| 1 | /* Load a shared object at runtime, relocate it, and run its initializer. |
| 2 | Copyright (C) 1996-2020 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <assert.h> |
| 20 | #include <dlfcn.h> |
| 21 | #include <errno.h> |
| 22 | #include <libintl.h> |
| 23 | #include <stdio.h> |
| 24 | #include <stdlib.h> |
| 25 | #include <string.h> |
| 26 | #include <unistd.h> |
| 27 | #include <sys/mman.h> /* Check whether MAP_COPY is defined. */ |
| 28 | #include <sys/param.h> |
| 29 | #include <libc-lock.h> |
| 30 | #include <ldsodefs.h> |
| 31 | #include <sysdep-cancel.h> |
| 32 | #include <tls.h> |
| 33 | #include <stap-probe.h> |
| 34 | #include <atomic.h> |
| 35 | #include <libc-internal.h> |
| 36 | #include <array_length.h> |
| 37 | #include <libc-early-init.h> |
| 38 | |
| 39 | #include <dl-dst.h> |
| 40 | #include <dl-prop.h> |
| 41 | |
| 42 | |
| 43 | /* We must be careful not to leave us in an inconsistent state. Thus we |
| 44 | catch any error and re-raise it after cleaning up. */ |
| 45 | |
| 46 | struct dl_open_args |
| 47 | { |
| 48 | const char *file; |
| 49 | int mode; |
| 50 | /* This is the caller of the dlopen() function. */ |
| 51 | const void *caller_dlopen; |
| 52 | struct link_map *map; |
| 53 | /* Namespace ID. */ |
| 54 | Lmid_t nsid; |
| 55 | |
| 56 | /* Original value of _ns_global_scope_pending_adds. Set by |
| 57 | dl_open_worker. Only valid if nsid is a real namespace |
| 58 | (non-negative). */ |
| 59 | unsigned int original_global_scope_pending_adds; |
| 60 | |
| 61 | /* Set to true by dl_open_worker if libc.so was already loaded into |
| 62 | the namespace at the time dl_open_worker was called. This is |
| 63 | used to determine whether libc.so early initialization has |
| 64 | already been done before, and whether to roll back the cached |
| 65 | libc_map value in the namespace in case of a dlopen failure. */ |
| 66 | bool libc_already_loaded; |
| 67 | |
| 68 | /* Original parameters to the program and the current environment. */ |
| 69 | int argc; |
| 70 | char **argv; |
| 71 | char **env; |
| 72 | }; |
| 73 | |
| 74 | /* Called in case the global scope cannot be extended. */ |
| 75 | static void __attribute__ ((noreturn)) |
| 76 | add_to_global_resize_failure (struct link_map *new) |
| 77 | { |
| 78 | _dl_signal_error (ENOMEM, new->l_libname->name, NULL, |
| 79 | N_ ("cannot extend global scope" )); |
| 80 | } |
| 81 | |
| 82 | /* Grow the global scope array for the namespace, so that all the new |
| 83 | global objects can be added later in add_to_global_update, without |
| 84 | risk of memory allocation failure. add_to_global_resize raises |
| 85 | exceptions for memory allocation errors. */ |
| 86 | static void |
| 87 | add_to_global_resize (struct link_map *new) |
| 88 | { |
| 89 | struct link_namespaces *ns = &GL (dl_ns)[new->l_ns]; |
| 90 | |
| 91 | /* Count the objects we have to put in the global scope. */ |
| 92 | unsigned int to_add = 0; |
| 93 | for (unsigned int cnt = 0; cnt < new->l_searchlist.r_nlist; ++cnt) |
| 94 | if (new->l_searchlist.r_list[cnt]->l_global == 0) |
| 95 | ++to_add; |
| 96 | |
| 97 | /* The symbols of the new objects and its dependencies are to be |
| 98 | introduced into the global scope that will be used to resolve |
| 99 | references from other dynamically-loaded objects. |
| 100 | |
| 101 | The global scope is the searchlist in the main link map. We |
| 102 | extend this list if necessary. There is one problem though: |
| 103 | since this structure was allocated very early (before the libc |
| 104 | is loaded) the memory it uses is allocated by the malloc()-stub |
| 105 | in the ld.so. When we come here these functions are not used |
| 106 | anymore. Instead the malloc() implementation of the libc is |
| 107 | used. But this means the block from the main map cannot be used |
| 108 | in an realloc() call. Therefore we allocate a completely new |
| 109 | array the first time we have to add something to the locale scope. */ |
| 110 | |
| 111 | if (__builtin_add_overflow (ns->_ns_global_scope_pending_adds, to_add, |
| 112 | &ns->_ns_global_scope_pending_adds)) |
| 113 | add_to_global_resize_failure (new); |
| 114 | |
| 115 | unsigned int new_size = 0; /* 0 means no new allocation. */ |
| 116 | void *old_global = NULL; /* Old allocation if free-able. */ |
| 117 | |
| 118 | /* Minimum required element count for resizing. Adjusted below for |
| 119 | an exponential resizing policy. */ |
| 120 | size_t required_new_size; |
| 121 | if (__builtin_add_overflow (ns->_ns_main_searchlist->r_nlist, |
| 122 | ns->_ns_global_scope_pending_adds, |
| 123 | &required_new_size)) |
| 124 | add_to_global_resize_failure (new); |
| 125 | |
