1 | /* Convert a 'struct tm' to a time_t value. |
2 | Copyright (C) 1993-2019 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Paul Eggert <eggert@twinsun.com>. |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <https://www.gnu.org/licenses/>. */ |
19 | |
20 | /* The following macros influence what gets defined when this file is compiled: |
21 | |
22 | Macro/expression Which gnulib module This compilation unit |
23 | should define |
24 | |
25 | _LIBC (glibc proper) mktime |
26 | |
27 | NEED_MKTIME_WORKING mktime rpl_mktime |
28 | || NEED_MKTIME_WINDOWS |
29 | |
30 | NEED_MKTIME_INTERNAL mktime-internal mktime_internal |
31 | */ |
32 | |
33 | #ifndef _LIBC |
34 | # include <libc-config.h> |
35 | #endif |
36 | |
37 | /* Assume that leap seconds are possible, unless told otherwise. |
38 | If the host has a 'zic' command with a '-L leapsecondfilename' option, |
39 | then it supports leap seconds; otherwise it probably doesn't. */ |
40 | #ifndef LEAP_SECONDS_POSSIBLE |
41 | # define LEAP_SECONDS_POSSIBLE 1 |
42 | #endif |
43 | |
44 | #include <time.h> |
45 | |
46 | #include <errno.h> |
47 | #include <limits.h> |
48 | #include <stdbool.h> |
49 | #include <stdlib.h> |
50 | #include <string.h> |
51 | |
52 | #include <intprops.h> |
53 | #include <verify.h> |
54 | |
55 | #ifndef NEED_MKTIME_INTERNAL |
56 | # define NEED_MKTIME_INTERNAL 0 |
57 | #endif |
58 | #ifndef NEED_MKTIME_WINDOWS |
59 | # define NEED_MKTIME_WINDOWS 0 |
60 | #endif |
61 | #ifndef NEED_MKTIME_WORKING |
62 | # define NEED_MKTIME_WORKING 0 |
63 | #endif |
64 | |
65 | #include "mktime-internal.h" |
66 | |
67 | #if !defined _LIBC && (NEED_MKTIME_WORKING || NEED_MKTIME_WINDOWS) |
68 | static void |
69 | my_tzset (void) |
70 | { |
71 | # if NEED_MKTIME_WINDOWS |
72 | /* Rectify the value of the environment variable TZ. |
73 | There are four possible kinds of such values: |
74 | - Traditional US time zone names, e.g. "PST8PDT". Syntax: see |
75 | <https://msdn.microsoft.com/en-us/library/90s5c885.aspx> |
76 | - Time zone names based on geography, that contain one or more |
77 | slashes, e.g. "Europe/Moscow". |
78 | - Time zone names based on geography, without slashes, e.g. |
79 | "Singapore". |
80 | - Time zone names that contain explicit DST rules. Syntax: see |
81 | <http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html#tag_08_03> |
82 | The Microsoft CRT understands only the first kind. It produces incorrect |
83 | results if the value of TZ is of the other kinds. |
84 | But in a Cygwin environment, /etc/profile.d/tzset.sh sets TZ to a value |
85 | of the second kind for most geographies, or of the first kind in a few |
86 | other geographies. If it is of the second kind, neutralize it. For the |
87 | Microsoft CRT, an absent or empty TZ means the time zone that the user |
88 | has set in the Windows Control Panel. |
89 | If the value of TZ is of the third or fourth kind -- Cygwin programs |
90 | understand these syntaxes as well --, it does not matter whether we |
91 | neutralize it or not, since these values occur only when a Cygwin user |
92 | has set TZ explicitly; this case is 1. rare and 2. under the user's |
93 | responsibility. */ |
94 | const char *tz = getenv ("TZ" ); |
95 | if (tz != NULL && strchr (tz, '/') != NULL) |
96 | _putenv ("TZ=" ); |
97 | # elif HAVE_TZSET |
98 | tzset (); |
99 | # endif |
100 | } |
101 | # undef __tzset |
102 | # define __tzset() my_tzset () |
103 | #endif |
104 | |
105 | #if defined _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_INTERNAL |
106 | |
107 | /* A signed type that can represent an integer number of years |
108 | multiplied by four times the number of seconds in a year. It is |
109 | needed when converting a tm_year value times the number of seconds |
110 | in a year. The factor of four comes because these products need |
111 | to be subtracted from each other, and sometimes with an offset |
112 | added to them, and then with another timestamp added, without |
113 | worrying about overflow. |
114 | |
