| 1 | /* Copyright (C) 2002-2019 Free Software Foundation, Inc. |
| 2 | This file is part of the GNU C Library. |
| 3 | Contributed by Ulrich Drepper <drepper@redhat.com>, 2002. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <http://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <assert.h> |
| 20 | #include <errno.h> |
| 21 | #include <time.h> |
| 22 | #include <sys/param.h> |
| 23 | #include <sys/time.h> |
| 24 | #include "pthreadP.h" |
| 25 | #include <atomic.h> |
| 26 | #include <lowlevellock.h> |
| 27 | #include <not-cancel.h> |
| 28 | |
| 29 | #include <stap-probe.h> |
| 30 | |
| 31 | #ifndef lll_clocklock_elision |
| 32 | #define lll_clocklock_elision(futex, adapt_count, clockid, abstime, private) \ |
| 33 | lll_clocklock (futex, clockid, abstime, private) |
| 34 | #endif |
| 35 | |
| 36 | #ifndef lll_trylock_elision |
| 37 | #define lll_trylock_elision(a,t) lll_trylock(a) |
| 38 | #endif |
| 39 | |
| 40 | #ifndef FORCE_ELISION |
| 41 | #define FORCE_ELISION(m, s) |
| 42 | #endif |
| 43 | |
| 44 | int |
| 45 | __pthread_mutex_clocklock_common (pthread_mutex_t *mutex, |
| 46 | clockid_t clockid, |
| 47 | const struct timespec *abstime) |
| 48 | { |
| 49 | int oldval; |
| 50 | pid_t id = THREAD_GETMEM (THREAD_SELF, tid); |
| 51 | int result = 0; |
| 52 | |
| 53 | /* We must not check ABSTIME here. If the thread does not block |
| 54 | abstime must not be checked for a valid value. */ |
| 55 | |
| 56 | /* See concurrency notes regarding mutex type which is loaded from __kind |
| 57 | in struct __pthread_mutex_s in sysdeps/nptl/bits/thread-shared-types.h. */ |
| 58 | switch (__builtin_expect (PTHREAD_MUTEX_TYPE_ELISION (mutex), |
| 59 | PTHREAD_MUTEX_TIMED_NP)) |
| 60 | { |
| 61 | /* Recursive mutex. */ |
| 62 | case PTHREAD_MUTEX_RECURSIVE_NP|PTHREAD_MUTEX_ELISION_NP: |
| 63 | case PTHREAD_MUTEX_RECURSIVE_NP: |
| 64 | /* Check whether we already hold the mutex. */ |
| 65 | if (mutex->__data.__owner == id) |
| 66 | { |
| 67 | /* Just bump the counter. */ |
| 68 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
| 69 | /* Overflow of the counter. */ |
| 70 | return EAGAIN; |
| 71 | |
| 72 | ++mutex->__data.__count; |
| 73 | |
| 74 | goto out; |
| 75 | } |
| 76 | |
| 77 | /* We have to get the mutex. */ |
| 78 | result = lll_clocklock (mutex->__data.__lock, clockid, abstime, |
| 79 | PTHREAD_MUTEX_PSHARED (mutex)); |
| 80 | |
| 81 | if (result != 0) |
| 82 | goto out; |
| 83 | |
| 84 | /* Only locked once so far. */ |
| 85 | mutex->__data.__count = 1; |
| 86 | break; |
| 87 | |
| 88 | /* Error checking mutex. */ |
| 89 | case PTHREAD_MUTEX_ERRORCHECK_NP: |
| 90 | /* Check whether we already hold the mutex. */ |
| 91 | if (__glibc_unlikely (mutex->__data.__owner == id)) |
| 92 | return EDEADLK; |
| 93 | |
| 94 | /* Don't do lock elision on an error checking mutex. */ |
| 95 | goto simple; |
| 96 | |
| 97 | case PTHREAD_MUTEX_TIMED_NP: |
| 98 | FORCE_ELISION (mutex, goto elision); |
| 99 | simple: |
| 100 | /* Normal mutex. */ |
| 101 | result = lll_clocklock (mutex->__data.__lock, clockid, abstime, |
| 102 | PTHREAD_MUTEX_PSHARED (mutex)); |
| 103 | break; |
| 104 | |
| 105 | case PTHREAD_MUTEX_TIMED_ELISION_NP: |
| 106 | elision: __attribute__((unused)) |
