1 | /* Helper macros for functions returning a narrower type. |
2 | Copyright (C) 2018-2021 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #ifndef _MATH_NARROW_H |
20 | #define _MATH_NARROW_H 1 |
21 | |
22 | #include <bits/floatn.h> |
23 | #include <bits/long-double.h> |
24 | #include <errno.h> |
25 | #include <fenv.h> |
26 | #include <ieee754.h> |
27 | #include <math-barriers.h> |
28 | #include <math_private.h> |
29 | #include <fenv_private.h> |
30 | |
31 | /* Carry out a computation using round-to-odd. The computation is |
32 | EXPR; the union type in which to store the result is UNION and the |
33 | subfield of the "ieee" field of that union with the low part of the |
34 | mantissa is MANTISSA; SUFFIX is the suffix for the libc_fe* macros |
35 | to ensure that the correct rounding mode is used, for platforms |
36 | with multiple rounding modes where those macros set only the |
37 | relevant mode. This macro does not work correctly if the sign of |
38 | an exact zero result depends on the rounding mode, so that case |
39 | must be checked for separately. */ |
40 | #define ROUND_TO_ODD(EXPR, UNION, SUFFIX, MANTISSA) \ |
41 | ({ \ |
42 | fenv_t env; \ |
43 | UNION u; \ |
44 | \ |
45 | libc_feholdexcept_setround ## SUFFIX (&env, FE_TOWARDZERO); \ |
46 | u.d = (EXPR); \ |
47 | math_force_eval (u.d); \ |
48 | u.ieee.MANTISSA \ |
49 | |= libc_feupdateenv_test ## SUFFIX (&env, FE_INEXACT) != 0; \ |
50 | \ |
51 | u.d; \ |
52 | }) |
53 | |
54 | /* Check for error conditions from a narrowing add function returning |
55 | RET with arguments X and Y and set errno as needed. Overflow and |
56 | underflow can occur for finite arguments and a domain error for |
57 | infinite ones. */ |
58 | #define CHECK_NARROW_ADD(RET, X, Y) \ |
59 | do \ |
60 | { \ |
61 | if (!isfinite (RET)) \ |
62 | { \ |
63 | if (isnan (RET)) \ |
64 | { \ |
65 | if (!isnan (X) && !isnan (Y)) \ |
66 | __set_errno (EDOM); \ |
67 | } \ |
68 | else if (isfinite (X) && isfinite (Y)) \ |
69 | __set_errno (ERANGE); \ |
70 | } \ |
71 | else if ((RET) == 0 && (X) != -(Y)) \ |
72 | __set_errno (ERANGE); \ |
73 | } \ |
74 | while (0) |
75 | |
76 | /* Implement narrowing add using round-to-odd. The arguments are X |
77 | and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are |
78 | as for ROUND_TO_ODD. */ |
79 | #define NARROW_ADD_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \ |
80 | do \ |
81 | { \ |
82 | TYPE ret; \ |
83 | \ |
84 | /* Ensure a zero result is computed in the original rounding \ |
85 | mode. */ \ |
86 | if ((X) == -(Y)) \ |
87 | ret = (TYPE) ((X) + (Y)); \ |
88 | else \ |
89 | ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) + (Y), \ |
90 | UNION, SUFFIX, MANTISSA); \ |
91 | \ |
92 | CHECK_NARROW_ADD (ret, (X), (Y)); \ |
93 | return ret; \ |
94 | } \ |
95 | while (0) |
96 | |
97 | /* Implement a narrowing add function that is not actually narrowing |
98 | or where no attempt is made to be correctly rounding (the latter |
99 | only applies to IBM long double). The arguments are X and Y and |
100 | the return type is TYPE. */ |
101 | #define NARROW_ADD_TRIVIAL(X, Y, TYPE) \ |
102 | do \ |
103 | { \ |
104 | TYPE ret; \ |
105 | \ |
106 | ret = (TYPE) ((X) + (Y)); \ |
107 | CHECK_NARROW_ADD (ret, (X), (Y)); \ |
108 | return ret; \ |
109 | } \ |
110 | while (0) |
111 | |
112 | /* Check for error conditions from a narrowing subtract function |
113 | returning RET with arguments X and Y and set errno as needed. |
114 | Overflow and underflow can occur for finite arguments and a domain |
115 | error for infinite ones. */ |
116 | #define CHECK_NARROW_SUB(RET, X, Y) \ |
117 | do \ |
118 | { \ |
119 | if (!isfinite (RET)) \ |
120 | { \ |
121 | if (isnan (RET)) \ |
122 | { \ |
123 | if (!isnan (X) && !isnan (Y)) \ |
124 | __set_errno (EDOM); \ |
125 | } \ |
126 | else if (isfinite (X) && isfinite (Y)) \ |
127 | __set_errno (ERANGE); \ |
128 | } \ |
129 | else if ((RET) == 0 && (X) != (Y)) \ |
130 | __set_errno (ERANGE); \ |
131 | } \ |
132 | while (0) |
133 | |
134 | /* Implement narrowing subtract using round-to-odd. The arguments are |
