| 1 | /* intprops.h -- properties of integer types |
| 2 | |
| 3 | Copyright (C) 2001-2019 Free Software Foundation, Inc. |
| 4 | |
| 5 | This program is free software: you can redistribute it and/or modify it |
| 6 | under the terms of the GNU Lesser General Public License as published |
| 7 | by the Free Software Foundation; either version 2.1 of the License, or |
| 8 | (at your option) any later version. |
| 9 | |
| 10 | This program is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | GNU Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public License |
| 16 | along with this program. If not, see <https://www.gnu.org/licenses/>. */ |
| 17 | |
| 18 | /* Written by Paul Eggert. */ |
| 19 | |
| 20 | #ifndef _GL_INTPROPS_H |
| 21 | #define _GL_INTPROPS_H |
| 22 | |
| 23 | #include <limits.h> |
| 24 | |
| 25 | /* Return a value with the common real type of E and V and the value of V. |
| 26 | Do not evaluate E. */ |
| 27 | #define _GL_INT_CONVERT(e, v) ((1 ? 0 : (e)) + (v)) |
| 28 | |
| 29 | /* Act like _GL_INT_CONVERT (E, -V) but work around a bug in IRIX 6.5 cc; see |
| 30 | <https://lists.gnu.org/r/bug-gnulib/2011-05/msg00406.html>. */ |
| 31 | #define _GL_INT_NEGATE_CONVERT(e, v) ((1 ? 0 : (e)) - (v)) |
| 32 | |
| 33 | /* The extra casts in the following macros work around compiler bugs, |
| 34 | e.g., in Cray C 5.0.3.0. */ |
| 35 | |
| 36 | /* True if the arithmetic type T is an integer type. bool counts as |
| 37 | an integer. */ |
| 38 | #define TYPE_IS_INTEGER(t) ((t) 1.5 == 1) |
| 39 | |
| 40 | /* True if the real type T is signed. */ |
| 41 | #define TYPE_SIGNED(t) (! ((t) 0 < (t) -1)) |
| 42 | |
| 43 | /* Return 1 if the real expression E, after promotion, has a |
| 44 | signed or floating type. Do not evaluate E. */ |
| 45 | #define EXPR_SIGNED(e) (_GL_INT_NEGATE_CONVERT (e, 1) < 0) |
| 46 | |
| 47 | |
| 48 | /* Minimum and maximum values for integer types and expressions. */ |
| 49 | |
| 50 | /* The width in bits of the integer type or expression T. |
| 51 | Do not evaluate T. |
| 52 | Padding bits are not supported; this is checked at compile-time below. */ |
| 53 | #define TYPE_WIDTH(t) (sizeof (t) * CHAR_BIT) |
| 54 | |
| 55 | /* The maximum and minimum values for the integer type T. */ |
| 56 | #define TYPE_MINIMUM(t) ((t) ~ TYPE_MAXIMUM (t)) |
| 57 | #define TYPE_MAXIMUM(t) \ |
| 58 | ((t) (! TYPE_SIGNED (t) \ |
| 59 | ? (t) -1 \ |
| 60 | : ((((t) 1 << (TYPE_WIDTH (t) - 2)) - 1) * 2 + 1))) |
| 61 | |
| 62 | /* The maximum and minimum values for the type of the expression E, |
| 63 | after integer promotion. E is not evaluated. */ |
| 64 | #define _GL_INT_MINIMUM(e) \ |
| 65 | (EXPR_SIGNED (e) \ |
| 66 | ? ~ _GL_SIGNED_INT_MAXIMUM (e) \ |
| 67 | : _GL_INT_CONVERT (e, 0)) |
| 68 | #define _GL_INT_MAXIMUM(e) \ |
| 69 | (EXPR_SIGNED (e) \ |
| 70 | ? _GL_SIGNED_INT_MAXIMUM (e) \ |
| 71 | : _GL_INT_NEGATE_CONVERT (e, 1)) |
| 72 | #define _GL_SIGNED_INT_MAXIMUM(e) \ |
| 73 | (((_GL_INT_CONVERT (e, 1) << (TYPE_WIDTH ((e) + 0) - 2)) - 1) * 2 + 1) |
| 74 | |
| 75 | /* Work around OpenVMS incompatibility with C99. */ |
| 76 | #if !defined LLONG_MAX && defined __INT64_MAX |
