28 | |
29 | You should have received a copy of the GNU Lesser General Public |
30 | License along with the GNU C Library; if not, see |
31 | <https://www.gnu.org/licenses/>. */ |
32 | |
33 | #ifndef SOFT_FP_OP_2_H |
34 | #define SOFT_FP_OP_2_H 1 |
35 | |
36 | #define _FP_FRAC_DECL_2(X) \ |
37 | _FP_W_TYPE X##_f0 _FP_ZERO_INIT, X##_f1 _FP_ZERO_INIT |
38 | #define _FP_FRAC_COPY_2(D, S) (D##_f0 = S##_f0, D##_f1 = S##_f1) |
39 | #define _FP_FRAC_SET_2(X, I) __FP_FRAC_SET_2 (X, I) |
40 | #define _FP_FRAC_HIGH_2(X) (X##_f1) |
41 | #define _FP_FRAC_LOW_2(X) (X##_f0) |
42 | #define _FP_FRAC_WORD_2(X, w) (X##_f##w) |
43 | |
44 | #define _FP_FRAC_SLL_2(X, N) \ |
45 | (void) (((N) < _FP_W_TYPE_SIZE) \ |
46 | ? ({ \ |
47 | if (__builtin_constant_p (N) && (N) == 1) \ |
48 | { \ |
49 | X##_f1 = X##_f1 + X##_f1 + (((_FP_WS_TYPE) (X##_f0)) < 0); \ |
50 | X##_f0 += X##_f0; \ |
51 | } \ |
52 | else \ |
53 | { \ |
54 | X##_f1 = X##_f1 << (N) | X##_f0 >> (_FP_W_TYPE_SIZE - (N)); \ |
55 | X##_f0 <<= (N); \ |
56 | } \ |
57 | 0; \ |
58 | }) \ |
59 | : ({ \ |
60 | X##_f1 = X##_f0 << ((N) - _FP_W_TYPE_SIZE); \ |
61 | X##_f0 = 0; \ |
62 | })) |
63 | |
64 | |
65 | #define _FP_FRAC_SRL_2(X, N) \ |
66 | (void) (((N) < _FP_W_TYPE_SIZE) \ |
67 | ? ({ \ |
68 | X##_f0 = X##_f0 >> (N) | X##_f1 << (_FP_W_TYPE_SIZE - (N)); \ |
69 | X##_f1 >>= (N); \ |
70 | }) \ |
71 | : ({ \ |
72 | X##_f0 = X##_f1 >> ((N) - _FP_W_TYPE_SIZE); \ |
73 | X##_f1 = 0; \ |
74 | })) |
75 | |
76 | /* Right shift with sticky-lsb. */ |
77 | #define _FP_FRAC_SRST_2(X, S, N, sz) \ |
78 | (void) (((N) < _FP_W_TYPE_SIZE) \ |
79 | ? ({ \ |
80 | S = (__builtin_constant_p (N) && (N) == 1 \ |
81 | ? X##_f0 & 1 \ |
82 | : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0); \ |
83 | X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N)); \ |
84 | X##_f1 >>= (N); \ |
85 | }) \ |
86 | : ({ \ |
87 | S = ((((N) == _FP_W_TYPE_SIZE \ |
88 | ? 0 \ |
89 | : (X##_f1 << (2*_FP_W_TYPE_SIZE - (N)))) \ |
90 | | X##_f0) != 0); \ |
91 | X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE)); \ |
92 | X##_f1 = 0; \ |
93 | })) |
94 | |
95 | #define _FP_FRAC_SRS_2(X, N, sz) \ |
96 | (void) (((N) < _FP_W_TYPE_SIZE) \ |
97 | ? ({ \ |
98 | X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) \ |
99 | | (__builtin_constant_p (N) && (N) == 1 \ |
100 | ? X##_f0 & 1 \ |
101 | : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0)); \ |
102 | X##_f1 >>= (N); \ |
103 | }) \ |
104 | : ({ \ |
105 | X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE) \ |
106 | | ((((N) == _FP_W_TYPE_SIZE \ |
107 | ? 0 \ |
108 | : (X##_f1 << (2*_FP_W_TYPE_SIZE - (N)))) \ |
109 | | X##_f0) != 0)); \ |
110 | X##_f1 = 0; \ |
111 | })) |
112 | |
113 | #define _FP_FRAC_ADDI_2(X, I) \ |
114 | __FP_FRAC_ADDI_2 (X##_f1, X##_f0, I) |
115 | |
116 | #define _FP_FRAC_ADD_2(R, X, Y) \ |
117 | __FP_FRAC_ADD_2 (R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) |
118 | |
119 | #define _FP_FRAC_SUB_2(R, X, Y) \ |
120 | __FP_FRAC_SUB_2 (R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) |
121 | |
122 | #define _FP_FRAC_DEC_2(X, Y) \ |