135 | X and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are |
136 | as for ROUND_TO_ODD. */ |
137 | #define NARROW_SUB_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \ |
138 | do \ |
139 | { \ |
140 | TYPE ret; \ |
141 | \ |
142 | /* Ensure a zero result is computed in the original rounding \ |
143 | mode. */ \ |
144 | if ((X) == (Y)) \ |
145 | ret = (TYPE) ((X) - (Y)); \ |
146 | else \ |
147 | ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) - (Y), \ |
148 | UNION, SUFFIX, MANTISSA); \ |
149 | \ |
150 | CHECK_NARROW_SUB (ret, (X), (Y)); \ |
151 | return ret; \ |
152 | } \ |
153 | while (0) |
154 | |
155 | /* Implement a narrowing subtract function that is not actually |
156 | narrowing or where no attempt is made to be correctly rounding (the |
157 | latter only applies to IBM long double). The arguments are X and Y |
158 | and the return type is TYPE. */ |
159 | #define NARROW_SUB_TRIVIAL(X, Y, TYPE) \ |
160 | do \ |
161 | { \ |
162 | TYPE ret; \ |
163 | \ |
164 | ret = (TYPE) ((X) - (Y)); \ |
165 | CHECK_NARROW_SUB (ret, (X), (Y)); \ |
166 | return ret; \ |
167 | } \ |
168 | while (0) |
169 | |
170 | /* Check for error conditions from a narrowing multiply function |
171 | returning RET with arguments X and Y and set errno as needed. |
172 | Overflow and underflow can occur for finite arguments and a domain |
173 | error for Inf * 0. */ |
174 | #define CHECK_NARROW_MUL(RET, X, Y) \ |
175 | do \ |
176 | { \ |
177 | if (!isfinite (RET)) \ |
178 | { \ |
179 | if (isnan (RET)) \ |
180 | { \ |
181 | if (!isnan (X) && !isnan (Y)) \ |
182 | __set_errno (EDOM); \ |
183 | } \ |
184 | else if (isfinite (X) && isfinite (Y)) \ |
185 | __set_errno (ERANGE); \ |
186 | } \ |
187 | else if ((RET) == 0 && (X) != 0 && (Y) != 0) \ |
188 | __set_errno (ERANGE); \ |
189 | } \ |
190 | while (0) |
191 | |
192 | /* Implement narrowing multiply using round-to-odd. The arguments are |
193 | X and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are |
194 | as for ROUND_TO_ODD. */ |
195 | #define NARROW_MUL_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \ |
196 | do \ |
197 | { \ |
198 | TYPE ret; \ |
199 | \ |
200 | ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) * (Y), \ |
201 | UNION, SUFFIX, MANTISSA); \ |
202 | \ |
203 | CHECK_NARROW_MUL (ret, (X), (Y)); \ |
204 | return ret; \ |
205 | } \ |
206 | while (0) |
207 | |
208 | /* Implement a narrowing multiply function that is not actually |
209 | narrowing or where no attempt is made to be correctly rounding (the |
210 | latter only applies to IBM long double). The arguments are X and Y |
211 | and the return type is TYPE. */ |
212 | #define NARROW_MUL_TRIVIAL(X, Y, TYPE) \ |
213 | do \ |
214 | { \ |
215 | TYPE ret; \ |
216 | \ |
217 | ret = (TYPE) ((X) * (Y)); \ |
218 | CHECK_NARROW_MUL (ret, (X), (Y)); \ |
219 | return ret; \ |
220 | } \ |
221 | while (0) |
222 | |
223 | /* Check for error conditions from a narrowing divide function |
224 | returning RET with arguments X and Y and set errno as needed. |
225 | Overflow, underflow and divide-by-zero can occur for finite |
226 | arguments and a domain error for Inf / Inf and 0 / 0. */ |
227 | #define CHECK_NARROW_DIV(RET, X, Y) \ |
228 | do \ |
229 | { \ |
230 | if (!isfinite (RET)) \ |
231 | { \ |
232 | if (isnan (RET)) \ |
233 | { \ |
234 | if (!isnan (X) && !isnan (Y)) \ |
235 | __set_errno (EDOM); \ |
236 | } \ |
237 | else if (isfinite (X)) \ |
238 | __set_errno (ERANGE); \ |
239 | } \ |
240 | else if ((RET) == 0 && (X) != 0 && !isinf (Y)) \ |
241 | __set_errno (ERANGE); \ |
242 | } \ |
243 | while (0) |
244 | |
245 | /* Implement narrowing divide using round-to-odd. The arguments are |
246 | X and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are |
247 | as for ROUND_TO_ODD. */ |
248 | #define NARROW_DIV_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \ |
249 | do \ |
250 | { \ |
251 | TYPE ret; \ |
252 | \ |
253 | ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) / (Y), \ |
254 | UNION, SUFFIX, MANTISSA); \ |
255 | \ |
256 | CHECK_NARROW_DIV (ret, (X), (Y)); \ |
