1 | /* Compute x * y + z as ternary operation. |
2 | Copyright (C) 2010-2020 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Jakub Jelinek <jakub@redhat.com>, 2010. |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <https://www.gnu.org/licenses/>. */ |
19 | |
20 | #include <float.h> |
21 | #include <math.h> |
22 | #include <fenv.h> |
23 | #include <ieee754.h> |
24 | #include <math-barriers.h> |
25 | #include <math_private.h> |
26 | #include <libm-alias-ldouble.h> |
27 | #include <tininess.h> |
28 | #include <math-use-builtins.h> |
29 | |
30 | /* This implementation uses rounding to odd to avoid problems with |
31 | double rounding. See a paper by Boldo and Melquiond: |
32 | http://www.lri.fr/~melquion/doc/08-tc.pdf */ |
33 | |
34 | _Float128 |
35 | __fmal (_Float128 x, _Float128 y, _Float128 z) |
36 | { |
37 | #if USE_FMAL_BUILTIN |
38 | return __builtin_fmal (x, y, z); |
39 | #else |
40 | union ieee854_long_double u, v, w; |
41 | int adjust = 0; |
42 | u.d = x; |
43 | v.d = y; |
44 | w.d = z; |
45 | if (__builtin_expect (u.ieee.exponent + v.ieee.exponent |
46 | >= 0x7fff + IEEE854_LONG_DOUBLE_BIAS |
47 | - LDBL_MANT_DIG, 0) |
48 | || __builtin_expect (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0) |
49 | || __builtin_expect (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0) |
50 | || __builtin_expect (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0) |
51 | || __builtin_expect (u.ieee.exponent + v.ieee.exponent |
52 | <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG, 0)) |
53 | { |
54 | /* If z is Inf, but x and y are finite, the result should be |
55 | z rather than NaN. */ |
56 | if (w.ieee.exponent == 0x7fff |
57 | && u.ieee.exponent != 0x7fff |
58 | && v.ieee.exponent != 0x7fff) |
59 | return (z + x) + y; |
60 | /* If z is zero and x are y are nonzero, compute the result |
61 | as x * y to avoid the wrong sign of a zero result if x * y |
62 | underflows to 0. */ |
63 | if (z == 0 && x != 0 && y != 0) |
64 | return x * y; |
65 | /* If x or y or z is Inf/NaN, or if x * y is zero, compute as |
66 | x * y + z. */ |
67 | if (u.ieee.exponent == 0x7fff |
68 | || v.ieee.exponent == 0x7fff |
69 | || w.ieee.exponent == 0x7fff |
70 | || x == 0 |
71 | || y == 0) |
72 | return x * y + z; |
73 | /* If fma will certainly overflow, compute as x * y. */ |
74 | if (u.ieee.exponent + v.ieee.exponent |
75 | > 0x7fff + IEEE854_LONG_DOUBLE_BIAS) |
76 | return x * y; |
77 | /* If x * y is less than 1/4 of LDBL_TRUE_MIN, neither the |
78 | result nor whether there is underflow depends on its exact |
79 | value, only on its sign. */ |
80 | if (u.ieee.exponent + v.ieee.exponent |
81 | < IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG - 2) |
82 | { |
83 | int neg = u.ieee.negative ^ v.ieee.negative; |
84 | _Float128 tiny = neg ? L(-0x1p-16494) : L(0x1p-16494); |
85 | if (w.ieee.exponent >= 3) |
86 | return tiny + z; |
87 | /* Scaling up, adding TINY and scaling down produces the |
88 | correct result, because in round-to-nearest mode adding |
89 | TINY has no effect and in other modes double rounding is |
90 | harmless. But it may not produce required underflow |
91 | exceptions. */ |
92 | v.d = z * L(0x1p114) + tiny; |
93 | if (TININESS_AFTER_ROUNDING |
94 | ? v.ieee.exponent < 115 |
95 | : (w.ieee.exponent == 0 |
96 | || (w.ieee.exponent == 1 |
97 | && w.ieee.negative != neg |
98 | && w.ieee.mantissa3 == 0 |
99 | && w.ieee.mantissa2 == 0 |
100 | && w.ieee.mantissa1 == 0 |
101 | && w.ieee.mantissa0 == 0))) |
102 | { |
103 | _Float128 force_underflow = x * y; |
104 | math_force_eval (force_underflow); |