123 | __FP_FRAC_DEC_2 (X##_f1, X##_f0, Y##_f1, Y##_f0) |
124 | |
125 | #define _FP_FRAC_CLZ_2(R, X) \ |
126 | do \ |
127 | { \ |
128 | if (X##_f1) \ |
129 | __FP_CLZ ((R), X##_f1); \ |
130 | else \ |
131 | { \ |
132 | __FP_CLZ ((R), X##_f0); \ |
133 | (R) += _FP_W_TYPE_SIZE; \ |
134 | } \ |
135 | } \ |
136 | while (0) |
137 | |
138 | /* Predicates. */ |
139 | #define _FP_FRAC_NEGP_2(X) ((_FP_WS_TYPE) X##_f1 < 0) |
140 | #define _FP_FRAC_ZEROP_2(X) ((X##_f1 | X##_f0) == 0) |
141 | #define _FP_FRAC_OVERP_2(fs, X) (_FP_FRAC_HIGH_##fs (X) & _FP_OVERFLOW_##fs) |
142 | #define _FP_FRAC_CLEAR_OVERP_2(fs, X) (_FP_FRAC_HIGH_##fs (X) &= ~_FP_OVERFLOW_##fs) |
143 | #define _FP_FRAC_HIGHBIT_DW_2(fs, X) \ |
144 | (_FP_FRAC_HIGH_DW_##fs (X) & _FP_HIGHBIT_DW_##fs) |
145 | #define _FP_FRAC_EQ_2(X, Y) (X##_f1 == Y##_f1 && X##_f0 == Y##_f0) |
146 | #define _FP_FRAC_GT_2(X, Y) \ |
147 | (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 > Y##_f0)) |
148 | #define _FP_FRAC_GE_2(X, Y) \ |
149 | (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 >= Y##_f0)) |
150 | |
151 | #define _FP_ZEROFRAC_2 0, 0 |
152 | #define _FP_MINFRAC_2 0, 1 |
153 | #define _FP_MAXFRAC_2 (~(_FP_WS_TYPE) 0), (~(_FP_WS_TYPE) 0) |
154 | |
155 | /* Internals. */ |
156 | |
157 | #define __FP_FRAC_SET_2(X, I1, I0) (X##_f0 = I0, X##_f1 = I1) |
158 | |
159 | #define __FP_CLZ_2(R, xh, xl) \ |
160 | do \ |
161 | { \ |
162 | if (xh) \ |
163 | __FP_CLZ ((R), xh); \ |
164 | else \ |
165 | { \ |
166 | __FP_CLZ ((R), xl); \ |
167 | (R) += _FP_W_TYPE_SIZE; \ |
168 | } \ |
169 | } \ |
170 | while (0) |
171 | |
172 | #if 0 |
173 | |
174 | # ifndef __FP_FRAC_ADDI_2 |
175 | # define __FP_FRAC_ADDI_2(xh, xl, i) \ |
176 | (xh += ((xl += i) < i)) |
177 | # endif |
178 | # ifndef __FP_FRAC_ADD_2 |
179 | # define __FP_FRAC_ADD_2(rh, rl, xh, xl, yh, yl) \ |
180 | (rh = xh + yh + ((rl = xl + yl) < xl)) |
181 | # endif |
182 | # ifndef __FP_FRAC_SUB_2 |
183 | # define __FP_FRAC_SUB_2(rh, rl, xh, xl, yh, yl) \ |
184 | (rh = xh - yh - ((rl = xl - yl) > xl)) |
185 | # endif |
186 | # ifndef __FP_FRAC_DEC_2 |
187 | # define __FP_FRAC_DEC_2(xh, xl, yh, yl) \ |
188 | do \ |
189 | { \ |
190 | UWtype __FP_FRAC_DEC_2_t = xl; \ |
191 | xh -= yh + ((xl -= yl) > __FP_FRAC_DEC_2_t); \ |
192 | } \ |
193 | while (0) |
194 | # endif |
195 | |
196 | #else |
197 | |
198 | # undef __FP_FRAC_ADDI_2 |
199 | # define __FP_FRAC_ADDI_2(xh, xl, i) add_ssaaaa (xh, xl, xh, xl, 0, i) |
200 | # undef __FP_FRAC_ADD_2 |
201 | # define __FP_FRAC_ADD_2 add_ssaaaa |
202 | # undef __FP_FRAC_SUB_2 |
203 | # define __FP_FRAC_SUB_2 sub_ddmmss |
204 | # undef __FP_FRAC_DEC_2 |
205 | # define __FP_FRAC_DEC_2(xh, xl, yh, yl) \ |
206 | sub_ddmmss (xh, xl, xh, xl, yh, yl) |
207 | |
208 | #endif |
209 | |
210 | /* Unpack the raw bits of a native fp value. Do not classify or |
211 | normalize the data. */ |
212 | |
213 | #define _FP_UNPACK_RAW_2(fs, X, val) \ |
214 | do \ |
215 | { \ |
216 | union _FP_UNION_##fs _FP_UNPACK_RAW_2_flo; \ |
217 | _FP_UNPACK_RAW_2_flo.flt = (val); \ |
218 | \ |
219 | X##_f0 = _FP_UNPACK_RAW_2_flo.bits.frac0; \ |
220 | X##_f1 = _FP_UNPACK_RAW_2_flo.bits.frac1; \ |
