1 | /* Copyright (C) 2002-2021 Free Software Foundation, Inc. |
2 | This file is part of the GNU C Library. |
3 | Contributed by Ulrich Drepper <drepper@redhat.com>, 2002. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <assert.h> |
20 | #include <errno.h> |
21 | #include <time.h> |
22 | #include <sys/param.h> |
23 | #include <sys/time.h> |
24 | #include "pthreadP.h" |
25 | #include <atomic.h> |
26 | #include <lowlevellock.h> |
27 | #include <not-cancel.h> |
28 | #include <futex-internal.h> |
29 | |
30 | #include <stap-probe.h> |
31 | |
32 | #ifndef lll_clocklock_elision |
33 | #define lll_clocklock_elision(futex, adapt_count, clockid, abstime, private) \ |
34 | __futex_clocklock64 (&(futex), clockid, abstime, private) |
35 | #endif |
36 | |
37 | #ifndef lll_trylock_elision |
38 | #define lll_trylock_elision(a,t) lll_trylock(a) |
39 | #endif |
40 | |
41 | #ifndef FORCE_ELISION |
42 | #define FORCE_ELISION(m, s) |
43 | #endif |
44 | |
45 | int |
46 | __pthread_mutex_clocklock_common (pthread_mutex_t *mutex, |
47 | clockid_t clockid, |
48 | const struct __timespec64 *abstime) |
49 | { |
50 | int oldval; |
51 | pid_t id = THREAD_GETMEM (THREAD_SELF, tid); |
52 | int result = 0; |
53 | |
54 | /* We must not check ABSTIME here. If the thread does not block |
55 | abstime must not be checked for a valid value. */ |
56 | |
57 | /* See concurrency notes regarding mutex type which is loaded from __kind |
58 | in struct __pthread_mutex_s in sysdeps/nptl/bits/thread-shared-types.h. */ |
59 | switch (__builtin_expect (PTHREAD_MUTEX_TYPE_ELISION (mutex), |
60 | PTHREAD_MUTEX_TIMED_NP)) |
61 | { |
62 | /* Recursive mutex. */ |
63 | case PTHREAD_MUTEX_RECURSIVE_NP|PTHREAD_MUTEX_ELISION_NP: |
64 | case PTHREAD_MUTEX_RECURSIVE_NP: |
65 | /* Check whether we already hold the mutex. */ |
66 | if (mutex->__data.__owner == id) |
67 | { |
68 | /* Just bump the counter. */ |
69 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
70 | /* Overflow of the counter. */ |
71 | return EAGAIN; |
72 | |
73 | ++mutex->__data.__count; |
74 | |
75 | goto out; |
76 | } |
77 | |
78 | /* We have to get the mutex. */ |
79 | result = __futex_clocklock64 (&mutex->__data.__lock, clockid, abstime, |
80 | PTHREAD_MUTEX_PSHARED (mutex)); |
81 | |
82 | if (result != 0) |
83 | goto out; |
84 | |
85 | /* Only locked once so far. */ |
86 | mutex->__data.__count = 1; |
87 | break; |
88 | |
89 | /* Error checking mutex. */ |
90 | case PTHREAD_MUTEX_ERRORCHECK_NP: |
91 | /* Check whether we already hold the mutex. */ |
92 | if (__glibc_unlikely (mutex->__data.__owner == id)) |
93 | return EDEADLK; |
94 | |
95 | /* Don't do lock elision on an error checking mutex. */ |
96 | goto simple; |
97 | |
98 | case PTHREAD_MUTEX_TIMED_NP: |
99 | FORCE_ELISION (mutex, goto elision); |
100 | simple: |
101 | /* Normal mutex. */ |
102 | result = __futex_clocklock64 (&mutex->__data.__lock, clockid, abstime, |
103 | PTHREAD_MUTEX_PSHARED (mutex)); |
104 | break; |
105 | |
106 | case PTHREAD_MUTEX_TIMED_ELISION_NP: |
107 | elision: __attribute__((unused)) |
108 | /* Don't record ownership */ |
109 | return lll_clocklock_elision (mutex->__data.__lock, |
110 | mutex->__data.__spins, |
111 | clockid, abstime, |
112 | PTHREAD_MUTEX_PSHARED (mutex)); |
113 | |
114 | |
115 | case PTHREAD_MUTEX_ADAPTIVE_NP: |
116 | if (lll_trylock (mutex->__data.__lock) != 0) |
117 | { |
118 | int cnt = 0; |
119 | int max_cnt = MIN (max_adaptive_count (), |
120 | mutex->__data.__spins * 2 + 10); |
121 | do |
122 | { |
123 | if (cnt++ >= max_cnt) |
124 | { |