| 77 | # define LLONG_MAX __INT64_MAX |
| 78 | # define LLONG_MIN __INT64_MIN |
| 79 | #endif |
| 80 | |
| 81 | /* This include file assumes that signed types are two's complement without |
| 82 | padding bits; the above macros have undefined behavior otherwise. |
| 83 | If this is a problem for you, please let us know how to fix it for your host. |
| 84 | This assumption is tested by the intprops-tests module. */ |
| 85 | |
| 86 | /* Does the __typeof__ keyword work? This could be done by |
| 87 | 'configure', but for now it's easier to do it by hand. */ |
| 88 | #if (2 <= __GNUC__ \ |
| 89 | || (1210 <= __IBMC__ && defined __IBM__TYPEOF__) \ |
| 90 | || (0x5110 <= __SUNPRO_C && !__STDC__)) |
| 91 | # define _GL_HAVE___TYPEOF__ 1 |
| 92 | #else |
| 93 | # define _GL_HAVE___TYPEOF__ 0 |
| 94 | #endif |
| 95 | |
| 96 | /* Return 1 if the integer type or expression T might be signed. Return 0 |
| 97 | if it is definitely unsigned. This macro does not evaluate its argument, |
| 98 | and expands to an integer constant expression. */ |
| 99 | #if _GL_HAVE___TYPEOF__ |
| 100 | # define _GL_SIGNED_TYPE_OR_EXPR(t) TYPE_SIGNED (__typeof__ (t)) |
| 101 | #else |
| 102 | # define _GL_SIGNED_TYPE_OR_EXPR(t) 1 |
| 103 | #endif |
| 104 | |
| 105 | /* Bound on length of the string representing an unsigned integer |
| 106 | value representable in B bits. log10 (2.0) < 146/485. The |
| 107 | smallest value of B where this bound is not tight is 2621. */ |
| 108 | #define INT_BITS_STRLEN_BOUND(b) (((b) * 146 + 484) / 485) |
| 109 | |
| 110 | /* Bound on length of the string representing an integer type or expression T. |
| 111 | Subtract 1 for the sign bit if T is signed, and then add 1 more for |
| 112 | a minus sign if needed. |
| 113 | |
| 114 | Because _GL_SIGNED_TYPE_OR_EXPR sometimes returns 0 when its argument is |
| 115 | signed, this macro may overestimate the true bound by one byte when |
| 116 | applied to unsigned types of size 2, 4, 16, ... bytes. */ |
| 117 | #define INT_STRLEN_BOUND(t) \ |
| 118 | (INT_BITS_STRLEN_BOUND (TYPE_WIDTH (t) - _GL_SIGNED_TYPE_OR_EXPR (t)) \ |
| 119 | + _GL_SIGNED_TYPE_OR_EXPR (t)) |
| 120 | |
| 121 | /* Bound on buffer size needed to represent an integer type or expression T, |
| 122 | including the terminating null. */ |
| 123 | #define INT_BUFSIZE_BOUND(t) (INT_STRLEN_BOUND (t) + 1) |
| 124 | |
| 125 | |
| 126 | /* Range overflow checks. |
| 127 | |
| 128 | The INT_<op>_RANGE_OVERFLOW macros return 1 if the corresponding C |
| 129 | operators might not yield numerically correct answers due to |
| 130 | arithmetic overflow. They do not rely on undefined or |
| 131 | implementation-defined behavior. Their implementations are simple |
| 132 | and straightforward, but they are a bit harder to use than the |
| 133 | INT_<op>_OVERFLOW macros described below. |
| 134 | |
| 135 | Example usage: |
| 136 | |
| 137 | long int i = ...; |
| 138 | long int j = ...; |
| 139 | if (INT_MULTIPLY_RANGE_OVERFLOW (i, j, LONG_MIN, LONG_MAX)) |
| 140 | printf ("multiply would overflow"); |
| 141 | else |
| 142 | printf ("product is %ld", i * j); |
| 143 | |