| 126 | if (ns->_ns_global_scope_alloc == 0) |
| 127 | { |
| 128 | if (__builtin_add_overflow (required_new_size, 8, &new_size)) |
| 129 | add_to_global_resize_failure (new); |
| 130 | } |
| 131 | else if (required_new_size > ns->_ns_global_scope_alloc) |
| 132 | { |
| 133 | if (__builtin_mul_overflow (required_new_size, 2, &new_size)) |
| 134 | add_to_global_resize_failure (new); |
| 135 | |
| 136 | /* The old array was allocated with our malloc, not the minimal |
| 137 | malloc. */ |
| 138 | old_global = ns->_ns_main_searchlist->r_list; |
| 139 | } |
| 140 | |
| 141 | if (new_size > 0) |
| 142 | { |
| 143 | size_t allocation_size; |
| 144 | if (__builtin_mul_overflow (new_size, sizeof (struct link_map *), |
| 145 | &allocation_size)) |
| 146 | add_to_global_resize_failure (new); |
| 147 | struct link_map **new_global = malloc (allocation_size); |
| 148 | if (new_global == NULL) |
| 149 | add_to_global_resize_failure (new); |
| 150 | |
| 151 | /* Copy over the old entries. */ |
| 152 | memcpy (new_global, ns->_ns_main_searchlist->r_list, |
| 153 | ns->_ns_main_searchlist->r_nlist * sizeof (struct link_map *)); |
| 154 | |
| 155 | ns->_ns_global_scope_alloc = new_size; |
| 156 | ns->_ns_main_searchlist->r_list = new_global; |
| 157 | |
| 158 | if (!RTLD_SINGLE_THREAD_P) |
| 159 | THREAD_GSCOPE_WAIT (); |
| 160 | |
| 161 | free (old_global); |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | /* Actually add the new global objects to the global scope. Must be |
| 166 | called after add_to_global_resize. This function cannot fail. */ |
| 167 | static void |
| 168 | add_to_global_update (struct link_map *new) |
| 169 | { |
| 170 | struct link_namespaces *ns = &GL (dl_ns)[new->l_ns]; |
| 171 | |
| 172 | /* Now add the new entries. */ |
| 173 | unsigned int new_nlist = ns->_ns_main_searchlist->r_nlist; |
| 174 | for (unsigned int cnt = 0; cnt < new->l_searchlist.r_nlist; ++cnt) |
| 175 | { |
| 176 | struct link_map *map = new->l_searchlist.r_list[cnt]; |
| 177 | |
| 178 | if (map->l_global == 0) |
| 179 | { |
| 180 | map->l_global = 1; |
| 181 | |
| 182 | /* The array has been resized by add_to_global_resize. */ |
| 183 | assert (new_nlist < ns->_ns_global_scope_alloc); |
| 184 | |
| 185 | ns->_ns_main_searchlist->r_list[new_nlist++] = map; |
| 186 | |
| 187 | /* We modify the global scope. Report this. */ |
| 188 | if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_SCOPES)) |
| 189 | _dl_debug_printf ("\nadd %s [%lu] to global scope\n" , |
| 190 | map->l_name, map->l_ns); |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | /* Some of the pending adds have been performed by the loop above. |
| 195 | Adjust the counter accordingly. */ |
| 196 | unsigned int added = new_nlist - ns->_ns_main_searchlist->r_nlist; |
| 197 | assert (added <= ns->_ns_global_scope_pending_adds); |
| 198 | ns->_ns_global_scope_pending_adds -= added; |
| 199 | |
| 200 | atomic_write_barrier (); |
| 201 | ns->_ns_main_searchlist->r_nlist = new_nlist; |
| 202 | } |
| 203 | |
| 204 | /* Search link maps in all namespaces for the DSO that contains the object at |
| 205 | address ADDR. Returns the pointer to the link map of the matching DSO, or |
| 206 | NULL if a match is not found. */ |
| 207 | struct link_map * |
| 208 | _dl_find_dso_for_object (const ElfW(Addr) addr) |
| 209 | { |
| 210 | struct link_map *l; |
| 211 | |
| 212 | /* Find the highest-addressed object that ADDR is not below. */ |
| 213 | for (Lmid_t ns = 0; ns < GL(dl_nns); ++ns) |
| 214 | for (l = GL(dl_ns)[ns]._ns_loaded; l != NULL; l = l->l_next) |
| 215 | if (addr >= l->l_map_start && addr < l->l_map_end |
| 216 | && (l->l_contiguous |
| 217 | || _dl_addr_inside_object (l, (ElfW(Addr)) addr))) |
| 218 | { |
| 219 | assert (ns == l->l_ns); |
| 220 | return l; |
| 221 | } |
| 222 | return NULL; |
| 223 | } |
| 224 | rtld_hidden_def (_dl_find_dso_for_object); |
| 225 | |
| 226 | /* Return true if NEW is found in the scope for MAP. */ |
| 227 | static size_t |
| 228 | scope_has_map (struct link_map *map, struct link_map *new) |
| 229 | { |
| 230 | size_t cnt; |
| 231 | for (cnt = 0; map->l_scope[cnt] != NULL; ++cnt) |
| 232 | if (map->l_scope[cnt] == &new->l_searchlist) |
| 233 | return true; |
| 234 | return false; |
| 235 | } |
| 236 | |
| 237 | /* Return the length of the scope for MAP. */ |
| 238 | static size_t |
| 239 | scope_size (struct link_map *map) |
| 240 | { |
| 241 | size_t cnt; |
| 242 | for (cnt = 0; map->l_scope[cnt] != NULL; ) |
| 243 | ++cnt; |
| 244 | return cnt; |
| 245 | } |
| 246 | |
| 247 | /* Resize the scopes of depended-upon objects, so that the new object |
| 248 | can be added later without further allocation of memory. This |