125 | result = __futex_clocklock64 (&mutex->__data.__lock, |
126 | clockid, abstime, |
127 | PTHREAD_MUTEX_PSHARED (mutex)); |
128 | break; |
129 | } |
130 | atomic_spin_nop (); |
131 | } |
132 | while (lll_trylock (mutex->__data.__lock) != 0); |
133 | |
134 | mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8; |
135 | } |
136 | break; |
137 | |
138 | case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP: |
139 | case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP: |
140 | case PTHREAD_MUTEX_ROBUST_NORMAL_NP: |
141 | case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP: |
142 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
143 | &mutex->__data.__list.__next); |
144 | /* We need to set op_pending before starting the operation. Also |
145 | see comments at ENQUEUE_MUTEX. */ |
146 | __asm ("" ::: "memory" ); |
147 | |
148 | oldval = mutex->__data.__lock; |
149 | /* This is set to FUTEX_WAITERS iff we might have shared the |
150 | FUTEX_WAITERS flag with other threads, and therefore need to keep it |
151 | set to avoid lost wake-ups. We have the same requirement in the |
152 | simple mutex algorithm. */ |
153 | unsigned int assume_other_futex_waiters = 0; |
154 | while (1) |
155 | { |
156 | /* Try to acquire the lock through a CAS from 0 (not acquired) to |
157 | our TID | assume_other_futex_waiters. */ |
158 | if (__glibc_likely (oldval == 0)) |
159 | { |
160 | oldval |
161 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
162 | id | assume_other_futex_waiters, 0); |
163 | if (__glibc_likely (oldval == 0)) |
164 | break; |
165 | } |
166 | |
167 | if ((oldval & FUTEX_OWNER_DIED) != 0) |
168 | { |
169 | /* The previous owner died. Try locking the mutex. */ |
170 | int newval = id | (oldval & FUTEX_WAITERS) |
171 | | assume_other_futex_waiters; |
172 | |
173 | newval |
174 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
175 | newval, oldval); |
176 | if (newval != oldval) |
177 | { |
178 | oldval = newval; |
179 | continue; |
180 | } |
181 | |
182 | /* We got the mutex. */ |
183 | mutex->__data.__count = 1; |
184 | /* But it is inconsistent unless marked otherwise. */ |
185 | mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; |
186 | |
187 | /* We must not enqueue the mutex before we have acquired it. |
188 | Also see comments at ENQUEUE_MUTEX. */ |
189 | __asm ("" ::: "memory" ); |
190 | ENQUEUE_MUTEX (mutex); |
191 | /* We need to clear op_pending after we enqueue the mutex. */ |
192 | __asm ("" ::: "memory" ); |
193 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
194 | |
195 | /* Note that we deliberately exit here. If we fall |
196 | through to the end of the function __nusers would be |
197 | incremented which is not correct because the old |
198 | owner has to be discounted. */ |
199 | return EOWNERDEAD; |
200 | } |
201 | |
202 | /* Check whether we already hold the mutex. */ |
203 | if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id)) |
204 | { |
205 | int kind = PTHREAD_MUTEX_TYPE (mutex); |
206 | if (kind == PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP) |
207 | { |
208 | /* We do not need to ensure ordering wrt another memory |
209 | access. Also see comments at ENQUEUE_MUTEX. */ |
210 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
211 | NULL); |
212 | return EDEADLK; |
213 | } |
214 | |
215 | if (kind == PTHREAD_MUTEX_ROBUST_RECURSIVE_NP) |
216 | { |
217 | /* We do not need to ensure ordering wrt another memory |
218 | access. */ |
219 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