| 107 | /* Don't record ownership */ |
| 108 | return lll_clocklock_elision (mutex->__data.__lock, |
| 109 | mutex->__data.__spins, |
| 110 | clockid, abstime, |
| 111 | PTHREAD_MUTEX_PSHARED (mutex)); |
| 112 | |
| 113 | |
| 114 | case PTHREAD_MUTEX_ADAPTIVE_NP: |
| 115 | if (! __is_smp) |
| 116 | goto simple; |
| 117 | |
| 118 | if (lll_trylock (mutex->__data.__lock) != 0) |
| 119 | { |
| 120 | int cnt = 0; |
| 121 | int max_cnt = MIN (max_adaptive_count (), |
| 122 | mutex->__data.__spins * 2 + 10); |
| 123 | do |
| 124 | { |
| 125 | if (cnt++ >= max_cnt) |
| 126 | { |
| 127 | result = lll_clocklock (mutex->__data.__lock, |
| 128 | clockid, abstime, |
| 129 | PTHREAD_MUTEX_PSHARED (mutex)); |
| 130 | break; |
| 131 | } |
| 132 | atomic_spin_nop (); |
| 133 | } |
| 134 | while (lll_trylock (mutex->__data.__lock) != 0); |
| 135 | |
| 136 | mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8; |
| 137 | } |
| 138 | break; |
| 139 | |
| 140 | case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP: |
| 141 | case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP: |
| 142 | case PTHREAD_MUTEX_ROBUST_NORMAL_NP: |
| 143 | case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP: |
| 144 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
| 145 | &mutex->__data.__list.__next); |
| 146 | /* We need to set op_pending before starting the operation. Also |
| 147 | see comments at ENQUEUE_MUTEX. */ |
| 148 | __asm ("" ::: "memory" ); |
| 149 | |
| 150 | oldval = mutex->__data.__lock; |
| 151 | /* This is set to FUTEX_WAITERS iff we might have shared the |
| 152 | FUTEX_WAITERS flag with other threads, and therefore need to keep it |
| 153 | set to avoid lost wake-ups. We have the same requirement in the |
| 154 | simple mutex algorithm. */ |
| 155 | unsigned int assume_other_futex_waiters = 0; |
| 156 | while (1) |
| 157 | { |
| 158 | /* Try to acquire the lock through a CAS from 0 (not acquired) to |
| 159 | our TID | assume_other_futex_waiters. */ |
| 160 | if (__glibc_likely (oldval == 0)) |
| 161 | { |
| 162 | oldval |
| 163 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 164 | id | assume_other_futex_waiters, 0); |
| 165 | if (__glibc_likely (oldval == 0)) |
| 166 | break; |
| 167 | } |
| 168 | |
| 169 | if ((oldval & FUTEX_OWNER_DIED) != 0) |
| 170 | { |
| 171 | /* The previous owner died. Try locking the mutex. */ |
| 172 | int newval = id | (oldval & FUTEX_WAITERS) |
| 173 | | assume_other_futex_waiters; |
| 174 | |
| 175 | newval |
| 176 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 177 | newval, oldval); |
| 178 | if (newval != oldval) |
| 179 | { |
| 180 | oldval = newval; |
| 181 | continue; |
| 182 | } |
| 183 | |
| 184 | /* We got the mutex. */ |
| 185 | mutex->__data.__count = 1; |
| 186 | /* But it is inconsistent unless marked otherwise. */ |
| 187 | mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; |
| 188 | |
| 189 | /* We must not enqueue the mutex before we have acquired it. |
| 190 | Also see comments at ENQUEUE_MUTEX. */ |
| 191 | __asm ("" ::: "memory" ); |
| 192 | ENQUEUE_MUTEX (mutex); |
| 193 | /* We need to clear op_pending after we enqueue the mutex. */ |
| 194 | __asm ("" ::: "memory" ); |