221 | X##_e = _FP_UNPACK_RAW_2_flo.bits.exp; \ |
222 | X##_s = _FP_UNPACK_RAW_2_flo.bits.sign; \ |
223 | } \ |
224 | while (0) |
225 | |
226 | #define _FP_UNPACK_RAW_2_P(fs, X, val) \ |
227 | do \ |
228 | { \ |
229 | union _FP_UNION_##fs *_FP_UNPACK_RAW_2_P_flo \ |
230 | = (union _FP_UNION_##fs *) (val); \ |
231 | \ |
232 | X##_f0 = _FP_UNPACK_RAW_2_P_flo->bits.frac0; \ |
233 | X##_f1 = _FP_UNPACK_RAW_2_P_flo->bits.frac1; \ |
234 | X##_e = _FP_UNPACK_RAW_2_P_flo->bits.exp; \ |
235 | X##_s = _FP_UNPACK_RAW_2_P_flo->bits.sign; \ |
236 | } \ |
237 | while (0) |
238 | |
239 | |
240 | /* Repack the raw bits of a native fp value. */ |
241 | |
242 | #define _FP_PACK_RAW_2(fs, val, X) \ |
243 | do \ |
244 | { \ |
245 | union _FP_UNION_##fs _FP_PACK_RAW_2_flo; \ |
246 | \ |
247 | _FP_PACK_RAW_2_flo.bits.frac0 = X##_f0; \ |
248 | _FP_PACK_RAW_2_flo.bits.frac1 = X##_f1; \ |
249 | _FP_PACK_RAW_2_flo.bits.exp = X##_e; \ |
250 | _FP_PACK_RAW_2_flo.bits.sign = X##_s; \ |
251 | \ |
252 | (val) = _FP_PACK_RAW_2_flo.flt; \ |
253 | } \ |
254 | while (0) |
255 | |
256 | #define _FP_PACK_RAW_2_P(fs, val, X) \ |
257 | do \ |
258 | { \ |
259 | union _FP_UNION_##fs *_FP_PACK_RAW_2_P_flo \ |
260 | = (union _FP_UNION_##fs *) (val); \ |
261 | \ |
262 | _FP_PACK_RAW_2_P_flo->bits.frac0 = X##_f0; \ |
263 | _FP_PACK_RAW_2_P_flo->bits.frac1 = X##_f1; \ |
264 | _FP_PACK_RAW_2_P_flo->bits.exp = X##_e; \ |
265 | _FP_PACK_RAW_2_P_flo->bits.sign = X##_s; \ |
266 | } \ |
267 | while (0) |
268 | |
269 | |
270 | /* Multiplication algorithms: */ |
271 | |
272 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */ |
273 | |
274 | #define _FP_MUL_MEAT_DW_2_wide(wfracbits, R, X, Y, doit) \ |
275 | do \ |
276 | { \ |
277 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_b); \ |
278 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_c); \ |
279 | \ |
280 | doit (_FP_FRAC_WORD_4 (R, 1), _FP_FRAC_WORD_4 (R, 0), \ |
281 | X##_f0, Y##_f0); \ |
282 | doit (_FP_MUL_MEAT_DW_2_wide_b_f1, _FP_MUL_MEAT_DW_2_wide_b_f0, \ |
283 | X##_f0, Y##_f1); \ |
284 | doit (_FP_MUL_MEAT_DW_2_wide_c_f1, _FP_MUL_MEAT_DW_2_wide_c_f0, \ |
285 | X##_f1, Y##_f0); \ |
286 | doit (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
287 | X##_f1, Y##_f1); \ |
288 | \ |
289 | __FP_FRAC_ADD_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
290 | _FP_FRAC_WORD_4 (R, 1), 0, \ |
291 | _FP_MUL_MEAT_DW_2_wide_b_f1, \ |
292 | _FP_MUL_MEAT_DW_2_wide_b_f0, \ |
293 | _FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
294 | _FP_FRAC_WORD_4 (R, 1)); \ |
295 | __FP_FRAC_ADD_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
296 | _FP_FRAC_WORD_4 (R, 1), 0, \ |
297 | _FP_MUL_MEAT_DW_2_wide_c_f1, \ |
298 | _FP_MUL_MEAT_DW_2_wide_c_f0, \ |
299 | _FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
300 | _FP_FRAC_WORD_4 (R, 1)); \ |
301 | } \ |
302 | while (0) |
303 | |
304 | #define _FP_MUL_MEAT_2_wide(wfracbits, R, X, Y, doit) \ |
305 | do \ |
306 | { \ |
307 | _FP_FRAC_DECL_4 (_FP_MUL_MEAT_2_wide_z); \ |
308 | \ |
309 | _FP_MUL_MEAT_DW_2_wide ((wfracbits), _FP_MUL_MEAT_2_wide_z, \ |
310 | X, Y, doit); \ |
311 | \ |