| 249 | function can raise an exceptions due to malloc failure. */ |
| 250 | static void |
| 251 | resize_scopes (struct link_map *new) |
| 252 | { |
| 253 | /* If the file is not loaded now as a dependency, add the search |
| 254 | list of the newly loaded object to the scope. */ |
| 255 | for (unsigned int i = 0; i < new->l_searchlist.r_nlist; ++i) |
| 256 | { |
| 257 | struct link_map *imap = new->l_searchlist.r_list[i]; |
| 258 | |
| 259 | /* If the initializer has been called already, the object has |
| 260 | not been loaded here and now. */ |
| 261 | if (imap->l_init_called && imap->l_type == lt_loaded) |
| 262 | { |
| 263 | if (scope_has_map (imap, new)) |
| 264 | /* Avoid duplicates. */ |
| 265 | continue; |
| 266 | |
| 267 | size_t cnt = scope_size (imap); |
| 268 | if (__glibc_unlikely (cnt + 1 >= imap->l_scope_max)) |
| 269 | { |
| 270 | /* The l_scope array is too small. Allocate a new one |
| 271 | dynamically. */ |
| 272 | size_t new_size; |
| 273 | struct r_scope_elem **newp; |
| 274 | |
| 275 | if (imap->l_scope != imap->l_scope_mem |
| 276 | && imap->l_scope_max < array_length (imap->l_scope_mem)) |
| 277 | { |
| 278 | /* If the current l_scope memory is not pointing to |
| 279 | the static memory in the structure, but the |
| 280 | static memory in the structure is large enough to |
| 281 | use for cnt + 1 scope entries, then switch to |
| 282 | using the static memory. */ |
| 283 | new_size = array_length (imap->l_scope_mem); |
| 284 | newp = imap->l_scope_mem; |
| 285 | } |
| 286 | else |
| 287 | { |
| 288 | new_size = imap->l_scope_max * 2; |
| 289 | newp = (struct r_scope_elem **) |
| 290 | malloc (new_size * sizeof (struct r_scope_elem *)); |
| 291 | if (newp == NULL) |
| 292 | _dl_signal_error (ENOMEM, "dlopen" , NULL, |
| 293 | N_("cannot create scope list" )); |
| 294 | } |
| 295 | |
| 296 | /* Copy the array and the terminating NULL. */ |
| 297 | memcpy (newp, imap->l_scope, |
| 298 | (cnt + 1) * sizeof (imap->l_scope[0])); |
| 299 | struct r_scope_elem **old = imap->l_scope; |
| 300 | |
| 301 | imap->l_scope = newp; |
| 302 | |
| 303 | if (old != imap->l_scope_mem) |
| 304 | _dl_scope_free (old); |
| 305 | |
| 306 | imap->l_scope_max = new_size; |
| 307 | } |
| 308 | } |
| 309 | } |
| 310 | } |
| 311 | |
| 312 | /* Second stage of resize_scopes: Add NEW to the scopes. Also print |
| 313 | debugging information about scopes if requested. |
| 314 | |
| 315 | This function cannot raise an exception because all required memory |
| 316 | has been allocated by a previous call to resize_scopes. */ |
| 317 | static void |
| 318 | update_scopes (struct link_map *new) |
| 319 | { |
| 320 | for (unsigned int i = 0; i < new->l_searchlist.r_nlist; ++i) |
| 321 | { |
| 322 | struct link_map *imap = new->l_searchlist.r_list[i]; |
| 323 | int from_scope = 0; |
| 324 | |
| 325 | if (imap->l_init_called && imap->l_type == lt_loaded) |
| 326 | { |
| 327 | if (scope_has_map (imap, new)) |
| 328 | /* Avoid duplicates. */ |
| 329 | continue; |
| 330 | |
| 331 | size_t cnt = scope_size (imap); |
| 332 | /* Assert that resize_scopes has sufficiently enlarged the |
| 333 | array. */ |
| 334 | assert (cnt + 1 < imap->l_scope_max); |
| 335 | |
| 336 | /* First terminate the extended list. Otherwise a thread |
| 337 | might use the new last element and then use the garbage |
| 338 | at offset IDX+1. */ |
| 339 | imap->l_scope[cnt + 1] = NULL; |
| 340 | atomic_write_barrier (); |
| 341 | imap->l_scope[cnt] = &new->l_searchlist; |
| 342 | |
| 343 | from_scope = cnt; |
| 344 | } |
| 345 | |
| 346 | /* Print scope information. */ |
| 347 | if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_SCOPES)) |
| 348 | _dl_show_scope (imap, from_scope); |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | /* Call _dl_add_to_slotinfo with DO_ADD set to false, to allocate |
| 353 | space in GL (dl_tls_dtv_slotinfo_list). This can raise an |
| 354 | exception. The return value is true if any of the new objects use |
| 355 | TLS. */ |
| 356 | static bool |
| 357 | resize_tls_slotinfo (struct link_map *new) |
| 358 | { |
| 359 | bool any_tls = false; |
| 360 | for (unsigned int i = 0; i < new->l_searchlist.r_nlist; ++i) |
| 361 | { |
| 362 | struct link_map *imap = new->l_searchlist.r_list[i]; |
| 363 | |
| 364 | /* Only add TLS memory if this object is loaded now and |
| 365 | therefore is not yet initialized. */ |
| 366 | if (! imap->l_init_called && imap->l_tls_blocksize > 0) |
| 367 | { |
| 368 | _dl_add_to_slotinfo (imap, false); |
| 369 | any_tls = true; |
| 370 | } |
| 371 | } |
| 372 | return any_tls; |
| 373 | } |
| 374 | |
| 375 | /* Second stage of TLS update, after resize_tls_slotinfo. This |