| 195 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 196 | |
| 197 | /* Note that we deliberately exit here. If we fall |
| 198 | through to the end of the function __nusers would be |
| 199 | incremented which is not correct because the old |
| 200 | owner has to be discounted. */ |
| 201 | return EOWNERDEAD; |
| 202 | } |
| 203 | |
| 204 | /* Check whether we already hold the mutex. */ |
| 205 | if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id)) |
| 206 | { |
| 207 | int kind = PTHREAD_MUTEX_TYPE (mutex); |
| 208 | if (kind == PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP) |
| 209 | { |
| 210 | /* We do not need to ensure ordering wrt another memory |
| 211 | access. Also see comments at ENQUEUE_MUTEX. */ |
| 212 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
| 213 | NULL); |
| 214 | return EDEADLK; |
| 215 | } |
| 216 | |
| 217 | if (kind == PTHREAD_MUTEX_ROBUST_RECURSIVE_NP) |
| 218 | { |
| 219 | /* We do not need to ensure ordering wrt another memory |
| 220 | access. */ |
| 221 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
| 222 | NULL); |
| 223 | |
| 224 | /* Just bump the counter. */ |
| 225 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
| 226 | /* Overflow of the counter. */ |
| 227 | return EAGAIN; |
| 228 | |
| 229 | ++mutex->__data.__count; |
| 230 | |
| 231 | LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
| 232 | |
| 233 | return 0; |
| 234 | } |
| 235 | } |
| 236 | |
| 237 | /* We are about to block; check whether the timeout is invalid. */ |
| 238 | if (abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000) |
| 239 | return EINVAL; |
| 240 | /* Work around the fact that the kernel rejects negative timeout |
| 241 | values despite them being valid. */ |
| 242 | if (__glibc_unlikely (abstime->tv_sec < 0)) |
| 243 | return ETIMEDOUT; |
| 244 | |
| 245 | /* We cannot acquire the mutex nor has its owner died. Thus, try |
| 246 | to block using futexes. Set FUTEX_WAITERS if necessary so that |
| 247 | other threads are aware that there are potentially threads |
| 248 | blocked on the futex. Restart if oldval changed in the |
| 249 | meantime. */ |
| 250 | if ((oldval & FUTEX_WAITERS) == 0) |
| 251 | { |
| 252 | if (atomic_compare_and_exchange_bool_acq (&mutex->__data.__lock, |
| 253 | oldval | FUTEX_WAITERS, |
| 254 | oldval) |
| 255 | != 0) |
| 256 | { |
| 257 | oldval = mutex->__data.__lock; |
| 258 | continue; |
| 259 | } |
| 260 | oldval |= FUTEX_WAITERS; |
| 261 | } |
| 262 | |
| 263 | /* It is now possible that we share the FUTEX_WAITERS flag with |
| 264 | another thread; therefore, update assume_other_futex_waiters so |
| 265 | that we do not forget about this when handling other cases |
| 266 | above and thus do not cause lost wake-ups. */ |
| 267 | assume_other_futex_waiters |= FUTEX_WAITERS; |
| 268 | |
| 269 | /* Block using the futex. */ |
| 270 | int err = lll_futex_clock_wait_bitset (&mutex->__data.__lock, |
| 271 | oldval, clockid, abstime, |
| 272 | PTHREAD_ROBUST_MUTEX_PSHARED (mutex)); |
| 273 | /* The futex call timed out. */ |
| 274 | if (err == -ETIMEDOUT) |
| 275 | return -err; |
| 276 | /* Reload current lock value. */ |
| 277 | oldval = mutex->__data.__lock; |
| 278 | } |
| 279 | |