| 144 | Restrictions on *_RANGE_OVERFLOW macros: |
| 145 | |
| 146 | These macros do not check for all possible numerical problems or |
| 147 | undefined or unspecified behavior: they do not check for division |
| 148 | by zero, for bad shift counts, or for shifting negative numbers. |
| 149 | |
| 150 | These macros may evaluate their arguments zero or multiple times, |
| 151 | so the arguments should not have side effects. The arithmetic |
| 152 | arguments (including the MIN and MAX arguments) must be of the same |
| 153 | integer type after the usual arithmetic conversions, and the type |
| 154 | must have minimum value MIN and maximum MAX. Unsigned types should |
| 155 | use a zero MIN of the proper type. |
| 156 | |
| 157 | These macros are tuned for constant MIN and MAX. For commutative |
| 158 | operations such as A + B, they are also tuned for constant B. */ |
| 159 | |
| 160 | /* Return 1 if A + B would overflow in [MIN,MAX] arithmetic. |
| 161 | See above for restrictions. */ |
| 162 | #define INT_ADD_RANGE_OVERFLOW(a, b, min, max) \ |
| 163 | ((b) < 0 \ |
| 164 | ? (a) < (min) - (b) \ |
| 165 | : (max) - (b) < (a)) |
| 166 | |
| 167 | /* Return 1 if A - B would overflow in [MIN,MAX] arithmetic. |
| 168 | See above for restrictions. */ |
| 169 | #define INT_SUBTRACT_RANGE_OVERFLOW(a, b, min, max) \ |
| 170 | ((b) < 0 \ |
| 171 | ? (max) + (b) < (a) \ |
| 172 | : (a) < (min) + (b)) |
| 173 | |
| 174 | /* Return 1 if - A would overflow in [MIN,MAX] arithmetic. |
| 175 | See above for restrictions. */ |
| 176 | #define INT_NEGATE_RANGE_OVERFLOW(a, min, max) \ |
| 177 | ((min) < 0 \ |
| 178 | ? (a) < - (max) \ |
| 179 | : 0 < (a)) |
| 180 | |
| 181 | /* Return 1 if A * B would overflow in [MIN,MAX] arithmetic. |
| 182 | See above for restrictions. Avoid && and || as they tickle |
| 183 | bugs in Sun C 5.11 2010/08/13 and other compilers; see |
| 184 | <https://lists.gnu.org/r/bug-gnulib/2011-05/msg00401.html>. */ |
| 185 | #define INT_MULTIPLY_RANGE_OVERFLOW(a, b, min, max) \ |
| 186 | ((b) < 0 \ |
| 187 | ? ((a) < 0 \ |
| 188 | ? (a) < (max) / (b) \ |
| 189 | : (b) == -1 \ |
| 190 | ? 0 \ |
| 191 | : (min) / (b) < (a)) \ |
| 192 | : (b) == 0 \ |
| 193 | ? 0 \ |
| 194 | : ((a) < 0 \ |
| 195 | ? (a) < (min) / (b) \ |
| 196 | : (max) / (b) < (a))) |
| 197 | |
| 198 | /* Return 1 if A / B would overflow in [MIN,MAX] arithmetic. |
| 199 | See above for restrictions. Do not check for division by zero. */ |
| 200 | #define INT_DIVIDE_RANGE_OVERFLOW(a, b, min, max) \ |
| 201 | ((min) < 0 && (b) == -1 && (a) < - (max)) |
| 202 | |
| 203 | /* Return 1 if A % B would overflow in [MIN,MAX] arithmetic. |
| 204 | See above for restrictions. Do not check for division by zero. |
| 205 | Mathematically, % should never overflow, but on x86-like hosts |
| 206 | INT_MIN % -1 traps, and the C standard permits this, so treat this |
| 207 | as an overflow too. */ |
| 208 | #define INT_REMAINDER_RANGE_OVERFLOW(a, b, min, max) \ |
| 209 | INT_DIVIDE_RANGE_OVERFLOW (a, b, min, max) |
| 210 | |
| 211 | /* Return 1 if A << B would overflow in [MIN,MAX] arithmetic. |