| 376 | function does not raise any exception. It should only be called if |
| 377 | resize_tls_slotinfo returned true. */ |
| 378 | static void |
| 379 | update_tls_slotinfo (struct link_map *new) |
| 380 | { |
| 381 | unsigned int first_static_tls = new->l_searchlist.r_nlist; |
| 382 | for (unsigned int i = 0; i < new->l_searchlist.r_nlist; ++i) |
| 383 | { |
| 384 | struct link_map *imap = new->l_searchlist.r_list[i]; |
| 385 | |
| 386 | /* Only add TLS memory if this object is loaded now and |
| 387 | therefore is not yet initialized. */ |
| 388 | if (! imap->l_init_called && imap->l_tls_blocksize > 0) |
| 389 | { |
| 390 | _dl_add_to_slotinfo (imap, true); |
| 391 | |
| 392 | if (imap->l_need_tls_init |
| 393 | && first_static_tls == new->l_searchlist.r_nlist) |
| 394 | first_static_tls = i; |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | if (__builtin_expect (++GL(dl_tls_generation) == 0, 0)) |
| 399 | _dl_fatal_printf (N_("\ |
| 400 | TLS generation counter wrapped! Please report this." )); |
| 401 | |
| 402 | /* We need a second pass for static tls data, because |
| 403 | _dl_update_slotinfo must not be run while calls to |
| 404 | _dl_add_to_slotinfo are still pending. */ |
| 405 | for (unsigned int i = first_static_tls; i < new->l_searchlist.r_nlist; ++i) |
| 406 | { |
| 407 | struct link_map *imap = new->l_searchlist.r_list[i]; |
| 408 | |
| 409 | if (imap->l_need_tls_init |
| 410 | && ! imap->l_init_called |
| 411 | && imap->l_tls_blocksize > 0) |
| 412 | { |
| 413 | /* For static TLS we have to allocate the memory here and |
| 414 | now, but we can delay updating the DTV. */ |
| 415 | imap->l_need_tls_init = 0; |
| 416 | #ifdef SHARED |
| 417 | /* Update the slot information data for at least the |
| 418 | generation of the DSO we are allocating data for. */ |
| 419 | |
| 420 | /* FIXME: This can terminate the process on memory |
| 421 | allocation failure. It is not possible to raise |
| 422 | exceptions from this context; to fix this bug, |
| 423 | _dl_update_slotinfo would have to be split into two |
| 424 | operations, similar to resize_scopes and update_scopes |
| 425 | above. This is related to bug 16134. */ |
| 426 | _dl_update_slotinfo (imap->l_tls_modid); |
| 427 | #endif |
| 428 | |
| 429 | GL(dl_init_static_tls) (imap); |
| 430 | assert (imap->l_need_tls_init == 0); |
| 431 | } |
| 432 | } |
| 433 | } |
| 434 | |
| 435 | /* Mark the objects as NODELETE if required. This is delayed until |
| 436 | after dlopen failure is not possible, so that _dl_close can clean |
| 437 | up objects if necessary. */ |
| 438 | static void |
| 439 | activate_nodelete (struct link_map *new) |
| 440 | { |
| 441 | /* It is necessary to traverse the entire namespace. References to |
| 442 | objects in the global scope and unique symbol bindings can force |
| 443 | NODELETE status for objects outside the local scope. */ |
| 444 | for (struct link_map *l = GL (dl_ns)[new->l_ns]._ns_loaded; l != NULL; |
| 445 | l = l->l_next) |
| 446 | if (l->l_nodelete_pending) |
| 447 | { |
| 448 | if (__glibc_unlikely (GLRO (dl_debug_mask) & DL_DEBUG_FILES)) |
| 449 | _dl_debug_printf ("activating NODELETE for %s [%lu]\n" , |
| 450 | l->l_name, l->l_ns); |
| 451 | |
| 452 | /* The flag can already be true at this point, e.g. a signal |
| 453 | handler may have triggered lazy binding and set NODELETE |
| 454 | status immediately. */ |
| 455 | l->l_nodelete_active = true; |
| 456 | |
| 457 | /* This is just a debugging aid, to indicate that |
| 458 | activate_nodelete has run for this map. */ |
| 459 | l->l_nodelete_pending = false; |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | /* struct dl_init_args and call_dl_init are used to call _dl_init with |
| 464 | exception handling disabled. */ |
| 465 | struct dl_init_args |
| 466 | { |
| 467 | struct link_map *new; |
| 468 | int argc; |
| 469 | char **argv; |
| 470 | char **env; |
| 471 | }; |
| 472 | |
| 473 | static void |
| 474 | call_dl_init (void *closure) |
| 475 | { |
| 476 | struct dl_init_args *args = closure; |
| 477 | _dl_init (args->new, args->argc, args->argv, args->env); |
| 478 | } |
| 479 | |
| 480 | static void |
| 481 | dl_open_worker (void *a) |
| 482 | { |
| 483 | struct dl_open_args *args = a; |
| 484 | const char *file = args->file; |
| 485 | int mode = args->mode; |
| 486 | struct link_map *call_map = NULL; |
| 487 | |
| 488 | /* Determine the caller's map if necessary. This is needed in case |
| 489 | we have a DST, when we don't know the namespace ID we have to put |
| 490 | the new object in, or when the file name has no path in which |
| 491 | case we need to look along the RUNPATH/RPATH of the caller. */ |