312 | /* Normalize since we know where the msb of the multiplicands \ |
313 | were (bit B), we know that the msb of the of the product is \ |
314 | at either 2B or 2B-1. */ \ |
315 | _FP_FRAC_SRS_4 (_FP_MUL_MEAT_2_wide_z, (wfracbits)-1, \ |
316 | 2*(wfracbits)); \ |
317 | R##_f0 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_z, 0); \ |
318 | R##_f1 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_z, 1); \ |
319 | } \ |
320 | while (0) |
321 | |
322 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication. |
323 | Do only 3 multiplications instead of four. This one is for machines |
324 | where multiplication is much more expensive than subtraction. */ |
325 | |
326 | #define _FP_MUL_MEAT_DW_2_wide_3mul(wfracbits, R, X, Y, doit) \ |
327 | do \ |
328 | { \ |
329 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_3mul_b); \ |
330 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_3mul_c); \ |
331 | _FP_W_TYPE _FP_MUL_MEAT_DW_2_wide_3mul_d; \ |
332 | int _FP_MUL_MEAT_DW_2_wide_3mul_c1; \ |
333 | int _FP_MUL_MEAT_DW_2_wide_3mul_c2; \ |
334 | \ |
335 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f0 = X##_f0 + X##_f1; \ |
336 | _FP_MUL_MEAT_DW_2_wide_3mul_c1 \ |
337 | = _FP_MUL_MEAT_DW_2_wide_3mul_b_f0 < X##_f0; \ |
338 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f1 = Y##_f0 + Y##_f1; \ |
339 | _FP_MUL_MEAT_DW_2_wide_3mul_c2 \ |
340 | = _FP_MUL_MEAT_DW_2_wide_3mul_b_f1 < Y##_f0; \ |
341 | doit (_FP_MUL_MEAT_DW_2_wide_3mul_d, _FP_FRAC_WORD_4 (R, 0), \ |
342 | X##_f0, Y##_f0); \ |
343 | doit (_FP_FRAC_WORD_4 (R, 2), _FP_FRAC_WORD_4 (R, 1), \ |
344 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f0, \ |
345 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f1); \ |
346 | doit (_FP_MUL_MEAT_DW_2_wide_3mul_c_f1, \ |
347 | _FP_MUL_MEAT_DW_2_wide_3mul_c_f0, X##_f1, Y##_f1); \ |
348 | \ |
349 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f0 \ |
350 | &= -_FP_MUL_MEAT_DW_2_wide_3mul_c2; \ |
351 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f1 \ |
352 | &= -_FP_MUL_MEAT_DW_2_wide_3mul_c1; \ |
353 | __FP_FRAC_ADD_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
354 | _FP_FRAC_WORD_4 (R, 1), \ |
355 | (_FP_MUL_MEAT_DW_2_wide_3mul_c1 \ |
356 | & _FP_MUL_MEAT_DW_2_wide_3mul_c2), 0, \ |
357 | _FP_MUL_MEAT_DW_2_wide_3mul_d, \ |
358 | 0, _FP_FRAC_WORD_4 (R, 2), _FP_FRAC_WORD_4 (R, 1)); \ |
359 | __FP_FRAC_ADDI_2 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
360 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f0); \ |
361 | __FP_FRAC_ADDI_2 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
362 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f1); \ |
363 | __FP_FRAC_DEC_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
364 | _FP_FRAC_WORD_4 (R, 1), \ |
365 | 0, _FP_MUL_MEAT_DW_2_wide_3mul_d, \ |
366 | _FP_FRAC_WORD_4 (R, 0)); \ |
367 | __FP_FRAC_DEC_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
368 | _FP_FRAC_WORD_4 (R, 1), 0, \ |
369 | _FP_MUL_MEAT_DW_2_wide_3mul_c_f1, \ |
370 | _FP_MUL_MEAT_DW_2_wide_3mul_c_f0); \ |
371 | __FP_FRAC_ADD_2 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