105 | } |
106 | return v.d * L(0x1p-114); |
107 | } |
108 | if (u.ieee.exponent + v.ieee.exponent |
109 | >= 0x7fff + IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG) |
110 | { |
111 | /* Compute 1p-113 times smaller result and multiply |
112 | at the end. */ |
113 | if (u.ieee.exponent > v.ieee.exponent) |
114 | u.ieee.exponent -= LDBL_MANT_DIG; |
115 | else |
116 | v.ieee.exponent -= LDBL_MANT_DIG; |
117 | /* If x + y exponent is very large and z exponent is very small, |
118 | it doesn't matter if we don't adjust it. */ |
119 | if (w.ieee.exponent > LDBL_MANT_DIG) |
120 | w.ieee.exponent -= LDBL_MANT_DIG; |
121 | adjust = 1; |
122 | } |
123 | else if (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG) |
124 | { |
125 | /* Similarly. |
126 | If z exponent is very large and x and y exponents are |
127 | very small, adjust them up to avoid spurious underflows, |
128 | rather than down. */ |
129 | if (u.ieee.exponent + v.ieee.exponent |
130 | <= IEEE854_LONG_DOUBLE_BIAS + 2 * LDBL_MANT_DIG) |
131 | { |
132 | if (u.ieee.exponent > v.ieee.exponent) |
133 | u.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
134 | else |
135 | v.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
136 | } |
137 | else if (u.ieee.exponent > v.ieee.exponent) |
138 | { |
139 | if (u.ieee.exponent > LDBL_MANT_DIG) |
140 | u.ieee.exponent -= LDBL_MANT_DIG; |
141 | } |
142 | else if (v.ieee.exponent > LDBL_MANT_DIG) |
143 | v.ieee.exponent -= LDBL_MANT_DIG; |
144 | w.ieee.exponent -= LDBL_MANT_DIG; |
145 | adjust = 1; |
146 | } |
147 | else if (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG) |
148 | { |
149 | u.ieee.exponent -= LDBL_MANT_DIG; |
150 | if (v.ieee.exponent) |
151 | v.ieee.exponent += LDBL_MANT_DIG; |
152 | else |
153 | v.d *= L(0x1p113); |
154 | } |
155 | else if (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG) |
156 | { |
157 | v.ieee.exponent -= LDBL_MANT_DIG; |
158 | if (u.ieee.exponent) |
159 | u.ieee.exponent += LDBL_MANT_DIG; |
160 | else |
161 | u.d *= L(0x1p113); |
162 | } |
163 | else /* if (u.ieee.exponent + v.ieee.exponent |
164 | <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG) */ |
165 | { |
166 | if (u.ieee.exponent > v.ieee.exponent) |
167 | u.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
168 | else |
169 | v.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
170 | if (w.ieee.exponent <= 4 * LDBL_MANT_DIG + 6) |
171 | { |
172 | if (w.ieee.exponent) |
173 | w.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
174 | else |
175 | w.d *= L(0x1p228); |
176 | adjust = -1; |
177 | } |
178 | /* Otherwise x * y should just affect inexact |
179 | and nothing else. */ |
180 | } |
181 | x = u.d; |
182 | y = v.d; |
183 | z = w.d; |
184 | } |
185 | |
186 | /* Ensure correct sign of exact 0 + 0. */ |
187 | if (__glibc_unlikely ((x == 0 || y == 0) && z == 0)) |
188 | { |
189 | x = math_opt_barrier (x); |
190 | return x * y + z; |
191 | } |
192 | |
193 | fenv_t env; |
194 | feholdexcept (&env); |
195 | fesetround (FE_TONEAREST); |
196 | |
197 | /* Multiplication m1 + m2 = x * y using Dekker's algorithm. */ |
198 | #define C ((1LL << (LDBL_MANT_DIG + 1) / 2) + 1) |
199 | _Float128 x1 = x * C; |
200 | _Float128 y1 = y * C; |
201 | _Float128 m1 = x * y; |
202 | x1 = (x - x1) + x1; |
203 | y1 = (y - y1) + y1; |
204 | _Float128 x2 = x - x1; |
205 | _Float128 y2 = y - y1; |
206 | _Float128 m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2; |
207 | |
208 | /* Addition a1 + a2 = z + m1 using Knuth's algorithm. */ |
209 | _Float128 a1 = z + m1; |
210 | _Float128 t1 = a1 - z; |
211 | _Float128 t2 = a1 - t1; |