| 492 | const char *dst = strchr (file, '$'); |
| 493 | if (dst != NULL || args->nsid == __LM_ID_CALLER |
| 494 | || strchr (file, '/') == NULL) |
| 495 | { |
| 496 | const void *caller_dlopen = args->caller_dlopen; |
| 497 | |
| 498 | /* We have to find out from which object the caller is calling. |
| 499 | By default we assume this is the main application. */ |
| 500 | call_map = GL(dl_ns)[LM_ID_BASE]._ns_loaded; |
| 501 | |
| 502 | struct link_map *l = _dl_find_dso_for_object ((ElfW(Addr)) caller_dlopen); |
| 503 | |
| 504 | if (l) |
| 505 | call_map = l; |
| 506 | |
| 507 | if (args->nsid == __LM_ID_CALLER) |
| 508 | args->nsid = call_map->l_ns; |
| 509 | } |
| 510 | |
| 511 | /* The namespace ID is now known. Keep track of whether libc.so was |
| 512 | already loaded, to determine whether it is necessary to call the |
| 513 | early initialization routine (or clear libc_map on error). */ |
| 514 | args->libc_already_loaded = GL(dl_ns)[args->nsid].libc_map != NULL; |
| 515 | |
| 516 | /* Retain the old value, so that it can be restored. */ |
| 517 | args->original_global_scope_pending_adds |
| 518 | = GL (dl_ns)[args->nsid]._ns_global_scope_pending_adds; |
| 519 | |
| 520 | /* One might be tempted to assert that we are RT_CONSISTENT at this point, but that |
| 521 | may not be true if this is a recursive call to dlopen. */ |
| 522 | _dl_debug_initialize (0, args->nsid); |
| 523 | |
| 524 | /* Load the named object. */ |
| 525 | struct link_map *new; |
| 526 | args->map = new = _dl_map_object (call_map, file, lt_loaded, 0, |
| 527 | mode | __RTLD_CALLMAP, args->nsid); |
| 528 | |
| 529 | /* If the pointer returned is NULL this means the RTLD_NOLOAD flag is |
| 530 | set and the object is not already loaded. */ |
| 531 | if (new == NULL) |
| 532 | { |
| 533 | assert (mode & RTLD_NOLOAD); |
| 534 | return; |
| 535 | } |
| 536 | |
| 537 | if (__glibc_unlikely (mode & __RTLD_SPROF)) |
| 538 | /* This happens only if we load a DSO for 'sprof'. */ |
| 539 | return; |
| 540 | |
| 541 | /* This object is directly loaded. */ |
| 542 | ++new->l_direct_opencount; |
| 543 | |
| 544 | /* It was already open. */ |
| 545 | if (__glibc_unlikely (new->l_searchlist.r_list != NULL)) |
| 546 | { |
| 547 | /* Let the user know about the opencount. */ |
| 548 | if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_FILES)) |
| 549 | _dl_debug_printf ("opening file=%s [%lu]; direct_opencount=%u\n\n" , |
| 550 | new->l_name, new->l_ns, new->l_direct_opencount); |
| 551 | |
| 552 | /* If the user requested the object to be in the global |
| 553 | namespace but it is not so far, prepare to add it now. This |
| 554 | can raise an exception to do a malloc failure. */ |
| 555 | if ((mode & RTLD_GLOBAL) && new->l_global == 0) |
| 556 | add_to_global_resize (new); |
| 557 | |
| 558 | /* Mark the object as not deletable if the RTLD_NODELETE flags |
| 559 | was passed. */ |
| 560 | if (__glibc_unlikely (mode & RTLD_NODELETE)) |
| 561 | { |
| 562 | if (__glibc_unlikely (GLRO (dl_debug_mask) & DL_DEBUG_FILES) |
| 563 | && !new->l_nodelete_active) |
| 564 | _dl_debug_printf ("marking %s [%lu] as NODELETE\n" , |
| 565 | new->l_name, new->l_ns); |
| 566 | new->l_nodelete_active = true; |
| 567 | } |
| 568 | |
| 569 | /* Finalize the addition to the global scope. */ |
| 570 | if ((mode & RTLD_GLOBAL) && new->l_global == 0) |
| 571 | add_to_global_update (new); |
| 572 | |
| 573 | assert (_dl_debug_initialize (0, args->nsid)->r_state == RT_CONSISTENT); |
| 574 | |
| 575 | return; |
| 576 | } |
| 577 | |
| 578 | /* Schedule NODELETE marking for the directly loaded object if |
| 579 | requested. */ |
| 580 | if (__glibc_unlikely (mode & RTLD_NODELETE)) |
| 581 | new->l_nodelete_pending = true; |
| 582 | |
| 583 | /* Load that object's dependencies. */ |
| 584 | _dl_map_object_deps (new, NULL, 0, 0, |
| 585 | mode & (__RTLD_DLOPEN | RTLD_DEEPBIND | __RTLD_AUDIT)); |
| 586 | |
| 587 | /* So far, so good. Now check the versions. */ |
| 588 | for (unsigned int i = 0; i < new->l_searchlist.r_nlist; ++i) |
| 589 | if (new->l_searchlist.r_list[i]->l_real->l_versions == NULL) |
| 590 | (void) _dl_check_map_versions (new->l_searchlist.r_list[i]->l_real, |
| 591 | 0, 0); |
| 592 | |
| 593 | #ifdef SHARED |
| 594 | /* Auditing checkpoint: we have added all objects. */ |
| 595 | if (__glibc_unlikely (GLRO(dl_naudit) > 0)) |
| 596 | { |
| 597 | struct link_map *head = GL(dl_ns)[new->l_ns]._ns_loaded; |
| 598 | /* Do not call the functions for any auditing object. */ |
| 599 | if (head->l_auditing == 0) |
| 600 | { |
| 601 | struct audit_ifaces *afct = GLRO(dl_audit); |
| 602 | for (unsigned int cnt = 0; cnt < GLRO(dl_naudit); ++cnt) |