220 | NULL); |
221 | |
222 | /* Just bump the counter. */ |
223 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
224 | /* Overflow of the counter. */ |
225 | return EAGAIN; |
226 | |
227 | ++mutex->__data.__count; |
228 | |
229 | LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
230 | |
231 | return 0; |
232 | } |
233 | } |
234 | |
235 | /* We are about to block; check whether the timeout is invalid. */ |
236 | if (! valid_nanoseconds (abstime->tv_nsec)) |
237 | return EINVAL; |
238 | /* Work around the fact that the kernel rejects negative timeout |
239 | values despite them being valid. */ |
240 | if (__glibc_unlikely (abstime->tv_sec < 0)) |
241 | return ETIMEDOUT; |
242 | |
243 | /* We cannot acquire the mutex nor has its owner died. Thus, try |
244 | to block using futexes. Set FUTEX_WAITERS if necessary so that |
245 | other threads are aware that there are potentially threads |
246 | blocked on the futex. Restart if oldval changed in the |
247 | meantime. */ |
248 | if ((oldval & FUTEX_WAITERS) == 0) |
249 | { |
250 | if (atomic_compare_and_exchange_bool_acq (&mutex->__data.__lock, |
251 | oldval | FUTEX_WAITERS, |
252 | oldval) |
253 | != 0) |
254 | { |
255 | oldval = mutex->__data.__lock; |
256 | continue; |
257 | } |
258 | oldval |= FUTEX_WAITERS; |
259 | } |
260 | |
261 | /* It is now possible that we share the FUTEX_WAITERS flag with |
262 | another thread; therefore, update assume_other_futex_waiters so |
263 | that we do not forget about this when handling other cases |
264 | above and thus do not cause lost wake-ups. */ |
265 | assume_other_futex_waiters |= FUTEX_WAITERS; |
266 | |
267 | /* Block using the futex. */ |
268 | int err = __futex_abstimed_wait64 ( |
269 | (unsigned int *) &mutex->__data.__lock, |
270 | oldval, clockid, abstime, |
271 | PTHREAD_ROBUST_MUTEX_PSHARED (mutex)); |
272 | /* The futex call timed out. */ |
273 | if (err == ETIMEDOUT || err == EOVERFLOW) |
274 | return err; |
275 | /* Reload current lock value. */ |
276 | oldval = mutex->__data.__lock; |
277 | } |
278 | |
279 | /* We have acquired the mutex; check if it is still consistent. */ |
280 | if (__builtin_expect (mutex->__data.__owner |
281 | == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) |
282 | { |
283 | /* This mutex is now not recoverable. */ |
284 | mutex->__data.__count = 0; |
285 | int private = PTHREAD_ROBUST_MUTEX_PSHARED (mutex); |
286 | lll_unlock (mutex->__data.__lock, private); |
287 | /* FIXME This violates the mutex destruction requirements. See |
288 | __pthread_mutex_unlock_full. */ |
289 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
290 | return ENOTRECOVERABLE; |
291 | } |
292 | |
293 | mutex->__data.__count = 1; |
294 | /* We must not enqueue the mutex before we have acquired it. |
295 | Also see comments at ENQUEUE_MUTEX. */ |
296 | __asm ("" ::: "memory" ); |
297 | ENQUEUE_MUTEX (mutex); |
298 | /* We need to clear op_pending after we enqueue the mutex. */ |
299 | __asm ("" ::: "memory" ); |
300 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
301 | break; |
302 | |
303 | /* The PI support requires the Linux futex system call. If that's not |
304 | available, pthread_mutex_init should never have allowed the type to |
305 | be set. So it will get the default case for an invalid type. */ |
306 | #ifdef __NR_futex |
307 | case PTHREAD_MUTEX_PI_RECURSIVE_NP: |
308 | case PTHREAD_MUTEX_PI_ERRORCHECK_NP: |
309 | case PTHREAD_MUTEX_PI_NORMAL_NP: |
310 | case PTHREAD_MUTEX_PI_ADAPTIVE_NP: |
311 | case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP: |