115 | Much of the code uses long_int to represent time_t values, to |
116 | lessen the hassle of dealing with platforms where time_t is |
117 | unsigned, and because long_int should suffice to represent all |
118 | time_t values that mktime can generate even on platforms where |
119 | time_t is excessively wide. */ |
120 | |
121 | #if INT_MAX <= LONG_MAX / 4 / 366 / 24 / 60 / 60 |
122 | typedef long int long_int; |
123 | #else |
124 | typedef long long int long_int; |
125 | #endif |
126 | verify (INT_MAX <= TYPE_MAXIMUM (long_int) / 4 / 366 / 24 / 60 / 60); |
127 | |
128 | /* Shift A right by B bits portably, by dividing A by 2**B and |
129 | truncating towards minus infinity. B should be in the range 0 <= B |
130 | <= LONG_INT_BITS - 2, where LONG_INT_BITS is the number of useful |
131 | bits in a long_int. LONG_INT_BITS is at least 32. |
132 | |
133 | ISO C99 says that A >> B is implementation-defined if A < 0. Some |
134 | implementations (e.g., UNICOS 9.0 on a Cray Y-MP EL) don't shift |
135 | right in the usual way when A < 0, so SHR falls back on division if |
136 | ordinary A >> B doesn't seem to be the usual signed shift. */ |
137 | |
138 | static long_int |
139 | shr (long_int a, int b) |
140 | { |
141 | long_int one = 1; |
142 | return (-one >> 1 == -1 |
143 | ? a >> b |
144 | : a / (one << b) - (a % (one << b) < 0)); |
145 | } |
146 | |
147 | /* Bounds for the intersection of time_t and long_int. */ |
148 | |
149 | static long_int const mktime_min |
150 | = ((TYPE_SIGNED (time_t) && TYPE_MINIMUM (time_t) < TYPE_MINIMUM (long_int)) |
151 | ? TYPE_MINIMUM (long_int) : TYPE_MINIMUM (time_t)); |
152 | static long_int const mktime_max |
153 | = (TYPE_MAXIMUM (long_int) < TYPE_MAXIMUM (time_t) |
154 | ? TYPE_MAXIMUM (long_int) : TYPE_MAXIMUM (time_t)); |
155 | |
156 | verify (TYPE_IS_INTEGER (time_t)); |
157 | |
158 | #define EPOCH_YEAR 1970 |
159 | #define TM_YEAR_BASE 1900 |
160 | verify (TM_YEAR_BASE % 100 == 0); |
161 | |
162 | /* Is YEAR + TM_YEAR_BASE a leap year? */ |
163 | static bool |
164 | leapyear (long_int year) |
165 | { |
166 | /* Don't add YEAR to TM_YEAR_BASE, as that might overflow. |
167 | Also, work even if YEAR is negative. */ |
168 | return |
169 | ((year & 3) == 0 |
170 | && (year % 100 != 0 |
171 | || ((year / 100) & 3) == (- (TM_YEAR_BASE / 100) & 3))); |
172 | } |
173 | |
174 | /* How many days come before each month (0-12). */ |
175 | #ifndef _LIBC |
176 | static |
177 | #endif |
178 | const unsigned short int __mon_yday[2][13] = |
179 | { |
180 | /* Normal years. */ |
181 | { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }, |
182 | /* Leap years. */ |
183 | { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 } |
184 | }; |
185 | |
186 | |
187 | /* Do the values A and B differ according to the rules for tm_isdst? |
188 | A and B differ if one is zero and the other positive. */ |
189 | static bool |
190 | isdst_differ (int a, int b) |
191 | { |
192 | return (!a != !b) && (0 <= a) && (0 <= b); |
193 | } |
194 | |
195 | /* Return an integer value measuring (YEAR1-YDAY1 HOUR1:MIN1:SEC1) - |
196 | (YEAR0-YDAY0 HOUR0:MIN0:SEC0) in seconds, assuming that the clocks |
197 | were not adjusted between the timestamps. |
198 | |
199 | The YEAR values uses the same numbering as TP->tm_year. Values |
200 | need not be in the usual range. However, YEAR1 - YEAR0 must not |
201 | overflow even when multiplied by three times the number of seconds |
202 | in a year, and likewise for YDAY1 - YDAY0 and three times the |
203 | number of seconds in a day. */ |
204 | |
205 | static long_int |
206 | ydhms_diff (long_int year1, long_int yday1, int hour1, int min1, int sec1, |
207 | int year0, int yday0, int hour0, int min0, int sec0) |
208 | { |
209 | verify (-1 / 2 == 0); |
210 | |
211 | /* Compute intervening leap days correctly even if year is negative. |
212 | Take care to avoid integer overflow here. */ |
213 | int a4 = shr (year1, 2) + shr (TM_YEAR_BASE, 2) - ! (year1 & 3); |
214 | int b4 = shr (year0, 2) + shr (TM_YEAR_BASE, 2) - ! (year0 & 3); |