| 603 | { |
| 604 | if (afct->activity != NULL) |
| 605 | { |
| 606 | struct auditstate *state = link_map_audit_state (head, cnt); |
| 607 | afct->activity (&state->cookie, LA_ACT_CONSISTENT); |
| 608 | } |
| 609 | |
| 610 | afct = afct->next; |
| 611 | } |
| 612 | } |
| 613 | } |
| 614 | #endif |
| 615 | |
| 616 | /* Notify the debugger all new objects are now ready to go. */ |
| 617 | struct r_debug *r = _dl_debug_initialize (0, args->nsid); |
| 618 | r->r_state = RT_CONSISTENT; |
| 619 | _dl_debug_state (); |
| 620 | LIBC_PROBE (map_complete, 3, args->nsid, r, new); |
| 621 | |
| 622 | _dl_open_check (new); |
| 623 | |
| 624 | /* Print scope information. */ |
| 625 | if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_SCOPES)) |
| 626 | _dl_show_scope (new, 0); |
| 627 | |
| 628 | /* Only do lazy relocation if `LD_BIND_NOW' is not set. */ |
| 629 | int reloc_mode = mode & __RTLD_AUDIT; |
| 630 | if (GLRO(dl_lazy)) |
| 631 | reloc_mode |= mode & RTLD_LAZY; |
| 632 | |
| 633 | /* Objects must be sorted by dependency for the relocation process. |
| 634 | This allows IFUNC relocations to work and it also means copy |
| 635 | relocation of dependencies are if necessary overwritten. |
| 636 | __dl_map_object_deps has already sorted l_initfini for us. */ |
| 637 | unsigned int first = UINT_MAX; |
| 638 | unsigned int last = 0; |
| 639 | unsigned int j = 0; |
| 640 | struct link_map *l = new->l_initfini[0]; |
| 641 | do |
| 642 | { |
| 643 | if (! l->l_real->l_relocated) |
| 644 | { |
| 645 | if (first == UINT_MAX) |
| 646 | first = j; |
| 647 | last = j + 1; |
| 648 | } |
| 649 | l = new->l_initfini[++j]; |
| 650 | } |
| 651 | while (l != NULL); |
| 652 | |
| 653 | int relocation_in_progress = 0; |
| 654 | |
| 655 | /* Perform relocation. This can trigger lazy binding in IFUNC |
| 656 | resolvers. For NODELETE mappings, these dependencies are not |
| 657 | recorded because the flag has not been applied to the newly |
| 658 | loaded objects. This means that upon dlopen failure, these |
| 659 | NODELETE objects can be unloaded despite existing references to |
| 660 | them. However, such relocation dependencies in IFUNC resolvers |
| 661 | are undefined anyway, so this is not a problem. */ |
| 662 | |
| 663 | for (unsigned int i = last; i-- > first; ) |
| 664 | { |
| 665 | l = new->l_initfini[i]; |
| 666 | |
| 667 | if (l->l_real->l_relocated) |
| 668 | continue; |
| 669 | |
| 670 | if (! relocation_in_progress) |
| 671 | { |
| 672 | /* Notify the debugger that relocations are about to happen. */ |
| 673 | LIBC_PROBE (reloc_start, 2, args->nsid, r); |
| 674 | relocation_in_progress = 1; |
| 675 | } |
| 676 | |
| 677 | #ifdef SHARED |
| 678 | if (__glibc_unlikely (GLRO(dl_profile) != NULL)) |
| 679 | { |
| 680 | /* If this here is the shared object which we want to profile |
| 681 | make sure the profile is started. We can find out whether |
| 682 | this is necessary or not by observing the `_dl_profile_map' |
| 683 | variable. If it was NULL but is not NULL afterwards we must |
| 684 | start the profiling. */ |
| 685 | struct link_map *old_profile_map = GL(dl_profile_map); |
| 686 | |
| 687 | _dl_relocate_object (l, l->l_scope, reloc_mode | RTLD_LAZY, 1); |
| 688 | |
| 689 | if (old_profile_map == NULL && GL(dl_profile_map) != NULL) |
| 690 | { |
| 691 | /* We must prepare the profiling. */ |
| 692 | _dl_start_profile (); |
| 693 | |
| 694 | /* Prevent unloading the object. */ |
| 695 | GL(dl_profile_map)->l_nodelete_active = true; |
| 696 | } |
| 697 | } |
| 698 | else |
| 699 | #endif |
| 700 | _dl_relocate_object (l, l->l_scope, reloc_mode, 0); |
| 701 | } |
| 702 | |
| 703 | /* This only performs the memory allocations. The actual update of |
| 704 | the scopes happens below, after failure is impossible. */ |
| 705 | resize_scopes (new); |
| 706 | |
| 707 | /* Increase the size of the GL (dl_tls_dtv_slotinfo_list) data |
| 708 | structure. */ |
| 709 | bool any_tls = resize_tls_slotinfo (new); |
| 710 | |
| 711 | /* Perform the necessary allocations for adding new global objects |
| 712 | to the global scope below. */ |
| 713 | if (mode & RTLD_GLOBAL) |
| 714 | add_to_global_resize (new); |
| 715 | |
| 716 | /* Demarcation point: After this, no recoverable errors are allowed. |
| 717 | All memory allocations for new objects must have happened |
| 718 | before. */ |
| 719 | |
| 720 | /* Finalize the NODELETE status first. This comes before |
| 721 | update_scopes, so that lazy binding will not see pending NODELETE |
| 722 | state for newly loaded objects. There is a compiler barrier in |
| 723 | update_scopes which ensures that the changes from |
| 724 | activate_nodelete are visible before new objects show up in the |
