1 | /* Compute a product of 1 + (T/X), 1 + (T/(X+1)), .... |
2 | Copyright (C) 2015-2020 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <math.h> |
20 | #include <math_private.h> |
21 | #include <mul_splitl.h> |
22 | |
23 | /* Compute the product of 1 + (T / (X + X_EPS)), 1 + (T / (X + X_EPS + |
24 | 1)), ..., 1 + (T / (X + X_EPS + N - 1)), minus 1. X is such that |
25 | all the values X + 1, ..., X + N - 1 are exactly representable, and |
26 | X_EPS / X is small enough that factors quadratic in it can be |
27 | neglected. */ |
28 | |
29 | long double |
30 | __lgamma_productl (long double t, long double x, long double x_eps, int n) |
31 | { |
32 | long double ret = 0, ret_eps = 0; |
33 | for (int i = 0; i < n; i++) |
34 | { |
35 | long double xi = x + i; |
36 | long double quot = t / xi; |
37 | long double mhi, mlo; |
38 | mul_splitl (&mhi, &mlo, quot, xi); |
39 | long double quot_lo = (t - mhi - mlo) / xi - t * x_eps / (xi * xi); |
40 | /* We want (1 + RET + RET_EPS) * (1 + QUOT + QUOT_LO) - 1. */ |
41 | long double rhi, rlo; |
42 | mul_splitl (&rhi, &rlo, ret, quot); |
43 | long double rpq = ret + quot; |
44 | long double rpq_eps = (ret - rpq) + quot; |
45 | long double nret = rpq + rhi; |
46 | long double nret_eps = (rpq - nret) + rhi; |
47 | ret_eps += (rpq_eps + nret_eps + rlo + ret_eps * quot |
48 | + quot_lo + quot_lo * (ret + ret_eps)); |
49 | ret = nret; |
50 | } |
51 | return ret + ret_eps; |
52 | } |
53 | |