1 | /* Quad-precision floating point sine on <-pi/4,pi/4>. |
2 | Copyright (C) 1999-2020 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Based on quad-precision sine by Jakub Jelinek <jj@ultra.linux.cz> |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <https://www.gnu.org/licenses/>. */ |
19 | |
20 | /* The polynomials have not been optimized for extended-precision and |
21 | may contain more terms than needed. */ |
22 | |
23 | #include <float.h> |
24 | #include <math.h> |
25 | #include <math_private.h> |
26 | #include <math-underflow.h> |
27 | |
28 | /* The polynomials have not been optimized for extended-precision and |
29 | may contain more terms than needed. */ |
30 | |
31 | static const long double c[] = { |
32 | #define ONE c[0] |
33 | 1.00000000000000000000000000000000000E+00L, |
34 | |
35 | /* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 ) |
36 | x in <0,1/256> */ |
37 | #define SCOS1 c[1] |
38 | #define SCOS2 c[2] |
39 | #define SCOS3 c[3] |
40 | #define SCOS4 c[4] |
41 | #define SCOS5 c[5] |
42 | -5.00000000000000000000000000000000000E-01L, |
43 | 4.16666666666666666666666666556146073E-02L, |
44 | -1.38888888888888888888309442601939728E-03L, |
45 | 2.48015873015862382987049502531095061E-05L, |
46 | -2.75573112601362126593516899592158083E-07L, |
47 | |
48 | /* sin x ~ ONE * x + x^3 ( SIN1 + SIN2 * x^2 + ... + SIN7 * x^12 + SIN8 * x^14 ) |
49 | x in <0,0.1484375> */ |
50 | #define SIN1 c[6] |
51 | #define SIN2 c[7] |
52 | #define SIN3 c[8] |
53 | #define SIN4 c[9] |
54 | #define SIN5 c[10] |
55 | #define SIN6 c[11] |
56 | #define SIN7 c[12] |
57 | #define SIN8 c[13] |
58 | -1.66666666666666666666666666666666538e-01L, |
59 | 8.33333333333333333333333333307532934e-03L, |
60 | -1.98412698412698412698412534478712057e-04L, |
61 | 2.75573192239858906520896496653095890e-06L, |
62 | -2.50521083854417116999224301266655662e-08L, |
63 | 1.60590438367608957516841576404938118e-10L, |
64 | -7.64716343504264506714019494041582610e-13L, |
65 | 2.81068754939739570236322404393398135e-15L, |
66 | |
67 | /* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 ) |
68 | x in <0,1/256> */ |
69 | #define SSIN1 c[14] |
70 | #define SSIN2 c[15] |
71 | #define SSIN3 c[16] |
72 | #define SSIN4 c[17] |
73 | #define SSIN5 c[18] |
74 | -1.66666666666666666666666666666666659E-01L, |
75 | 8.33333333333333333333333333146298442E-03L, |
76 | -1.98412698412698412697726277416810661E-04L, |
77 | 2.75573192239848624174178393552189149E-06L, |
78 | -2.50521016467996193495359189395805639E-08L, |
79 | }; |
80 | |
81 | #define SINCOSL_COS_HI 0 |
82 | #define SINCOSL_COS_LO 1 |
83 | #define SINCOSL_SIN_HI 2 |
84 | #define SINCOSL_SIN_LO 3 |
85 | extern const long double __sincosl_table[]; |
86 | |
87 | long double |
88 | __kernel_sinl(long double x, long double y, int iy) |
89 | { |
90 | long double absx, h, l, z, sin_l, cos_l_m1; |
91 | int index; |
92 | |
93 | absx = fabsl (x); |
94 | if (absx < 0.1484375L) |
95 | { |
96 | /* Argument is small enough to approximate it by a Chebyshev |
97 | polynomial of degree 17. */ |
98 | if (absx < 0x1p-33L) |
99 | { |
100 | math_check_force_underflow (x); |
101 | if (!((int)x)) return x; /* generate inexact */ |
102 | } |
103 | z = x * x; |
104 | return x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+ |
105 | z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8))))))))); |
106 | } |
107 | else |
108 | { |
109 | /* So that we don't have to use too large polynomial, we find |
110 | l and h such that x = l + h, where fabsl(l) <= 1.0/256 with 83 |
111 | possible values for h. We look up cosl(h) and sinl(h) in |
112 | pre-computed tables, compute cosl(l) and sinl(l) using a |
113 | Chebyshev polynomial of degree 10(11) and compute |
114 | sinl(h+l) = sinl(h)cosl(l) + cosl(h)sinl(l). */ |
115 | index = (int) (128 * (absx - (0.1484375L - 1.0L / 256.0L))); |
116 | h = 0.1484375L + index / 128.0; |
117 | index *= 4; |
118 | if (iy) |
119 | l = (x < 0 ? -y : y) - (h - absx); |
120 | else |
121 | l = absx - h; |
122 | z = l * l; |
123 | sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5))))); |
124 | cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5)))); |
125 | z = __sincosl_table [index + SINCOSL_SIN_HI] |
126 | + (__sincosl_table [index + SINCOSL_SIN_LO] |
127 | + (__sincosl_table [index + SINCOSL_SIN_HI] * cos_l_m1) |
128 | + (__sincosl_table [index + SINCOSL_COS_HI] * sin_l)); |
129 | return (x < 0) ? -z : z; |
130 | } |
131 | } |
132 | |