372 | _FP_MUL_MEAT_DW_2_wide_3mul_c_f1, \ |
373 | _FP_MUL_MEAT_DW_2_wide_3mul_c_f0, \ |
374 | _FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2)); \ |
375 | } \ |
376 | while (0) |
377 | |
378 | #define _FP_MUL_MEAT_2_wide_3mul(wfracbits, R, X, Y, doit) \ |
379 | do \ |
380 | { \ |
381 | _FP_FRAC_DECL_4 (_FP_MUL_MEAT_2_wide_3mul_z); \ |
382 | \ |
383 | _FP_MUL_MEAT_DW_2_wide_3mul ((wfracbits), \ |
384 | _FP_MUL_MEAT_2_wide_3mul_z, \ |
385 | X, Y, doit); \ |
386 | \ |
387 | /* Normalize since we know where the msb of the multiplicands \ |
388 | were (bit B), we know that the msb of the of the product is \ |
389 | at either 2B or 2B-1. */ \ |
390 | _FP_FRAC_SRS_4 (_FP_MUL_MEAT_2_wide_3mul_z, \ |
391 | (wfracbits)-1, 2*(wfracbits)); \ |
392 | R##_f0 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_3mul_z, 0); \ |
393 | R##_f1 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_3mul_z, 1); \ |
394 | } \ |
395 | while (0) |
396 | |
397 | #define _FP_MUL_MEAT_DW_2_gmp(wfracbits, R, X, Y) \ |
398 | do \ |
399 | { \ |
400 | _FP_W_TYPE _FP_MUL_MEAT_DW_2_gmp_x[2]; \ |
401 | _FP_W_TYPE _FP_MUL_MEAT_DW_2_gmp_y[2]; \ |
402 | _FP_MUL_MEAT_DW_2_gmp_x[0] = X##_f0; \ |
403 | _FP_MUL_MEAT_DW_2_gmp_x[1] = X##_f1; \ |
404 | _FP_MUL_MEAT_DW_2_gmp_y[0] = Y##_f0; \ |
405 | _FP_MUL_MEAT_DW_2_gmp_y[1] = Y##_f1; \ |
406 | \ |
407 | mpn_mul_n (R##_f, _FP_MUL_MEAT_DW_2_gmp_x, \ |
408 | _FP_MUL_MEAT_DW_2_gmp_y, 2); \ |
409 | } \ |
410 | while (0) |
411 | |
412 | #define _FP_MUL_MEAT_2_gmp(wfracbits, R, X, Y) \ |
413 | do \ |
414 | { \ |
415 | _FP_FRAC_DECL_4 (_FP_MUL_MEAT_2_gmp_z); \ |
416 | \ |
417 | _FP_MUL_MEAT_DW_2_gmp ((wfracbits), _FP_MUL_MEAT_2_gmp_z, X, Y); \ |
418 | \ |
419 | /* Normalize since we know where the msb of the multiplicands \ |
420 | were (bit B), we know that the msb of the of the product is \ |
421 | at either 2B or 2B-1. */ \ |
422 | _FP_FRAC_SRS_4 (_FP_MUL_MEAT_2_gmp_z, (wfracbits)-1, \ |
423 | 2*(wfracbits)); \ |
424 | R##_f0 = _FP_MUL_MEAT_2_gmp_z_f[0]; \ |
425 | R##_f1 = _FP_MUL_MEAT_2_gmp_z_f[1]; \ |
426 | } \ |
427 | while (0) |
428 | |
429 | /* Do at most 120x120=240 bits multiplication using double floating |
430 | point multiplication. This is useful if floating point |
431 | multiplication has much bigger throughput than integer multiply. |
432 | It is supposed to work for _FP_W_TYPE_SIZE 64 and wfracbits |
433 | between 106 and 120 only. |
434 | Caller guarantees that X and Y has (1LLL << (wfracbits - 1)) set. |
435 | SETFETZ is a macro which will disable all FPU exceptions and set rounding |
436 | towards zero, RESETFE should optionally reset it back. */ |
437 | |
438 | #define _FP_MUL_MEAT_2_120_240_double(wfracbits, R, X, Y, setfetz, resetfe) \ |
439 | do \ |
440 | { \ |
441 | static const double _const[] = \ |
442 | { \ |
443 | /* 2^-24 */ 5.9604644775390625e-08, \ |
444 | /* 2^-48 */ 3.5527136788005009e-15, \ |
445 | /* 2^-72 */ 2.1175823681357508e-22, \ |
446 | /* 2^-96 */ 1.2621774483536189e-29, \ |
447 | /* 2^28 */ 2.68435456e+08, \ |
448 | /* 2^4 */ 1.600000e+01, \ |
449 | /* 2^-20 */ 9.5367431640625e-07, \ |