257 | return ret; \ |
258 | } \ |
259 | while (0) |
260 | |
261 | /* Implement a narrowing divide function that is not actually |
262 | narrowing or where no attempt is made to be correctly rounding (the |
263 | latter only applies to IBM long double). The arguments are X and Y |
264 | and the return type is TYPE. */ |
265 | #define NARROW_DIV_TRIVIAL(X, Y, TYPE) \ |
266 | do \ |
267 | { \ |
268 | TYPE ret; \ |
269 | \ |
270 | ret = (TYPE) ((X) / (Y)); \ |
271 | CHECK_NARROW_DIV (ret, (X), (Y)); \ |
272 | return ret; \ |
273 | } \ |
274 | while (0) |
275 | |
276 | /* The following macros declare aliases for a narrowing function. The |
277 | sole argument is the base name of a family of functions, such as |
278 | "add". If any platform changes long double format after the |
279 | introduction of narrowing functions, in a way requiring symbol |
280 | versioning compatibility, additional variants of these macros will |
281 | be needed. */ |
282 | |
283 | #define libm_alias_float_double_main(func) \ |
284 | weak_alias (__f ## func, f ## func) \ |
285 | weak_alias (__f ## func, f32 ## func ## f64) \ |
286 | weak_alias (__f ## func, f32 ## func ## f32x) |
287 | |
288 | #ifdef NO_LONG_DOUBLE |
289 | # define libm_alias_float_double(func) \ |
290 | libm_alias_float_double_main (func) \ |
291 | weak_alias (__f ## func, f ## func ## l) |
292 | #else |
293 | # define libm_alias_float_double(func) \ |
294 | libm_alias_float_double_main (func) |
295 | #endif |
296 | |
297 | #define libm_alias_float32x_float64_main(func) \ |
298 | weak_alias (__f32x ## func ## f64, f32x ## func ## f64) |
299 | |
300 | #ifdef NO_LONG_DOUBLE |
301 | # define libm_alias_float32x_float64(func) \ |
302 | libm_alias_float32x_float64_main (func) \ |
303 | weak_alias (__f32x ## func ## f64, d ## func ## l) |
304 | #elif defined __LONG_DOUBLE_MATH_OPTIONAL |
305 | # define libm_alias_float32x_float64(func) \ |
306 | libm_alias_float32x_float64_main (func) \ |
307 | weak_alias (__f32x ## func ## f64, __nldbl_d ## func ## l) |
308 | #else |
309 | # define libm_alias_float32x_float64(func) \ |
310 | libm_alias_float32x_float64_main (func) |
311 | #endif |
312 | |
313 | #if __HAVE_FLOAT128 && !__HAVE_DISTINCT_FLOAT128 |
314 | # define libm_alias_float_ldouble_f128(func) \ |
315 | weak_alias (__f ## func ## l, f32 ## func ## f128) |
316 | # define libm_alias_double_ldouble_f128(func) \ |
317 | weak_alias (__d ## func ## l, f32x ## func ## f128) \ |
318 | weak_alias (__d ## func ## l, f64 ## func ## f128) |
319 | #else |
320 | # define libm_alias_float_ldouble_f128(func) |
321 | # define libm_alias_double_ldouble_f128(func) |
322 | #endif |
323 | |
324 | #if __HAVE_FLOAT64X_LONG_DOUBLE |
325 | # define libm_alias_float_ldouble_f64x(func) \ |
326 | weak_alias (__f ## func ## l, f32 ## func ## f64x) |
327 | # define libm_alias_double_ldouble_f64x(func) \ |
328 | weak_alias (__d ## func ## l, f32x ## func ## f64x) \ |
329 | weak_alias (__d ## func ## l, f64 ## func ## f64x) |
330 | #else |
331 | # define libm_alias_float_ldouble_f64x(func) |
332 | # define libm_alias_double_ldouble_f64x(func) |
333 | #endif |
334 | |
335 | #define libm_alias_float_ldouble(func) \ |
336 | weak_alias (__f ## func ## l, f ## func ## l) \ |
337 | libm_alias_float_ldouble_f128 (func) \ |
338 | libm_alias_float_ldouble_f64x (func) |
339 | |
340 | #define libm_alias_double_ldouble(func) \ |
341 | weak_alias (__d ## func ## l, d ## func ## l) \ |
342 | libm_alias_double_ldouble_f128 (func) \ |
343 | libm_alias_double_ldouble_f64x (func) |
344 | |
345 | #define libm_alias_float64x_float128(func) \ |
346 | weak_alias (__f64x ## func ## f128, f64x ## func ## f128) |
347 | |
348 | #define libm_alias_float32_float128_main(func) \ |
349 | weak_alias (__f32 ## func ## f128, f32 ## func ## f128) |
350 | |
351 | #define libm_alias_float64_float128_main(func) \ |
352 | weak_alias (__f64 ## func ## f128, f64 ## func ## f128) \ |
353 | weak_alias (__f64 ## func ## f128, f32x ## func ## f128) |
354 | |
355 | #include <math-narrow-alias-float128.h> |
356 | |
357 | #endif /* math-narrow.h. */ |
358 | |