| 280 | /* We have acquired the mutex; check if it is still consistent. */ |
| 281 | if (__builtin_expect (mutex->__data.__owner |
| 282 | == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) |
| 283 | { |
| 284 | /* This mutex is now not recoverable. */ |
| 285 | mutex->__data.__count = 0; |
| 286 | int private = PTHREAD_ROBUST_MUTEX_PSHARED (mutex); |
| 287 | lll_unlock (mutex->__data.__lock, private); |
| 288 | /* FIXME This violates the mutex destruction requirements. See |
| 289 | __pthread_mutex_unlock_full. */ |
| 290 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 291 | return ENOTRECOVERABLE; |
| 292 | } |
| 293 | |
| 294 | mutex->__data.__count = 1; |
| 295 | /* We must not enqueue the mutex before we have acquired it. |
| 296 | Also see comments at ENQUEUE_MUTEX. */ |
| 297 | __asm ("" ::: "memory" ); |
| 298 | ENQUEUE_MUTEX (mutex); |
| 299 | /* We need to clear op_pending after we enqueue the mutex. */ |
| 300 | __asm ("" ::: "memory" ); |
| 301 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 302 | break; |
| 303 | |
| 304 | /* The PI support requires the Linux futex system call. If that's not |
| 305 | available, pthread_mutex_init should never have allowed the type to |
| 306 | be set. So it will get the default case for an invalid type. */ |
| 307 | #ifdef __NR_futex |
| 308 | case PTHREAD_MUTEX_PI_RECURSIVE_NP: |
| 309 | case PTHREAD_MUTEX_PI_ERRORCHECK_NP: |
| 310 | case PTHREAD_MUTEX_PI_NORMAL_NP: |
| 311 | case PTHREAD_MUTEX_PI_ADAPTIVE_NP: |
| 312 | case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP: |
| 313 | case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP: |
| 314 | case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP: |
| 315 | case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP: |
| 316 | { |
| 317 | int kind, robust; |
| 318 | { |
| 319 | /* See concurrency notes regarding __kind in struct __pthread_mutex_s |
| 320 | in sysdeps/nptl/bits/thread-shared-types.h. */ |
| 321 | int mutex_kind = atomic_load_relaxed (&(mutex->__data.__kind)); |
| 322 | kind = mutex_kind & PTHREAD_MUTEX_KIND_MASK_NP; |
| 323 | robust = mutex_kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP; |
| 324 | } |
| 325 | |
| 326 | if (robust) |
| 327 | { |
| 328 | /* Note: robust PI futexes are signaled by setting bit 0. */ |
| 329 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
| 330 | (void *) (((uintptr_t) &mutex->__data.__list.__next) |
| 331 | | 1)); |
| 332 | /* We need to set op_pending before starting the operation. Also |
| 333 | see comments at ENQUEUE_MUTEX. */ |
| 334 | __asm ("" ::: "memory" ); |
| 335 | } |
| 336 | |
| 337 | oldval = mutex->__data.__lock; |
| 338 | |
| 339 | /* Check whether we already hold the mutex. */ |
| 340 | if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id)) |
| 341 | { |
| 342 | if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) |
| 343 | { |
| 344 | /* We do not need to ensure ordering wrt another memory |
| 345 | access. */ |
| 346 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 347 | return EDEADLK; |
| 348 | } |
| 349 | |
| 350 | if (kind == PTHREAD_MUTEX_RECURSIVE_NP) |
| 351 | { |
| 352 | /* We do not need to ensure ordering wrt another memory |