450 | /* 2^-44 */ 5.6843418860808015e-14, \ |
451 | /* 2^-68 */ 3.3881317890172014e-21, \ |
452 | /* 2^-92 */ 2.0194839173657902e-28, \ |
453 | /* 2^-116 */ 1.2037062152420224e-35 \ |
454 | }; \ |
455 | double _a240, _b240, _c240, _d240, _e240, _f240, \ |
456 | _g240, _h240, _i240, _j240, _k240; \ |
457 | union { double d; UDItype i; } _l240, _m240, _n240, _o240, \ |
458 | _p240, _q240, _r240, _s240; \ |
459 | UDItype _t240, _u240, _v240, _w240, _x240, _y240 = 0; \ |
460 | \ |
461 | _FP_STATIC_ASSERT ((wfracbits) >= 106 && (wfracbits) <= 120, \ |
462 | "wfracbits out of range"); \ |
463 | \ |
464 | setfetz; \ |
465 | \ |
466 | _e240 = (double) (long) (X##_f0 & 0xffffff); \ |
467 | _j240 = (double) (long) (Y##_f0 & 0xffffff); \ |
468 | _d240 = (double) (long) ((X##_f0 >> 24) & 0xffffff); \ |
469 | _i240 = (double) (long) ((Y##_f0 >> 24) & 0xffffff); \ |
470 | _c240 = (double) (long) (((X##_f1 << 16) & 0xffffff) | (X##_f0 >> 48)); \ |
471 | _h240 = (double) (long) (((Y##_f1 << 16) & 0xffffff) | (Y##_f0 >> 48)); \ |
472 | _b240 = (double) (long) ((X##_f1 >> 8) & 0xffffff); \ |
473 | _g240 = (double) (long) ((Y##_f1 >> 8) & 0xffffff); \ |
474 | _a240 = (double) (long) (X##_f1 >> 32); \ |
475 | _f240 = (double) (long) (Y##_f1 >> 32); \ |
476 | _e240 *= _const[3]; \ |
477 | _j240 *= _const[3]; \ |
478 | _d240 *= _const[2]; \ |
479 | _i240 *= _const[2]; \ |
480 | _c240 *= _const[1]; \ |
481 | _h240 *= _const[1]; \ |
482 | _b240 *= _const[0]; \ |
483 | _g240 *= _const[0]; \ |
484 | _s240.d = _e240*_j240; \ |
485 | _r240.d = _d240*_j240 + _e240*_i240; \ |
486 | _q240.d = _c240*_j240 + _d240*_i240 + _e240*_h240; \ |
487 | _p240.d = _b240*_j240 + _c240*_i240 + _d240*_h240 + _e240*_g240; \ |
488 | _o240.d = _a240*_j240 + _b240*_i240 + _c240*_h240 + _d240*_g240 + _e240*_f240; \ |
489 | _n240.d = _a240*_i240 + _b240*_h240 + _c240*_g240 + _d240*_f240; \ |
490 | _m240.d = _a240*_h240 + _b240*_g240 + _c240*_f240; \ |
491 | _l240.d = _a240*_g240 + _b240*_f240; \ |
492 | _k240 = _a240*_f240; \ |
493 | _r240.d += _s240.d; \ |
494 | _q240.d += _r240.d; \ |
495 | _p240.d += _q240.d; \ |
496 | _o240.d += _p240.d; \ |
497 | _n240.d += _o240.d; \ |
498 | _m240.d += _n240.d; \ |
499 | _l240.d += _m240.d; \ |
500 | _k240 += _l240.d; \ |
501 | _s240.d -= ((_const[10]+_s240.d)-_const[10]); \ |
502 | _r240.d -= ((_const[9]+_r240.d)-_const[9]); \ |
503 | _q240.d -= ((_const[8]+_q240.d)-_const[8]); \ |
504 | _p240.d -= ((_const[7]+_p240.d)-_const[7]); \ |
505 | _o240.d += _const[7]; \ |
506 | _n240.d += _const[6]; \ |
507 | _m240.d += _const[5]; \ |
508 | _l240.d += _const[4]; \ |
509 | if (_s240.d != 0.0) \ |
510 | _y240 = 1; \ |
511 | if (_r240.d != 0.0) \ |
512 | _y240 = 1; \ |
513 | if (_q240.d != 0.0) \ |
514 | _y240 = 1; \ |
515 | if (_p240.d != 0.0) \ |
516 | _y240 = 1; \ |
517 | _t240 = (DItype) _k240; \ |
518 | _u240 = _l240.i; \ |
519 | _v240 = _m240.i; \ |
520 | _w240 = _n240.i; \ |
521 | _x240 = _o240.i; \ |
522 | R##_f1 = ((_t240 << (128 - (wfracbits - 1))) \ |
523 | | ((_u240 & 0xffffff) >> ((wfracbits - 1) - 104))); \ |
524 | R##_f0 = (((_u240 & 0xffffff) << (168 - (wfracbits - 1))) \ |