| 725 | local scope. */ |
| 726 | activate_nodelete (new); |
| 727 | |
| 728 | /* Second stage after resize_scopes: Actually perform the scope |
| 729 | update. After this, dlsym and lazy binding can bind to new |
| 730 | objects. */ |
| 731 | update_scopes (new); |
| 732 | |
| 733 | /* FIXME: It is unclear whether the order here is correct. |
| 734 | Shouldn't new objects be made available for binding (and thus |
| 735 | execution) only after there TLS data has been set up fully? |
| 736 | Fixing bug 16134 will likely make this distinction less |
| 737 | important. */ |
| 738 | |
| 739 | /* Second stage after resize_tls_slotinfo: Update the slotinfo data |
| 740 | structures. */ |
| 741 | if (any_tls) |
| 742 | /* FIXME: This calls _dl_update_slotinfo, which aborts the process |
| 743 | on memory allocation failure. See bug 16134. */ |
| 744 | update_tls_slotinfo (new); |
| 745 | |
| 746 | /* Notify the debugger all new objects have been relocated. */ |
| 747 | if (relocation_in_progress) |
| 748 | LIBC_PROBE (reloc_complete, 3, args->nsid, r, new); |
| 749 | |
| 750 | /* If libc.so was not there before, attempt to call its early |
| 751 | initialization routine. Indicate to the initialization routine |
| 752 | whether the libc being initialized is the one in the base |
| 753 | namespace. */ |
| 754 | if (!args->libc_already_loaded) |
| 755 | { |
| 756 | struct link_map *libc_map = GL(dl_ns)[args->nsid].libc_map; |
| 757 | #ifdef SHARED |
| 758 | bool initial = libc_map->l_ns == LM_ID_BASE; |
| 759 | #else |
| 760 | /* In the static case, there is only one namespace, but it |
| 761 | contains a secondary libc (the primary libc is statically |
| 762 | linked). */ |
| 763 | bool initial = false; |
| 764 | #endif |
| 765 | _dl_call_libc_early_init (libc_map, initial); |
| 766 | } |
| 767 | |
| 768 | #ifndef SHARED |
| 769 | DL_STATIC_INIT (new); |
| 770 | #endif |
| 771 | |
| 772 | /* Run the initializer functions of new objects. Temporarily |
| 773 | disable the exception handler, so that lazy binding failures are |
| 774 | fatal. */ |
| 775 | { |
| 776 | struct dl_init_args init_args = |
| 777 | { |
| 778 | .new = new, |
| 779 | .argc = args->argc, |
| 780 | .argv = args->argv, |
| 781 | .env = args->env |
| 782 | }; |
| 783 | _dl_catch_exception (NULL, call_dl_init, &init_args); |
| 784 | } |
| 785 | |
| 786 | /* Now we can make the new map available in the global scope. */ |
| 787 | if (mode & RTLD_GLOBAL) |
| 788 | add_to_global_update (new); |
| 789 | |
| 790 | #ifndef SHARED |
| 791 | /* We must be the static _dl_open in libc.a. A static program that |
| 792 | has loaded a dynamic object now has competition. */ |
| 793 | __libc_multiple_libcs = 1; |
| 794 | #endif |
| 795 | |
| 796 | /* Let the user know about the opencount. */ |
| 797 | if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_FILES)) |
| 798 | _dl_debug_printf ("opening file=%s [%lu]; direct_opencount=%u\n\n" , |
| 799 | new->l_name, new->l_ns, new->l_direct_opencount); |
| 800 | } |
| 801 | |
| 802 | void * |
| 803 | _dl_open (const char *file, int mode, const void *caller_dlopen, Lmid_t nsid, |
| 804 | int argc, char *argv[], char *env[]) |
| 805 | { |
| 806 | if ((mode & RTLD_BINDING_MASK) == 0) |
| 807 | /* One of the flags must be set. */ |
| 808 | _dl_signal_error (EINVAL, file, NULL, N_("invalid mode for dlopen()" )); |
| 809 | |
| 810 | /* Make sure we are alone. */ |
| 811 | __rtld_lock_lock_recursive (GL(dl_load_lock)); |
| 812 | |
| 813 | if (__glibc_unlikely (nsid == LM_ID_NEWLM)) |
| 814 | { |
| 815 | /* Find a new namespace. */ |
| 816 | for (nsid = 1; DL_NNS > 1 && nsid < GL(dl_nns); ++nsid) |
| 817 | if (GL(dl_ns)[nsid]._ns_loaded == NULL) |
| 818 | break; |
| 819 | |
| 820 | if (__glibc_unlikely (nsid == DL_NNS)) |
| 821 | { |
| 822 | /* No more namespace available. */ |
| 823 | __rtld_lock_unlock_recursive (GL(dl_load_lock)); |
| 824 | |
| 825 | _dl_signal_error (EINVAL, file, NULL, N_("\ |
| 826 | no more namespaces available for dlmopen()" )); |
| 827 | } |
| 828 | else if (nsid == GL(dl_nns)) |
| 829 | { |
| 830 | __rtld_lock_initialize (GL(dl_ns)[nsid]._ns_unique_sym_table.lock); |
| 831 | ++GL(dl_nns); |
| 832 | } |
| 833 | |
| 834 | _dl_debug_initialize (0, nsid)->r_state = RT_CONSISTENT; |
| 835 | } |
| 836 | /* Never allow loading a DSO in a namespace which is empty. Such |
| 837 | direct placements is only causing problems. Also don't allow |
| 838 | loading into a namespace used for auditing. */ |
| 839 | else if (__glibc_unlikely (nsid != LM_ID_BASE && nsid != __LM_ID_CALLER) |
| 840 | && (__glibc_unlikely (nsid < 0 || nsid >= GL(dl_nns)) |