312 | case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP: |
313 | case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP: |
314 | case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP: |
315 | { |
316 | /* Currently futex FUTEX_LOCK_PI operation only provides support for |
317 | CLOCK_REALTIME and trying to emulate by converting a |
318 | CLOCK_MONOTONIC to CLOCK_REALTIME will take in account possible |
319 | changes to the wall clock. */ |
320 | if (__glibc_unlikely (clockid != CLOCK_REALTIME)) |
321 | return EINVAL; |
322 | |
323 | int kind, robust; |
324 | { |
325 | /* See concurrency notes regarding __kind in struct __pthread_mutex_s |
326 | in sysdeps/nptl/bits/thread-shared-types.h. */ |
327 | int mutex_kind = atomic_load_relaxed (&(mutex->__data.__kind)); |
328 | kind = mutex_kind & PTHREAD_MUTEX_KIND_MASK_NP; |
329 | robust = mutex_kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP; |
330 | } |
331 | |
332 | if (robust) |
333 | { |
334 | /* Note: robust PI futexes are signaled by setting bit 0. */ |
335 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
336 | (void *) (((uintptr_t) &mutex->__data.__list.__next) |
337 | | 1)); |
338 | /* We need to set op_pending before starting the operation. Also |
339 | see comments at ENQUEUE_MUTEX. */ |
340 | __asm ("" ::: "memory" ); |
341 | } |
342 | |
343 | oldval = mutex->__data.__lock; |
344 | |
345 | /* Check whether we already hold the mutex. */ |
346 | if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id)) |
347 | { |
348 | if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) |
349 | { |
350 | /* We do not need to ensure ordering wrt another memory |
351 | access. */ |
352 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
353 | return EDEADLK; |
354 | } |
355 | |
356 | if (kind == PTHREAD_MUTEX_RECURSIVE_NP) |
357 | { |
358 | /* We do not need to ensure ordering wrt another memory |
359 | access. */ |
360 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
361 | |
362 | /* Just bump the counter. */ |
363 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
364 | /* Overflow of the counter. */ |
365 | return EAGAIN; |
366 | |
367 | ++mutex->__data.__count; |
368 | |
369 | LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
370 | |
371 | return 0; |
372 | } |
373 | } |
374 | |
375 | oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
376 | id, 0); |
377 | |
378 | if (oldval != 0) |
379 | { |
380 | /* The mutex is locked. The kernel will now take care of |
381 | everything. The timeout value must be a relative value. |
382 | Convert it. */ |
383 | int private = (robust |
384 | ? PTHREAD_ROBUST_MUTEX_PSHARED (mutex) |
385 | : PTHREAD_MUTEX_PSHARED (mutex)); |
386 | int e = futex_lock_pi64 (&mutex->__data.__lock, abstime, private); |
387 | if (e == ETIMEDOUT) |
388 | return ETIMEDOUT; |
389 | else if (e == ESRCH || e == EDEADLK) |
390 | { |
391 | assert (e != EDEADLK |
392 | || (kind != PTHREAD_MUTEX_ERRORCHECK_NP |
393 | && kind != PTHREAD_MUTEX_RECURSIVE_NP)); |
394 | /* ESRCH can happen only for non-robust PI mutexes where |
395 | the owner of the lock died. */ |
396 | assert (e != ESRCH || !robust); |
397 | |
398 | /* Delay the thread until the timeout is reached. Then return |
399 | ETIMEDOUT. */ |
400 | do |
401 | e = __futex_abstimed_wait64 (&(unsigned int){0}, 0, clockid, |
402 | abstime, private); |
403 | while (e != ETIMEDOUT); |
404 | return ETIMEDOUT; |
405 | } |
406 | else if (e != 0) |
407 | return e; |
408 | |
409 | oldval = mutex->__data.__lock; |