525 | | ((_v240 & 0xffffff) << (144 - (wfracbits - 1))) \ |
526 | | ((_w240 & 0xffffff) << (120 - (wfracbits - 1))) \ |
527 | | ((_x240 & 0xffffff) >> ((wfracbits - 1) - 96)) \ |
528 | | _y240); \ |
529 | resetfe; \ |
530 | } \ |
531 | while (0) |
532 | |
533 | /* Division algorithms: */ |
534 | |
535 | #define _FP_DIV_MEAT_2_udiv(fs, R, X, Y) \ |
536 | do \ |
537 | { \ |
538 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_n_f2; \ |
539 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_n_f1; \ |
540 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_n_f0; \ |
541 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_r_f1; \ |
542 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_r_f0; \ |
543 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_m_f1; \ |
544 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_m_f0; \ |
545 | if (_FP_FRAC_GE_2 (X, Y)) \ |
546 | { \ |
547 | _FP_DIV_MEAT_2_udiv_n_f2 = X##_f1 >> 1; \ |
548 | _FP_DIV_MEAT_2_udiv_n_f1 \ |
549 | = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1; \ |
550 | _FP_DIV_MEAT_2_udiv_n_f0 \ |
551 | = X##_f0 << (_FP_W_TYPE_SIZE - 1); \ |
552 | } \ |
553 | else \ |
554 | { \ |
555 | R##_e--; \ |
556 | _FP_DIV_MEAT_2_udiv_n_f2 = X##_f1; \ |
557 | _FP_DIV_MEAT_2_udiv_n_f1 = X##_f0; \ |
558 | _FP_DIV_MEAT_2_udiv_n_f0 = 0; \ |
559 | } \ |
560 | \ |
561 | /* Normalize, i.e. make the most significant bit of the \ |
562 | denominator set. */ \ |
563 | _FP_FRAC_SLL_2 (Y, _FP_WFRACXBITS_##fs); \ |
564 | \ |
565 | udiv_qrnnd (R##_f1, _FP_DIV_MEAT_2_udiv_r_f1, \ |
566 | _FP_DIV_MEAT_2_udiv_n_f2, _FP_DIV_MEAT_2_udiv_n_f1, \ |
567 | Y##_f1); \ |
568 | umul_ppmm (_FP_DIV_MEAT_2_udiv_m_f1, _FP_DIV_MEAT_2_udiv_m_f0, \ |
569 | R##_f1, Y##_f0); \ |
570 | _FP_DIV_MEAT_2_udiv_r_f0 = _FP_DIV_MEAT_2_udiv_n_f0; \ |
571 | if (_FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, _FP_DIV_MEAT_2_udiv_r)) \ |
572 | { \ |
573 | R##_f1--; \ |
574 | _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y, \ |
575 | _FP_DIV_MEAT_2_udiv_r); \ |
576 | if (_FP_FRAC_GE_2 (_FP_DIV_MEAT_2_udiv_r, Y) \ |
577 | && _FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, \ |
578 | _FP_DIV_MEAT_2_udiv_r)) \ |
579 | { \ |
580 | R##_f1--; \ |
581 | _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y, \ |
582 | _FP_DIV_MEAT_2_udiv_r); \ |
583 | } \ |
584 | } \ |
585 | _FP_FRAC_DEC_2 (_FP_DIV_MEAT_2_udiv_r, _FP_DIV_MEAT_2_udiv_m); \ |
586 | \ |
587 | if (_FP_DIV_MEAT_2_udiv_r_f1 == Y##_f1) \ |
588 | { \ |
589 | /* This is a special case, not an optimization \ |
590 | (_FP_DIV_MEAT_2_udiv_r/Y##_f1 would not fit into UWtype). \ |
591 | As _FP_DIV_MEAT_2_udiv_r is guaranteed to be < Y, \ |
592 | R##_f0 can be either (UWtype)-1 or (UWtype)-2. But as we \ |
593 | know what kind of bits it is (sticky, guard, round), \ |
594 | we don't care. We also don't care what the reminder is, \ |
595 | because the guard bit will be set anyway. -jj */ \ |
596 | R##_f0 = -1; \ |
597 | } \ |
598 | else \ |
599 | { \ |
600 | udiv_qrnnd (R##_f0, _FP_DIV_MEAT_2_udiv_r_f1, \ |
601 | _FP_DIV_MEAT_2_udiv_r_f1, \ |