| 212 | See above for restrictions. Here, MIN and MAX are for A only, and B need |
| 213 | not be of the same type as the other arguments. The C standard says that |
| 214 | behavior is undefined for shifts unless 0 <= B < wordwidth, and that when |
| 215 | A is negative then A << B has undefined behavior and A >> B has |
| 216 | implementation-defined behavior, but do not check these other |
| 217 | restrictions. */ |
| 218 | #define INT_LEFT_SHIFT_RANGE_OVERFLOW(a, b, min, max) \ |
| 219 | ((a) < 0 \ |
| 220 | ? (a) < (min) >> (b) \ |
| 221 | : (max) >> (b) < (a)) |
| 222 | |
| 223 | /* True if __builtin_add_overflow (A, B, P) works when P is non-null. */ |
| 224 | #if 5 <= __GNUC__ && !defined __ICC |
| 225 | # define _GL_HAS_BUILTIN_OVERFLOW 1 |
| 226 | #else |
| 227 | # define _GL_HAS_BUILTIN_OVERFLOW 0 |
| 228 | #endif |
| 229 | |
| 230 | /* True if __builtin_add_overflow_p (A, B, C) works. */ |
| 231 | #define _GL_HAS_BUILTIN_OVERFLOW_P (7 <= __GNUC__) |
| 232 | |
| 233 | /* The _GL*_OVERFLOW macros have the same restrictions as the |
| 234 | *_RANGE_OVERFLOW macros, except that they do not assume that operands |
| 235 | (e.g., A and B) have the same type as MIN and MAX. Instead, they assume |
| 236 | that the result (e.g., A + B) has that type. */ |
| 237 | #if _GL_HAS_BUILTIN_OVERFLOW_P |
| 238 | # define _GL_ADD_OVERFLOW(a, b, min, max) \ |
| 239 | __builtin_add_overflow_p (a, b, (__typeof__ ((a) + (b))) 0) |
| 240 | # define _GL_SUBTRACT_OVERFLOW(a, b, min, max) \ |
| 241 | __builtin_sub_overflow_p (a, b, (__typeof__ ((a) - (b))) 0) |
| 242 | # define _GL_MULTIPLY_OVERFLOW(a, b, min, max) \ |
| 243 | __builtin_mul_overflow_p (a, b, (__typeof__ ((a) * (b))) 0) |
| 244 | #else |
| 245 | # define _GL_ADD_OVERFLOW(a, b, min, max) \ |
| 246 | ((min) < 0 ? INT_ADD_RANGE_OVERFLOW (a, b, min, max) \ |
| 247 | : (a) < 0 ? (b) <= (a) + (b) \ |
| 248 | : (b) < 0 ? (a) <= (a) + (b) \ |
| 249 | : (a) + (b) < (b)) |
| 250 | # define _GL_SUBTRACT_OVERFLOW(a, b, min, max) \ |
| 251 | ((min) < 0 ? INT_SUBTRACT_RANGE_OVERFLOW (a, b, min, max) \ |
| 252 | : (a) < 0 ? 1 \ |
| 253 | : (b) < 0 ? (a) - (b) <= (a) \ |
| 254 | : (a) < (b)) |
| 255 | # define _GL_MULTIPLY_OVERFLOW(a, b, min, max) \ |
| 256 | (((min) == 0 && (((a) < 0 && 0 < (b)) || ((b) < 0 && 0 < (a)))) \ |
| 257 | || INT_MULTIPLY_RANGE_OVERFLOW (a, b, min, max)) |
| 258 | #endif |
| 259 | #define _GL_DIVIDE_OVERFLOW(a, b, min, max) \ |
| 260 | ((min) < 0 ? (b) == _GL_INT_NEGATE_CONVERT (min, 1) && (a) < - (max) \ |
| 261 | : (a) < 0 ? (b) <= (a) + (b) - 1 \ |
| 262 | : (b) < 0 && (a) + (b) <= (a)) |
| 263 | #define _GL_REMAINDER_OVERFLOW(a, b, min, max) \ |
| 264 | ((min) < 0 ? (b) == _GL_INT_NEGATE_CONVERT (min, 1) && (a) < - (max) \ |
| 265 | : (a) < 0 ? (a) % (b) != ((max) - (b) + 1) % (b) \ |
| 266 | : (b) < 0 && ! _GL_UNSIGNED_NEG_MULTIPLE (a, b, max)) |
| 267 | |
| 268 | /* Return a nonzero value if A is a mathematical multiple of B, where |
| 269 | A is unsigned, B is negative, and MAX is the maximum value of A's |
| 270 | type. A's type must be the same as (A % B)'s type. Normally (A % |
| 271 | -B == 0) suffices, but things get tricky if -B would overflow. */ |