410 | |
411 | assert (robust || (oldval & FUTEX_OWNER_DIED) == 0); |
412 | } |
413 | |
414 | if (__glibc_unlikely (oldval & FUTEX_OWNER_DIED)) |
415 | { |
416 | atomic_and (&mutex->__data.__lock, ~FUTEX_OWNER_DIED); |
417 | |
418 | /* We got the mutex. */ |
419 | mutex->__data.__count = 1; |
420 | /* But it is inconsistent unless marked otherwise. */ |
421 | mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; |
422 | |
423 | /* We must not enqueue the mutex before we have acquired it. |
424 | Also see comments at ENQUEUE_MUTEX. */ |
425 | __asm ("" ::: "memory" ); |
426 | ENQUEUE_MUTEX_PI (mutex); |
427 | /* We need to clear op_pending after we enqueue the mutex. */ |
428 | __asm ("" ::: "memory" ); |
429 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
430 | |
431 | /* Note that we deliberately exit here. If we fall |
432 | through to the end of the function __nusers would be |
433 | incremented which is not correct because the old owner |
434 | has to be discounted. */ |
435 | return EOWNERDEAD; |
436 | } |
437 | |
438 | if (robust |
439 | && __builtin_expect (mutex->__data.__owner |
440 | == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) |
441 | { |
442 | /* This mutex is now not recoverable. */ |
443 | mutex->__data.__count = 0; |
444 | |
445 | futex_unlock_pi ((unsigned int *) &mutex->__data.__lock, |
446 | PTHREAD_ROBUST_MUTEX_PSHARED (mutex)); |
447 | |
448 | /* To the kernel, this will be visible after the kernel has |
449 | acquired the mutex in the syscall. */ |
450 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
451 | return ENOTRECOVERABLE; |
452 | } |
453 | |
454 | mutex->__data.__count = 1; |
455 | if (robust) |
456 | { |
457 | /* We must not enqueue the mutex before we have acquired it. |
458 | Also see comments at ENQUEUE_MUTEX. */ |
459 | __asm ("" ::: "memory" ); |
460 | ENQUEUE_MUTEX_PI (mutex); |
461 | /* We need to clear op_pending after we enqueue the mutex. */ |
462 | __asm ("" ::: "memory" ); |
463 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
464 | } |
465 | } |
466 | break; |
467 | #endif /* __NR_futex. */ |
468 | |
469 | case PTHREAD_MUTEX_PP_RECURSIVE_NP: |
470 | case PTHREAD_MUTEX_PP_ERRORCHECK_NP: |
471 | case PTHREAD_MUTEX_PP_NORMAL_NP: |
472 | case PTHREAD_MUTEX_PP_ADAPTIVE_NP: |
473 | { |
474 | /* See concurrency notes regarding __kind in struct __pthread_mutex_s |
475 | in sysdeps/nptl/bits/thread-shared-types.h. */ |
476 | int kind = atomic_load_relaxed (&(mutex->__data.__kind)) |
477 | & PTHREAD_MUTEX_KIND_MASK_NP; |
478 | |
479 | oldval = mutex->__data.__lock; |
480 | |
481 | /* Check whether we already hold the mutex. */ |
482 | if (mutex->__data.__owner == id) |
483 | { |
484 | if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) |
485 | return EDEADLK; |
486 | |
487 | if (kind == PTHREAD_MUTEX_RECURSIVE_NP) |
488 | { |
489 | /* Just bump the counter. */ |
490 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
491 | /* Overflow of the counter. */ |
492 | return EAGAIN; |
493 | |
494 | ++mutex->__data.__count; |
495 | |
496 | LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
497 | |
498 | return 0; |
499 | } |
500 | } |
501 | |
502 | int oldprio = -1, ceilval; |
503 | do |
504 | { |
505 | int ceiling = (oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) |
506 | >> PTHREAD_MUTEX_PRIO_CEILING_SHIFT; |
507 | |
508 | if (__pthread_current_priority () > ceiling) |
509 | { |
510 | result = EINVAL; |
511 | failpp: |
512 | if (oldprio != -1) |
513 | __pthread_tpp_change_priority (oldprio, -1); |