602 | _FP_DIV_MEAT_2_udiv_r_f0, Y##_f1); \ |
603 | umul_ppmm (_FP_DIV_MEAT_2_udiv_m_f1, \ |
604 | _FP_DIV_MEAT_2_udiv_m_f0, R##_f0, Y##_f0); \ |
605 | _FP_DIV_MEAT_2_udiv_r_f0 = 0; \ |
606 | if (_FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, \ |
607 | _FP_DIV_MEAT_2_udiv_r)) \ |
608 | { \ |
609 | R##_f0--; \ |
610 | _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y, \ |
611 | _FP_DIV_MEAT_2_udiv_r); \ |
612 | if (_FP_FRAC_GE_2 (_FP_DIV_MEAT_2_udiv_r, Y) \ |
613 | && _FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, \ |
614 | _FP_DIV_MEAT_2_udiv_r)) \ |
615 | { \ |
616 | R##_f0--; \ |
617 | _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y, \ |
618 | _FP_DIV_MEAT_2_udiv_r); \ |
619 | } \ |
620 | } \ |
621 | if (!_FP_FRAC_EQ_2 (_FP_DIV_MEAT_2_udiv_r, \ |
622 | _FP_DIV_MEAT_2_udiv_m)) \ |
623 | R##_f0 |= _FP_WORK_STICKY; \ |
624 | } \ |
625 | } \ |
626 | while (0) |
627 | |
628 | |
629 | /* Square root algorithms: |
630 | We have just one right now, maybe Newton approximation |
631 | should be added for those machines where division is fast. */ |
632 | |
633 | #define _FP_SQRT_MEAT_2(R, S, T, X, q) \ |
634 | do \ |
635 | { \ |
636 | while (q) \ |
637 | { \ |
638 | T##_f1 = S##_f1 + (q); \ |
639 | if (T##_f1 <= X##_f1) \ |
640 | { \ |
641 | S##_f1 = T##_f1 + (q); \ |
642 | X##_f1 -= T##_f1; \ |
643 | R##_f1 += (q); \ |
644 | } \ |
645 | _FP_FRAC_SLL_2 (X, 1); \ |
646 | (q) >>= 1; \ |
647 | } \ |
648 | (q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \ |
649 | while ((q) != _FP_WORK_ROUND) \ |
650 | { \ |
651 | T##_f0 = S##_f0 + (q); \ |
652 | T##_f1 = S##_f1; \ |
653 | if (T##_f1 < X##_f1 \ |
654 | || (T##_f1 == X##_f1 && T##_f0 <= X##_f0)) \ |
655 | { \ |
656 | S##_f0 = T##_f0 + (q); \ |
657 | S##_f1 += (T##_f0 > S##_f0); \ |
658 | _FP_FRAC_DEC_2 (X, T); \ |
659 | R##_f0 += (q); \ |
660 | } \ |
661 | _FP_FRAC_SLL_2 (X, 1); \ |
662 | (q) >>= 1; \ |
663 | } \ |
664 | if (X##_f0 | X##_f1) \ |
665 | { \ |
666 | if (S##_f1 < X##_f1 \ |
667 | || (S##_f1 == X##_f1 && S##_f0 < X##_f0)) \ |
668 | R##_f0 |= _FP_WORK_ROUND; \ |
669 | R##_f0 |= _FP_WORK_STICKY; \ |
670 | } \ |
671 | } \ |
672 | while (0) |
673 | |
674 | |
675 | /* Assembly/disassembly for converting to/from integral types. |
676 | No shifting or overflow handled here. */ |
677 | |
678 | #define _FP_FRAC_ASSEMBLE_2(r, X, rsize) \ |
679 | (void) (((rsize) <= _FP_W_TYPE_SIZE) \ |
680 | ? ({ (r) = X##_f0; }) \ |
681 | : ({ \ |
682 | (r) = X##_f1; \ |
683 | (r) <<= _FP_W_TYPE_SIZE; \ |
684 | (r) += X##_f0; \ |
685 | })) |
686 | |
687 | #define _FP_FRAC_DISASSEMBLE_2(X, r, rsize) \ |
688 | do \ |
689 | { \ |
690 | X##_f0 = (r); \ |
691 | X##_f1 = ((rsize) <= _FP_W_TYPE_SIZE \ |
692 | ? 0 \ |
693 | : (r) >> _FP_W_TYPE_SIZE); \ |
694 | } \ |
695 | while (0) |
696 | |
697 | /* Convert FP values between word sizes. */ |
698 | |
699 | #define _FP_FRAC_COPY_1_2(D, S) (D##_f = S##_f0) |
700 | |
701 | #define _FP_FRAC_COPY_2_1(D, S) ((D##_f0 = S##_f), (D##_f1 = 0)) |
702 | |
703 | #define _FP_FRAC_COPY_2_2(D, S) _FP_FRAC_COPY_2 (D, S) |
704 | |
705 | #endif /* !SOFT_FP_OP_2_H */ |
706 | |