| 353 | access. */ |
| 354 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 355 | |
| 356 | /* Just bump the counter. */ |
| 357 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
| 358 | /* Overflow of the counter. */ |
| 359 | return EAGAIN; |
| 360 | |
| 361 | ++mutex->__data.__count; |
| 362 | |
| 363 | LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
| 364 | |
| 365 | return 0; |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 370 | id, 0); |
| 371 | |
| 372 | if (oldval != 0) |
| 373 | { |
| 374 | /* The mutex is locked. The kernel will now take care of |
| 375 | everything. The timeout value must be a relative value. |
| 376 | Convert it. */ |
| 377 | int private = (robust |
| 378 | ? PTHREAD_ROBUST_MUTEX_PSHARED (mutex) |
| 379 | : PTHREAD_MUTEX_PSHARED (mutex)); |
| 380 | INTERNAL_SYSCALL_DECL (__err); |
| 381 | |
| 382 | int e = INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock, |
| 383 | __lll_private_flag (FUTEX_LOCK_PI, |
| 384 | private), 1, |
| 385 | abstime); |
| 386 | if (INTERNAL_SYSCALL_ERROR_P (e, __err)) |
| 387 | { |
| 388 | if (INTERNAL_SYSCALL_ERRNO (e, __err) == ETIMEDOUT) |
| 389 | return ETIMEDOUT; |
| 390 | |
| 391 | if (INTERNAL_SYSCALL_ERRNO (e, __err) == ESRCH |
| 392 | || INTERNAL_SYSCALL_ERRNO (e, __err) == EDEADLK) |
| 393 | { |
| 394 | assert (INTERNAL_SYSCALL_ERRNO (e, __err) != EDEADLK |
| 395 | || (kind != PTHREAD_MUTEX_ERRORCHECK_NP |
| 396 | && kind != PTHREAD_MUTEX_RECURSIVE_NP)); |
| 397 | /* ESRCH can happen only for non-robust PI mutexes where |
| 398 | the owner of the lock died. */ |
| 399 | assert (INTERNAL_SYSCALL_ERRNO (e, __err) != ESRCH |
| 400 | || !robust); |
| 401 | |
| 402 | /* Delay the thread until the timeout is reached. |
| 403 | Then return ETIMEDOUT. */ |
| 404 | struct timespec reltime; |
| 405 | struct timespec now; |
| 406 | |
| 407 | INTERNAL_SYSCALL (clock_gettime, __err, 2, clockid, |
| 408 | &now); |
| 409 | reltime.tv_sec = abstime->tv_sec - now.tv_sec; |
| 410 | reltime.tv_nsec = abstime->tv_nsec - now.tv_nsec; |
| 411 | if (reltime.tv_nsec < 0) |
| 412 | { |
| 413 | reltime.tv_nsec += 1000000000; |
| 414 | --reltime.tv_sec; |
| 415 | } |
| 416 | if (reltime.tv_sec >= 0) |
| 417 | while (__nanosleep_nocancel (&reltime, &reltime) != 0) |
| 418 | continue; |
| 419 | |
| 420 | return ETIMEDOUT; |
| 421 | } |
| 422 | |
| 423 | return INTERNAL_SYSCALL_ERRNO (e, __err); |
| 424 | } |
| 425 | |
| 426 | oldval = mutex->__data.__lock; |
| 427 | |
| 428 | assert (robust || (oldval & FUTEX_OWNER_DIED) == 0); |
| 429 | } |
| 430 | |
| 431 | if (__glibc_unlikely (oldval & FUTEX_OWNER_DIED)) |
| 432 | { |
| 433 | atomic_and (&mutex->__data.__lock, ~FUTEX_OWNER_DIED); |
| 434 | |
| 435 | /* We got the mutex. */ |
| 436 | mutex->__data.__count = 1; |
| 437 | /* But it is inconsistent unless marked otherwise. */ |
| 438 | mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; |
| 439 | |
| 440 | /* We must not enqueue the mutex before we have acquired it. |
| 441 | Also see comments at ENQUEUE_MUTEX. */ |
| 442 | __asm ("" ::: "memory" ); |
| 443 | ENQUEUE_MUTEX_PI (mutex); |
| 444 | /* We need to clear op_pending after we enqueue the mutex. */ |
| 445 | __asm ("" ::: "memory" ); |