| 841 | /* This prevents the [NSID] index expressions from being |
| 842 | evaluated, so the compiler won't think that we are |
| 843 | accessing an invalid index here in the !SHARED case where |
| 844 | DL_NNS is 1 and so any NSID != 0 is invalid. */ |
| 845 | || DL_NNS == 1 |
| 846 | || GL(dl_ns)[nsid]._ns_nloaded == 0 |
| 847 | || GL(dl_ns)[nsid]._ns_loaded->l_auditing)) |
| 848 | _dl_signal_error (EINVAL, file, NULL, |
| 849 | N_("invalid target namespace in dlmopen()" )); |
| 850 | |
| 851 | struct dl_open_args args; |
| 852 | args.file = file; |
| 853 | args.mode = mode; |
| 854 | args.caller_dlopen = caller_dlopen; |
| 855 | args.map = NULL; |
| 856 | args.nsid = nsid; |
| 857 | /* args.libc_already_loaded is always assigned by dl_open_worker |
| 858 | (before any explicit/non-local returns). */ |
| 859 | args.argc = argc; |
| 860 | args.argv = argv; |
| 861 | args.env = env; |
| 862 | |
| 863 | struct dl_exception exception; |
| 864 | int errcode = _dl_catch_exception (&exception, dl_open_worker, &args); |
| 865 | |
| 866 | #if defined USE_LDCONFIG && !defined MAP_COPY |
| 867 | /* We must unmap the cache file. */ |
| 868 | _dl_unload_cache (); |
| 869 | #endif |
| 870 | |
| 871 | /* Do this for both the error and success cases. The old value has |
| 872 | only been determined if the namespace ID was assigned (i.e., it |
| 873 | is not __LM_ID_CALLER). In the success case, we actually may |
| 874 | have consumed more pending adds than planned (because the local |
| 875 | scopes overlap in case of a recursive dlopen, the inner dlopen |
| 876 | doing some of the globalization work of the outer dlopen), so the |
| 877 | old pending adds value is larger than absolutely necessary. |
| 878 | Since it is just a conservative upper bound, this is harmless. |
| 879 | The top-level dlopen call will restore the field to zero. */ |
| 880 | if (args.nsid >= 0) |
| 881 | GL (dl_ns)[args.nsid]._ns_global_scope_pending_adds |
| 882 | = args.original_global_scope_pending_adds; |
| 883 | |
| 884 | /* See if an error occurred during loading. */ |
| 885 | if (__glibc_unlikely (exception.errstring != NULL)) |
| 886 | { |
| 887 | /* Avoid keeping around a dangling reference to the libc.so link |
| 888 | map in case it has been cached in libc_map. */ |
| 889 | if (!args.libc_already_loaded) |
| 890 | GL(dl_ns)[nsid].libc_map = NULL; |
| 891 | |
| 892 | /* Remove the object from memory. It may be in an inconsistent |
| 893 | state if relocation failed, for example. */ |
| 894 | if (args.map) |
| 895 | { |
| 896 | /* Maybe some of the modules which were loaded use TLS. |
| 897 | Since it will be removed in the following _dl_close call |
| 898 | we have to mark the dtv array as having gaps to fill the |
| 899 | holes. This is a pessimistic assumption which won't hurt |
| 900 | if not true. There is no need to do this when we are |
| 901 | loading the auditing DSOs since TLS has not yet been set |
| 902 | up. */ |
| 903 | if ((mode & __RTLD_AUDIT) == 0) |
| 904 | GL(dl_tls_dtv_gaps) = true; |
| 905 | |
| 906 | _dl_close_worker (args.map, true); |
| 907 | |
| 908 | /* All l_nodelete_pending objects should have been deleted |
| 909 | at this point, which is why it is not necessary to reset |
| 910 | the flag here. */ |
| 911 | } |
| 912 | |
| 913 | assert (_dl_debug_initialize (0, args.nsid)->r_state == RT_CONSISTENT); |
| 914 | |
| 915 | /* Release the lock. */ |
| 916 | __rtld_lock_unlock_recursive (GL(dl_load_lock)); |
| 917 | |
| 918 | /* Reraise the error. */ |
| 919 | _dl_signal_exception (errcode, &exception, NULL); |
| 920 | } |
| 921 | |
| 922 | assert (_dl_debug_initialize (0, args.nsid)->r_state == RT_CONSISTENT); |
| 923 | |
| 924 | /* Release the lock. */ |
| 925 | __rtld_lock_unlock_recursive (GL(dl_load_lock)); |
| 926 | |
| 927 | return args.map; |
| 928 | } |
| 929 | |
| 930 | |
| 931 | void |
| 932 | _dl_show_scope (struct link_map *l, int from) |
| 933 | { |
| 934 | _dl_debug_printf ("object=%s [%lu]\n" , |
| 935 | DSO_FILENAME (l->l_name), l->l_ns); |
| 936 | if (l->l_scope != NULL) |
| 937 | for (int scope_cnt = from; l->l_scope[scope_cnt] != NULL; ++scope_cnt) |
| 938 | { |
| 939 | _dl_debug_printf (" scope %u:" , scope_cnt); |
| 940 | |
| 941 | for (unsigned int cnt = 0; cnt < l->l_scope[scope_cnt]->r_nlist; ++cnt) |
| 942 | if (*l->l_scope[scope_cnt]->r_list[cnt]->l_name) |
| 943 | _dl_debug_printf_c (" %s" , |
| 944 | l->l_scope[scope_cnt]->r_list[cnt]->l_name); |
| 945 | else |
| 946 | _dl_debug_printf_c (" %s" , RTLD_PROGNAME); |
| 947 | |
| 948 | _dl_debug_printf_c ("\n" ); |
| 949 | } |
| 950 | else |
| 951 | _dl_debug_printf (" no scope\n" ); |
| 952 | _dl_debug_printf ("\n" ); |
| 953 | } |
| 954 | |