| 272 | #define _GL_UNSIGNED_NEG_MULTIPLE(a, b, max) \ |
| 273 | (((b) < -_GL_SIGNED_INT_MAXIMUM (b) \ |
| 274 | ? (_GL_SIGNED_INT_MAXIMUM (b) == (max) \ |
| 275 | ? (a) \ |
| 276 | : (a) % (_GL_INT_CONVERT (a, _GL_SIGNED_INT_MAXIMUM (b)) + 1)) \ |
| 277 | : (a) % - (b)) \ |
| 278 | == 0) |
| 279 | |
| 280 | /* Check for integer overflow, and report low order bits of answer. |
| 281 | |
| 282 | The INT_<op>_OVERFLOW macros return 1 if the corresponding C operators |
| 283 | might not yield numerically correct answers due to arithmetic overflow. |
| 284 | The INT_<op>_WRAPV macros also store the low-order bits of the answer. |
| 285 | These macros work correctly on all known practical hosts, and do not rely |
| 286 | on undefined behavior due to signed arithmetic overflow. |
| 287 | |
| 288 | Example usage, assuming A and B are long int: |
| 289 | |
| 290 | if (INT_MULTIPLY_OVERFLOW (a, b)) |
| 291 | printf ("result would overflow\n"); |
| 292 | else |
| 293 | printf ("result is %ld (no overflow)\n", a * b); |
| 294 | |
| 295 | Example usage with WRAPV flavor: |
| 296 | |
| 297 | long int result; |
| 298 | bool overflow = INT_MULTIPLY_WRAPV (a, b, &result); |
| 299 | printf ("result is %ld (%s)\n", result, |
| 300 | overflow ? "after overflow" : "no overflow"); |
| 301 | |
| 302 | Restrictions on these macros: |
| 303 | |
| 304 | These macros do not check for all possible numerical problems or |
| 305 | undefined or unspecified behavior: they do not check for division |
| 306 | by zero, for bad shift counts, or for shifting negative numbers. |
| 307 | |
| 308 | These macros may evaluate their arguments zero or multiple times, so the |
| 309 | arguments should not have side effects. |
| 310 | |
| 311 | The WRAPV macros are not constant expressions. They support only |
| 312 | +, binary -, and *. The result type must be signed. |
| 313 | |
| 314 | These macros are tuned for their last argument being a constant. |
| 315 | |
| 316 | Return 1 if the integer expressions A * B, A - B, -A, A * B, A / B, |
| 317 | A % B, and A << B would overflow, respectively. */ |
| 318 | |
| 319 | #define INT_ADD_OVERFLOW(a, b) \ |
| 320 | _GL_BINARY_OP_OVERFLOW (a, b, _GL_ADD_OVERFLOW) |
| 321 | #define INT_SUBTRACT_OVERFLOW(a, b) \ |
| 322 | _GL_BINARY_OP_OVERFLOW (a, b, _GL_SUBTRACT_OVERFLOW) |
| 323 | #if _GL_HAS_BUILTIN_OVERFLOW_P |
| 324 | # define INT_NEGATE_OVERFLOW(a) INT_SUBTRACT_OVERFLOW (0, a) |
| 325 | #else |
| 326 | # define INT_NEGATE_OVERFLOW(a) \ |
| 327 | INT_NEGATE_RANGE_OVERFLOW (a, _GL_INT_MINIMUM (a), _GL_INT_MAXIMUM (a)) |
| 328 | #endif |
| 329 | #define INT_MULTIPLY_OVERFLOW(a, b) \ |
| 330 | _GL_BINARY_OP_OVERFLOW (a, b, _GL_MULTIPLY_OVERFLOW) |
| 331 | #define INT_DIVIDE_OVERFLOW(a, b) \ |
| 332 | _GL_BINARY_OP_OVERFLOW (a, b, _GL_DIVIDE_OVERFLOW) |
| 333 | #define INT_REMAINDER_OVERFLOW(a, b) \ |
| 334 | _GL_BINARY_OP_OVERFLOW (a, b, _GL_REMAINDER_OVERFLOW) |
| 335 | #define INT_LEFT_SHIFT_OVERFLOW(a, b) \ |
| 336 | INT_LEFT_SHIFT_RANGE_OVERFLOW (a, b, \ |
| 337 | _GL_INT_MINIMUM (a), _GL_INT_MAXIMUM (a)) |
| 338 | |