| 446 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 447 | |
| 448 | /* Note that we deliberately exit here. If we fall |
| 449 | through to the end of the function __nusers would be |
| 450 | incremented which is not correct because the old owner |
| 451 | has to be discounted. */ |
| 452 | return EOWNERDEAD; |
| 453 | } |
| 454 | |
| 455 | if (robust |
| 456 | && __builtin_expect (mutex->__data.__owner |
| 457 | == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) |
| 458 | { |
| 459 | /* This mutex is now not recoverable. */ |
| 460 | mutex->__data.__count = 0; |
| 461 | |
| 462 | INTERNAL_SYSCALL_DECL (__err); |
| 463 | INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock, |
| 464 | __lll_private_flag (FUTEX_UNLOCK_PI, |
| 465 | PTHREAD_ROBUST_MUTEX_PSHARED (mutex)), |
| 466 | 0, 0); |
| 467 | |
| 468 | /* To the kernel, this will be visible after the kernel has |
| 469 | acquired the mutex in the syscall. */ |
| 470 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 471 | return ENOTRECOVERABLE; |
| 472 | } |
| 473 | |
| 474 | mutex->__data.__count = 1; |
| 475 | if (robust) |
| 476 | { |
| 477 | /* We must not enqueue the mutex before we have acquired it. |
| 478 | Also see comments at ENQUEUE_MUTEX. */ |
| 479 | __asm ("" ::: "memory" ); |
| 480 | ENQUEUE_MUTEX_PI (mutex); |
| 481 | /* We need to clear op_pending after we enqueue the mutex. */ |
| 482 | __asm ("" ::: "memory" ); |
| 483 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 484 | } |
| 485 | } |
| 486 | break; |
| 487 | #endif /* __NR_futex. */ |
| 488 | |
| 489 | case PTHREAD_MUTEX_PP_RECURSIVE_NP: |
| 490 | case PTHREAD_MUTEX_PP_ERRORCHECK_NP: |
| 491 | case PTHREAD_MUTEX_PP_NORMAL_NP: |
| 492 | case PTHREAD_MUTEX_PP_ADAPTIVE_NP: |
| 493 | { |
| 494 | /* See concurrency notes regarding __kind in struct __pthread_mutex_s |
| 495 | in sysdeps/nptl/bits/thread-shared-types.h. */ |
| 496 | int kind = atomic_load_relaxed (&(mutex->__data.__kind)) |
| 497 | & PTHREAD_MUTEX_KIND_MASK_NP; |
| 498 | |
| 499 | oldval = mutex->__data.__lock; |
| 500 | |
| 501 | /* Check whether we already hold the mutex. */ |
| 502 | if (mutex->__data.__owner == id) |
| 503 | { |
| 504 | if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) |
| 505 | return EDEADLK; |
| 506 | |
| 507 | if (kind == PTHREAD_MUTEX_RECURSIVE_NP) |
| 508 | { |
| 509 | /* Just bump the counter. */ |
| 510 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
| 511 | /* Overflow of the counter. */ |
| 512 | return EAGAIN; |
| 513 | |
| 514 | ++mutex->__data.__count; |
| 515 | |
| 516 | LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
| 517 | |
| 518 | return 0; |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | int oldprio = -1, ceilval; |
| 523 | do |
| 524 | { |
| 525 | int ceiling = (oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) |
| 526 | >> PTHREAD_MUTEX_PRIO_CEILING_SHIFT; |
| 527 | |
| 528 | if (__pthread_current_priority () > ceiling) |
| 529 | { |
| 530 | result = EINVAL; |
| 531 | failpp: |
| 532 | if (oldprio != -1) |
| 533 | __pthread_tpp_change_priority (oldprio, -1); |
| 534 | return result; |
| 535 | } |
| 536 | |
| 537 | result = __pthread_tpp_change_priority (oldprio, ceiling); |
| 538 | if (result) |
