1 | /* Extended-precision floating point cosine on <-pi/4,pi/4>. |
2 | Copyright (C) 1999-2020 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Based on quad-precision cosine by Jakub Jelinek <jj@ultra.linux.cz> |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <https://www.gnu.org/licenses/>. */ |
19 | |
20 | #include <math.h> |
21 | #include <math_private.h> |
22 | |
23 | /* The polynomials have not been optimized for extended-precision and |
24 | may contain more terms than needed. */ |
25 | |
26 | static const long double c[] = { |
27 | #define ONE c[0] |
28 | 1.00000000000000000000000000000000000E+00L, |
29 | |
30 | /* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 ) |
31 | x in <0,1/256> */ |
32 | #define SCOS1 c[1] |
33 | #define SCOS2 c[2] |
34 | #define SCOS3 c[3] |
35 | #define SCOS4 c[4] |
36 | #define SCOS5 c[5] |
37 | -5.00000000000000000000000000000000000E-01L, |
38 | 4.16666666666666666666666666556146073E-02L, |
39 | -1.38888888888888888888309442601939728E-03L, |
40 | 2.48015873015862382987049502531095061E-05L, |
41 | -2.75573112601362126593516899592158083E-07L, |
42 | |
43 | /* cos x ~ ONE + x^2 ( COS1 + COS2 * x^2 + ... + COS7 * x^12 + COS8 * x^14 ) |
44 | x in <0,0.1484375> */ |
45 | #define COS1 c[6] |
46 | #define COS2 c[7] |
47 | #define COS3 c[8] |
48 | #define COS4 c[9] |
49 | #define COS5 c[10] |
50 | #define COS6 c[11] |
51 | #define COS7 c[12] |
52 | #define COS8 c[13] |
53 | -4.99999999999999999999999999999999759E-01L, |
54 | 4.16666666666666666666666666651287795E-02L, |
55 | -1.38888888888888888888888742314300284E-03L, |
56 | 2.48015873015873015867694002851118210E-05L, |
57 | -2.75573192239858811636614709689300351E-07L, |
58 | 2.08767569877762248667431926878073669E-09L, |
59 | -1.14707451049343817400420280514614892E-11L, |
60 | 4.77810092804389587579843296923533297E-14L, |
61 | |
62 | /* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 ) |
63 | x in <0,1/256> */ |
64 | #define SSIN1 c[14] |
65 | #define SSIN2 c[15] |
66 | #define SSIN3 c[16] |
67 | #define SSIN4 c[17] |
68 | #define SSIN5 c[18] |
69 | -1.66666666666666666666666666666666659E-01L, |
70 | 8.33333333333333333333333333146298442E-03L, |
71 | -1.98412698412698412697726277416810661E-04L, |
72 | 2.75573192239848624174178393552189149E-06L, |
73 | -2.50521016467996193495359189395805639E-08L, |
74 | }; |
75 | |
76 | #define SINCOSL_COS_HI 0 |
77 | #define SINCOSL_COS_LO 1 |
78 | #define SINCOSL_SIN_HI 2 |
79 | #define SINCOSL_SIN_LO 3 |
80 | extern const long double __sincosl_table[]; |
81 | |
82 | long double |
83 | __kernel_cosl(long double x, long double y) |
84 | { |
85 | long double h, l, z, sin_l, cos_l_m1; |
86 | int index; |
87 | |
88 | if (signbit (x)) |
89 | { |
90 | x = -x; |
91 | y = -y; |
92 | } |
93 | if (x < 0.1484375L) |
94 | { |
95 | /* Argument is small enough to approximate it by a Chebyshev |
96 | polynomial of degree 16. */ |
97 | if (x < 0x1p-33L) |
98 | if (!((int)x)) return ONE; /* generate inexact */ |
99 | z = x * x; |
100 | return ONE + (z*(COS1+z*(COS2+z*(COS3+z*(COS4+ |
101 | z*(COS5+z*(COS6+z*(COS7+z*COS8)))))))); |
102 | } |
103 | else |
104 | { |
105 | /* So that we don't have to use too large polynomial, we find |
106 | l and h such that x = l + h, where fabsl(l) <= 1.0/256 with 83 |
107 | possible values for h. We look up cosl(h) and sinl(h) in |
108 | pre-computed tables, compute cosl(l) and sinl(l) using a |
109 | Chebyshev polynomial of degree 10(11) and compute |
110 | cosl(h+l) = cosl(h)cosl(l) - sinl(h)sinl(l). */ |
111 | index = (int) (128 * (x - (0.1484375L - 1.0L / 256.0L))); |
112 | h = 0.1484375L + index / 128.0; |
113 | index *= 4; |
114 | l = y - (h - x); |
115 | z = l * l; |
116 | sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5))))); |
117 | cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5)))); |
118 | return __sincosl_table [index + SINCOSL_COS_HI] |
119 | + (__sincosl_table [index + SINCOSL_COS_LO] |
120 | - (__sincosl_table [index + SINCOSL_SIN_HI] * sin_l |
121 | - __sincosl_table [index + SINCOSL_COS_HI] * cos_l_m1)); |
122 | } |
123 | } |
124 | |