| 339 | /* Return 1 if the expression A <op> B would overflow, |
| 340 | where OP_RESULT_OVERFLOW (A, B, MIN, MAX) does the actual test, |
| 341 | assuming MIN and MAX are the minimum and maximum for the result type. |
| 342 | Arguments should be free of side effects. */ |
| 343 | #define _GL_BINARY_OP_OVERFLOW(a, b, op_result_overflow) \ |
| 344 | op_result_overflow (a, b, \ |
| 345 | _GL_INT_MINIMUM (_GL_INT_CONVERT (a, b)), \ |
| 346 | _GL_INT_MAXIMUM (_GL_INT_CONVERT (a, b))) |
| 347 | |
| 348 | /* Store the low-order bits of A + B, A - B, A * B, respectively, into *R. |
| 349 | Return 1 if the result overflows. See above for restrictions. */ |
| 350 | #define INT_ADD_WRAPV(a, b, r) \ |
| 351 | _GL_INT_OP_WRAPV (a, b, r, +, __builtin_add_overflow, INT_ADD_OVERFLOW) |
| 352 | #define INT_SUBTRACT_WRAPV(a, b, r) \ |
| 353 | _GL_INT_OP_WRAPV (a, b, r, -, __builtin_sub_overflow, INT_SUBTRACT_OVERFLOW) |
| 354 | #define INT_MULTIPLY_WRAPV(a, b, r) \ |
| 355 | _GL_INT_OP_WRAPV (a, b, r, *, __builtin_mul_overflow, INT_MULTIPLY_OVERFLOW) |
| 356 | |
| 357 | /* Nonzero if this compiler has GCC bug 68193 or Clang bug 25390. See: |
| 358 | https://gcc.gnu.org/bugzilla/show_bug.cgi?id=68193 |
| 359 | https://llvm.org/bugs/show_bug.cgi?id=25390 |
| 360 | For now, assume all versions of GCC-like compilers generate bogus |
| 361 | warnings for _Generic. This matters only for older compilers that |
| 362 | lack __builtin_add_overflow. */ |
| 363 | #if __GNUC__ |
| 364 | # define _GL__GENERIC_BOGUS 1 |
| 365 | #else |
| 366 | # define _GL__GENERIC_BOGUS 0 |
| 367 | #endif |
| 368 | |
| 369 | /* Store the low-order bits of A <op> B into *R, where OP specifies |
| 370 | the operation. BUILTIN is the builtin operation, and OVERFLOW the |
| 371 | overflow predicate. Return 1 if the result overflows. See above |
| 372 | for restrictions. */ |
| 373 | #if _GL_HAS_BUILTIN_OVERFLOW |
| 374 | # define _GL_INT_OP_WRAPV(a, b, r, op, builtin, overflow) builtin (a, b, r) |
| 375 | #elif 201112 <= __STDC_VERSION__ && !_GL__GENERIC_BOGUS |
| 376 | # define _GL_INT_OP_WRAPV(a, b, r, op, builtin, overflow) \ |
| 377 | (_Generic \ |
| 378 | (*(r), \ |
| 379 | signed char: \ |
| 380 | _GL_INT_OP_CALC (a, b, r, op, overflow, unsigned int, \ |
| 381 | signed char, SCHAR_MIN, SCHAR_MAX), \ |
| 382 | short int: \ |
| 383 | _GL_INT_OP_CALC (a, b, r, op, overflow, unsigned int, \ |
| 384 | short int, SHRT_MIN, SHRT_MAX), \ |
| 385 | int: \ |
| 386 | _GL_INT_OP_CALC (a, b, r, op, overflow, unsigned int, \ |
| 387 | int, INT_MIN, INT_MAX), \ |
| 388 | long int: \ |
| 389 | _GL_INT_OP_CALC (a, b, r, op, overflow, unsigned long int, \ |
| 390 | long int, LONG_MIN, LONG_MAX), \ |
| 391 | long long int: \ |
| 392 | _GL_INT_OP_CALC (a, b, r, op, overflow, unsigned long long int, \ |
| 393 | long long int, LLONG_MIN, LLONG_MAX))) |
| 394 | #else |
| 395 | # define _GL_INT_OP_WRAPV(a, b, r, op, builtin, overflow) \ |
| 396 | (sizeof *(r) == sizeof (signed char) \ |
| 397 | ? _GL_INT_OP_CALC (a, b, r, op, overflow, unsigned int, \ |
| 398 | signed char, SCHAR_MIN, SCHAR_MAX) \ |
| 399 | : sizeof *(r) == sizeof (short int) \ |