212 | t1 = m1 - t1; |
213 | t2 = z - t2; |
214 | _Float128 a2 = t1 + t2; |
215 | /* Ensure the arithmetic is not scheduled after feclearexcept call. */ |
216 | math_force_eval (m2); |
217 | math_force_eval (a2); |
218 | feclearexcept (FE_INEXACT); |
219 | |
220 | /* If the result is an exact zero, ensure it has the correct sign. */ |
221 | if (a1 == 0 && m2 == 0) |
222 | { |
223 | feupdateenv (&env); |
224 | /* Ensure that round-to-nearest value of z + m1 is not reused. */ |
225 | z = math_opt_barrier (z); |
226 | return z + m1; |
227 | } |
228 | |
229 | fesetround (FE_TOWARDZERO); |
230 | /* Perform m2 + a2 addition with round to odd. */ |
231 | u.d = a2 + m2; |
232 | |
233 | if (__glibc_likely (adjust == 0)) |
234 | { |
235 | if ((u.ieee.mantissa3 & 1) == 0 && u.ieee.exponent != 0x7fff) |
236 | u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0; |
237 | feupdateenv (&env); |
238 | /* Result is a1 + u.d. */ |
239 | return a1 + u.d; |
240 | } |
241 | else if (__glibc_likely (adjust > 0)) |
242 | { |
243 | if ((u.ieee.mantissa3 & 1) == 0 && u.ieee.exponent != 0x7fff) |
244 | u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0; |
245 | feupdateenv (&env); |
246 | /* Result is a1 + u.d, scaled up. */ |
247 | return (a1 + u.d) * L(0x1p113); |
248 | } |
249 | else |
250 | { |
251 | if ((u.ieee.mantissa3 & 1) == 0) |
252 | u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0; |
253 | v.d = a1 + u.d; |
254 | /* Ensure the addition is not scheduled after fetestexcept call. */ |
255 | math_force_eval (v.d); |
256 | int j = fetestexcept (FE_INEXACT) != 0; |
257 | feupdateenv (&env); |
258 | /* Ensure the following computations are performed in default rounding |
259 | mode instead of just reusing the round to zero computation. */ |
260 | asm volatile ("" : "=m" (u) : "m" (u)); |
261 | /* If a1 + u.d is exact, the only rounding happens during |
262 | scaling down. */ |
263 | if (j == 0) |
264 | return v.d * L(0x1p-228); |
265 | /* If result rounded to zero is not subnormal, no double |
266 | rounding will occur. */ |
267 | if (v.ieee.exponent > 228) |
268 | return (a1 + u.d) * L(0x1p-228); |
269 | /* If v.d * 0x1p-228L with round to zero is a subnormal above |
270 | or equal to LDBL_MIN / 2, then v.d * 0x1p-228L shifts mantissa |
271 | down just by 1 bit, which means v.ieee.mantissa3 |= j would |
272 | change the round bit, not sticky or guard bit. |
273 | v.d * 0x1p-228L never normalizes by shifting up, |
274 | so round bit plus sticky bit should be already enough |
275 | for proper rounding. */ |
276 | if (v.ieee.exponent == 228) |
277 | { |
278 | /* If the exponent would be in the normal range when |
279 | rounding to normal precision with unbounded exponent |
280 | range, the exact result is known and spurious underflows |
281 | must be avoided on systems detecting tininess after |
282 | rounding. */ |
283 | if (TININESS_AFTER_ROUNDING) |
284 | { |
285 | w.d = a1 + u.d; |
286 | if (w.ieee.exponent == 229) |
287 | return w.d * L(0x1p-228); |
288 | } |
289 | /* v.ieee.mantissa3 & 2 is LSB bit of the result before rounding, |
290 | v.ieee.mantissa3 & 1 is the round bit and j is our sticky |
291 | bit. */ |
292 | w.d = 0; |
293 | w.ieee.mantissa3 = ((v.ieee.mantissa3 & 3) << 1) | j; |
294 | w.ieee.negative = v.ieee.negative; |
295 | v.ieee.mantissa3 &= ~3U; |
296 | v.d *= L(0x1p-228); |
297 | w.d *= L(0x1p-2); |
298 | return v.d + w.d; |
299 | } |
300 | v.ieee.mantissa3 |= j; |
301 | return v.d * L(0x1p-228); |
302 | } |
303 | #endif /* ! USE_FMAL_BUILTIN */ |
304 | } |
305 | libm_alias_ldouble (__fma, fma) |
306 | |