| 539 | return result; |
| 540 | |
| 541 | ceilval = ceiling << PTHREAD_MUTEX_PRIO_CEILING_SHIFT; |
| 542 | oldprio = ceiling; |
| 543 | |
| 544 | oldval |
| 545 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 546 | ceilval | 1, ceilval); |
| 547 | |
| 548 | if (oldval == ceilval) |
| 549 | break; |
| 550 | |
| 551 | do |
| 552 | { |
| 553 | oldval |
| 554 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 555 | ceilval | 2, |
| 556 | ceilval | 1); |
| 557 | |
| 558 | if ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval) |
| 559 | break; |
| 560 | |
| 561 | if (oldval != ceilval) |
| 562 | { |
| 563 | /* Reject invalid timeouts. */ |
| 564 | if (abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000) |
| 565 | { |
| 566 | result = EINVAL; |
| 567 | goto failpp; |
| 568 | } |
| 569 | |
| 570 | struct timeval tv; |
| 571 | struct timespec rt; |
| 572 | |
| 573 | /* Get the current time. */ |
| 574 | (void) __gettimeofday (&tv, NULL); |
| 575 | |
| 576 | /* Compute relative timeout. */ |
| 577 | rt.tv_sec = abstime->tv_sec - tv.tv_sec; |
| 578 | rt.tv_nsec = abstime->tv_nsec - tv.tv_usec * 1000; |
| 579 | if (rt.tv_nsec < 0) |
| 580 | { |
| 581 | rt.tv_nsec += 1000000000; |
| 582 | --rt.tv_sec; |
| 583 | } |
| 584 | |
| 585 | /* Already timed out? */ |
| 586 | if (rt.tv_sec < 0) |
| 587 | { |
| 588 | result = ETIMEDOUT; |
| 589 | goto failpp; |
| 590 | } |
| 591 | |
| 592 | lll_futex_timed_wait (&mutex->__data.__lock, |
| 593 | ceilval | 2, &rt, |
| 594 | PTHREAD_MUTEX_PSHARED (mutex)); |
| 595 | } |
| 596 | } |
| 597 | while (atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 598 | ceilval | 2, ceilval) |
| 599 | != ceilval); |
| 600 | } |
| 601 | while ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval); |
| 602 | |
| 603 | assert (mutex->__data.__owner == 0); |
| 604 | mutex->__data.__count = 1; |
| 605 | } |
| 606 | break; |
| 607 | |
| 608 | default: |
| 609 | /* Correct code cannot set any other type. */ |
| 610 | return EINVAL; |
| 611 | } |
| 612 | |
| 613 | if (result == 0) |
| 614 | { |
| 615 | /* Record the ownership. */ |
| 616 | mutex->__data.__owner = id; |
| 617 | ++mutex->__data.__nusers; |
| 618 | |
| 619 | LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
| 620 | } |
| 621 | |
| 622 | out: |
| 623 | return result; |
| 624 | } |
| 625 | |
| 626 | int |
| 627 | __pthread_mutex_clocklock (pthread_mutex_t *mutex, |
| 628 | clockid_t clockid, |
| 629 | const struct timespec *abstime) |
| 630 | { |
| 631 | if (__glibc_unlikely (!lll_futex_supported_clockid (clockid))) |
| 632 | return EINVAL; |
| 633 | |
| 634 | LIBC_PROBE (mutex_clocklock_entry, 3, mutex, clockid, abstime); |
| 635 | return __pthread_mutex_clocklock_common (mutex, clockid, abstime); |
| 636 | } |
| 637 | weak_alias (__pthread_mutex_clocklock, pthread_mutex_clocklock) |
| 638 | |
| 639 | int |
| 640 | __pthread_mutex_timedlock (pthread_mutex_t *mutex, |
| 641 | const struct timespec *abstime) |
| 642 | { |
| 643 | LIBC_PROBE (mutex_timedlock_entry, 2, mutex, abstime); |
| 644 | return __pthread_mutex_clocklock_common (mutex, CLOCK_REALTIME, abstime); |
| 645 | } |
| 646 | weak_alias (__pthread_mutex_timedlock, pthread_mutex_timedlock) |
| 647 | |