| 400 | ? _GL_INT_OP_CALC (a, b, r, op, overflow, unsigned int, \ |
| 401 | short int, SHRT_MIN, SHRT_MAX) \ |
| 402 | : sizeof *(r) == sizeof (int) \ |
| 403 | ? _GL_INT_OP_CALC (a, b, r, op, overflow, unsigned int, \ |
| 404 | int, INT_MIN, INT_MAX) \ |
| 405 | : _GL_INT_OP_WRAPV_LONGISH(a, b, r, op, overflow)) |
| 406 | # ifdef LLONG_MAX |
| 407 | # define _GL_INT_OP_WRAPV_LONGISH(a, b, r, op, overflow) \ |
| 408 | (sizeof *(r) == sizeof (long int) \ |
| 409 | ? _GL_INT_OP_CALC (a, b, r, op, overflow, unsigned long int, \ |
| 410 | long int, LONG_MIN, LONG_MAX) \ |
| 411 | : _GL_INT_OP_CALC (a, b, r, op, overflow, unsigned long long int, \ |
| 412 | long long int, LLONG_MIN, LLONG_MAX)) |
| 413 | # else |
| 414 | # define _GL_INT_OP_WRAPV_LONGISH(a, b, r, op, overflow) \ |
| 415 | _GL_INT_OP_CALC (a, b, r, op, overflow, unsigned long int, \ |
| 416 | long int, LONG_MIN, LONG_MAX) |
| 417 | # endif |
| 418 | #endif |
| 419 | |
| 420 | /* Store the low-order bits of A <op> B into *R, where the operation |
| 421 | is given by OP. Use the unsigned type UT for calculation to avoid |
| 422 | overflow problems. *R's type is T, with extrema TMIN and TMAX. |
| 423 | T must be a signed integer type. Return 1 if the result overflows. */ |
| 424 | #define _GL_INT_OP_CALC(a, b, r, op, overflow, ut, t, tmin, tmax) \ |
| 425 | (sizeof ((a) op (b)) < sizeof (t) \ |
| 426 | ? _GL_INT_OP_CALC1 ((t) (a), (t) (b), r, op, overflow, ut, t, tmin, tmax) \ |
| 427 | : _GL_INT_OP_CALC1 (a, b, r, op, overflow, ut, t, tmin, tmax)) |
| 428 | #define _GL_INT_OP_CALC1(a, b, r, op, overflow, ut, t, tmin, tmax) \ |
| 429 | ((overflow (a, b) \ |
| 430 | || (EXPR_SIGNED ((a) op (b)) && ((a) op (b)) < (tmin)) \ |
| 431 | || (tmax) < ((a) op (b))) \ |
| 432 | ? (*(r) = _GL_INT_OP_WRAPV_VIA_UNSIGNED (a, b, op, ut, t), 1) \ |
| 433 | : (*(r) = _GL_INT_OP_WRAPV_VIA_UNSIGNED (a, b, op, ut, t), 0)) |
| 434 | |
| 435 | /* Return the low-order bits of A <op> B, where the operation is given |
| 436 | by OP. Use the unsigned type UT for calculation to avoid undefined |
| 437 | behavior on signed integer overflow, and convert the result to type T. |
| 438 | UT is at least as wide as T and is no narrower than unsigned int, |
| 439 | T is two's complement, and there is no padding or trap representations. |
| 440 | Assume that converting UT to T yields the low-order bits, as is |
| 441 | done in all known two's-complement C compilers. E.g., see: |
| 442 | https://gcc.gnu.org/onlinedocs/gcc/Integers-implementation.html |
| 443 | |
| 444 | According to the C standard, converting UT to T yields an |
| 445 | implementation-defined result or signal for values outside T's |
| 446 | range. However, code that works around this theoretical problem |
| 447 | runs afoul of a compiler bug in Oracle Studio 12.3 x86. See: |
| 448 | https://lists.gnu.org/r/bug-gnulib/2017-04/msg00049.html |
| 449 | As the compiler bug is real, don't try to work around the |
| 450 | theoretical problem. */ |
| 451 | |
| 452 | #define _GL_INT_OP_WRAPV_VIA_UNSIGNED(a, b, op, ut, t) \ |
| 453 | ((t) ((ut) (a) op (ut) (b))) |
| 454 | |
| 455 | #endif /* _GL_INTPROPS_H */ |
| 456 | |