514 | return result; |
515 | } |
516 | |
517 | result = __pthread_tpp_change_priority (oldprio, ceiling); |
518 | if (result) |
519 | return result; |
520 | |
521 | ceilval = ceiling << PTHREAD_MUTEX_PRIO_CEILING_SHIFT; |
522 | oldprio = ceiling; |
523 | |
524 | oldval |
525 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
526 | ceilval | 1, ceilval); |
527 | |
528 | if (oldval == ceilval) |
529 | break; |
530 | |
531 | do |
532 | { |
533 | oldval |
534 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
535 | ceilval | 2, |
536 | ceilval | 1); |
537 | |
538 | if ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval) |
539 | break; |
540 | |
541 | if (oldval != ceilval) |
542 | { |
543 | /* Reject invalid timeouts. */ |
544 | if (! valid_nanoseconds (abstime->tv_nsec)) |
545 | { |
546 | result = EINVAL; |
547 | goto failpp; |
548 | } |
549 | |
550 | int e = __futex_abstimed_wait64 ( |
551 | (unsigned int *) &mutex->__data.__lock, ceilval | 2, |
552 | clockid, abstime, PTHREAD_MUTEX_PSHARED (mutex)); |
553 | if (e == ETIMEDOUT || e == EOVERFLOW) |
554 | return e; |
555 | } |
556 | } |
557 | while (atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
558 | ceilval | 2, ceilval) |
559 | != ceilval); |
560 | } |
561 | while ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval); |
562 | |
563 | assert (mutex->__data.__owner == 0); |
564 | mutex->__data.__count = 1; |
565 | } |
566 | break; |
567 | |
568 | default: |
569 | /* Correct code cannot set any other type. */ |
570 | return EINVAL; |
571 | } |
572 | |
573 | if (result == 0) |
574 | { |
575 | /* Record the ownership. */ |
576 | mutex->__data.__owner = id; |
577 | ++mutex->__data.__nusers; |
578 | |
579 | LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
580 | } |
581 | |
582 | out: |
583 | return result; |
584 | } |
585 | |
586 | int |
587 | __pthread_mutex_clocklock64 (pthread_mutex_t *mutex, |
588 | clockid_t clockid, |
589 | const struct __timespec64 *abstime) |
590 | { |
591 | if (__glibc_unlikely (!futex_abstimed_supported_clockid (clockid))) |
592 | return EINVAL; |
593 | |
594 | LIBC_PROBE (mutex_clocklock_entry, 3, mutex, clockid, abstime); |
595 | return __pthread_mutex_clocklock_common (mutex, clockid, abstime); |
596 | } |
597 | |
598 | #if __TIMESIZE != 64 |
599 | libpthread_hidden_def (__pthread_mutex_clocklock64) |
600 | |
601 | int |
602 | __pthread_mutex_clocklock (pthread_mutex_t *mutex, |
603 | clockid_t clockid, |
604 | const struct timespec *abstime) |
605 | { |
606 | struct __timespec64 ts64 = valid_timespec_to_timespec64 (*abstime); |
607 | |
608 | return __pthread_mutex_clocklock64 (mutex, clockid, &ts64); |
609 | } |
610 | #endif |
611 | weak_alias (__pthread_mutex_clocklock, pthread_mutex_clocklock) |
612 | |
613 | int |
614 | __pthread_mutex_timedlock64 (pthread_mutex_t *mutex, |
615 | const struct __timespec64 *abstime) |
616 | { |
617 | LIBC_PROBE (mutex_timedlock_entry, 2, mutex, abstime); |
618 | return __pthread_mutex_clocklock_common (mutex, CLOCK_REALTIME, abstime); |
619 | } |
620 | |
621 | #if __TIMESIZE != 64 |
622 | libpthread_hidden_def (__pthread_mutex_timedlock64) |
623 | |
624 | int |
625 | __pthread_mutex_timedlock (pthread_mutex_t *mutex, |
626 | const struct timespec *abstime) |
627 | { |
628 | struct __timespec64 ts64 = valid_timespec_to_timespec64 (*abstime); |
629 | |
630 | return __pthread_mutex_timedlock64 (mutex, &ts64); |
631 | } |
632 | #endif |
633 | weak_alias (__pthread_mutex_timedlock, pthread_mutex_timedlock) |
634 | |