| 1 | /* e_asinhl.c -- long double version of e_asinh.c. |
| 2 | * Conversion to long double by Ulrich Drepper, |
| 3 | * Cygnus Support, drepper@cygnus.com. |
| 4 | */ |
| 5 | |
| 6 | /* |
| 7 | * ==================================================== |
| 8 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 9 | * |
| 10 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 11 | * Permission to use, copy, modify, and distribute this |
| 12 | * software is freely granted, provided that this notice |
| 13 | * is preserved. |
| 14 | * ==================================================== |
| 15 | */ |
| 16 | |
| 17 | #if defined(LIBM_SCCS) && !defined(lint) |
| 18 | static char rcsid[] = "$NetBSD: $" ; |
| 19 | #endif |
| 20 | |
| 21 | /* __ieee754_sinhl(x) |
| 22 | * Method : |
| 23 | * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 |
| 24 | * 1. Replace x by |x| (sinhl(-x) = -sinhl(x)). |
| 25 | * 2. |
| 26 | * E + E/(E+1) |
| 27 | * 0 <= x <= 25 : sinhl(x) := --------------, E=expm1l(x) |
| 28 | * 2 |
| 29 | * |
| 30 | * 25 <= x <= lnovft : sinhl(x) := expl(x)/2 |
| 31 | * lnovft <= x <= ln2ovft: sinhl(x) := expl(x/2)/2 * expl(x/2) |
| 32 | * ln2ovft < x : sinhl(x) := x*shuge (overflow) |
| 33 | * |
| 34 | * Special cases: |
| 35 | * sinhl(x) is |x| if x is +INF, -INF, or NaN. |
| 36 | * only sinhl(0)=0 is exact for finite x. |
| 37 | */ |
| 38 | |
| 39 | #include <float.h> |
| 40 | #include <math.h> |
| 41 | #include <math_private.h> |
| 42 | #include <math-underflow.h> |
| 43 | #include <libm-alias-finite.h> |
| 44 | |
| 45 | static const long double one = 1.0, shuge = 1.0e4931L; |
| 46 | |
| 47 | long double |
| 48 | __ieee754_sinhl(long double x) |
| 49 | { |
| 50 | long double t,w,h; |
| 51 | uint32_t jx,ix,i0,i1; |
| 52 | |
| 53 | /* Words of |x|. */ |
| 54 | GET_LDOUBLE_WORDS(jx,i0,i1,x); |
| 55 | ix = jx&0x7fff; |
| 56 | |
| 57 | /* x is INF or NaN */ |
| 58 | if(__builtin_expect(ix==0x7fff, 0)) return x+x; |
| 59 | |
| 60 | h = 0.5; |
| 61 | if (jx & 0x8000) h = -h; |
| 62 | /* |x| in [0,25], return sign(x)*0.5*(E+E/(E+1))) */ |
| 63 | if (ix < 0x4003 || (ix == 0x4003 && i0 <= 0xc8000000)) { /* |x|<25 */ |
| 64 | if (ix<0x3fdf) { /* |x|<2**-32 */ |
| 65 | math_check_force_underflow (x); |
| 66 | if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */ |
| 67 | } |
| 68 | t = __expm1l(fabsl(x)); |
| 69 | if(ix<0x3fff) return h*(2.0*t-t*t/(t+one)); |
| 70 | return h*(t+t/(t+one)); |
| 71 | } |
| 72 | |
| 73 | /* |x| in [25, log(maxdouble)] return 0.5*exp(|x|) */ |
| 74 | if (ix < 0x400c || (ix == 0x400c && i0 < 0xb17217f7)) |
| 75 | return h*__ieee754_expl(fabsl(x)); |
| 76 | |
| 77 | /* |x| in [log(maxdouble), overflowthreshold] */ |
| 78 | if (ix<0x400c || (ix == 0x400c && (i0 < 0xb174ddc0 |
| 79 | || (i0 == 0xb174ddc0 |
| 80 | && i1 <= 0x31aec0ea)))) { |
| 81 | w = __ieee754_expl(0.5*fabsl(x)); |
| 82 | t = h*w; |
| 83 | return t*w; |
| 84 | } |
| 85 | |
| 86 | /* |x| > overflowthreshold, sinhl(x) overflow */ |
| 87 | return x*shuge; |
| 88 | } |
| 89 | libm_alias_finite (__ieee754_sinhl, __sinhl) |
| 90 | |