215 | int a100 = a4 / 25 - (a4 % 25 < 0); |
216 | int b100 = b4 / 25 - (b4 % 25 < 0); |
217 | int a400 = shr (a100, 2); |
218 | int b400 = shr (b100, 2); |
219 | int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400); |
220 | |
221 | /* Compute the desired time without overflowing. */ |
222 | long_int years = year1 - year0; |
223 | long_int days = 365 * years + yday1 - yday0 + intervening_leap_days; |
224 | long_int hours = 24 * days + hour1 - hour0; |
225 | long_int minutes = 60 * hours + min1 - min0; |
226 | long_int seconds = 60 * minutes + sec1 - sec0; |
227 | return seconds; |
228 | } |
229 | |
230 | /* Return the average of A and B, even if A + B would overflow. |
231 | Round toward positive infinity. */ |
232 | static long_int |
233 | long_int_avg (long_int a, long_int b) |
234 | { |
235 | return shr (a, 1) + shr (b, 1) + ((a | b) & 1); |
236 | } |
237 | |
238 | /* Return a long_int value corresponding to (YEAR-YDAY HOUR:MIN:SEC) |
239 | minus *TP seconds, assuming no clock adjustments occurred between |
240 | the two timestamps. |
241 | |
242 | YEAR and YDAY must not be so large that multiplying them by three times the |
243 | number of seconds in a year (or day, respectively) would overflow long_int. |
244 | *TP should be in the usual range. */ |
245 | static long_int |
246 | tm_diff (long_int year, long_int yday, int hour, int min, int sec, |
247 | struct tm const *tp) |
248 | { |
249 | return ydhms_diff (year, yday, hour, min, sec, |
250 | tp->tm_year, tp->tm_yday, |
251 | tp->tm_hour, tp->tm_min, tp->tm_sec); |
252 | } |
253 | |
254 | /* Use CONVERT to convert T to a struct tm value in *TM. T must be in |
255 | range for time_t. Return TM if successful, NULL (setting errno) on |
256 | failure. */ |
257 | static struct tm * |
258 | convert_time (struct tm *(*convert) (const time_t *, struct tm *), |
259 | long_int t, struct tm *tm) |
260 | { |
261 | time_t x = t; |
262 | return convert (&x, tm); |
263 | } |
264 | |
265 | /* Use CONVERT to convert *T to a broken down time in *TP. |
266 | If *T is out of range for conversion, adjust it so that |
267 | it is the nearest in-range value and then convert that. |
268 | A value is in range if it fits in both time_t and long_int. |
269 | Return TP on success, NULL (setting errno) on failure. */ |
270 | static struct tm * |
271 | ranged_convert (struct tm *(*convert) (const time_t *, struct tm *), |
272 | long_int *t, struct tm *tp) |
273 | { |
274 | long_int t1 = (*t < mktime_min ? mktime_min |
275 | : *t <= mktime_max ? *t : mktime_max); |
276 | struct tm *r = convert_time (convert, t1, tp); |
277 | if (r) |
278 | { |
279 | *t = t1; |
280 | return r; |
281 | } |
282 | if (errno != EOVERFLOW) |
283 | return NULL; |
284 | |
285 | long_int bad = t1; |
286 | long_int ok = 0; |
287 | struct tm oktm; oktm.tm_sec = -1; |
288 | |
289 | /* BAD is a known out-of-range value, and OK is a known in-range one. |
290 | Use binary search to narrow the range between BAD and OK until |
291 | they differ by 1. */ |
292 | while (true) |
293 | { |
294 | long_int mid = long_int_avg (ok, bad); |
295 | if (mid == ok || mid == bad) |
296 | break; |
297 | if (convert_time (convert, mid, tp)) |
298 | ok = mid, oktm = *tp; |
299 | else if (errno != EOVERFLOW) |
300 | return NULL; |
301 | else |
302 | bad = mid; |
303 | } |
304 | |
305 | if (oktm.tm_sec < 0) |
306 | return NULL; |
307 | *t = ok; |
308 | *tp = oktm; |
309 | return tp; |
310 | } |
311 | |
312 | |
313 | /* Convert *TP to a time_t value, inverting |
314 | the monotonic and mostly-unit-linear conversion function CONVERT. |
315 | Use *OFFSET to keep track of a guess at the offset of the result, |
316 | compared to what the result would be for UTC without leap seconds. |
317 | If *OFFSET's guess is correct, only one CONVERT call is needed. |
318 | If successful, set *TP to the canonicalized struct tm; |
319 | otherwise leave *TP alone, return ((time_t) -1) and set errno. |
320 | This function is external because it is used also by timegm.c. */ |
321 | time_t |
322 | __mktime_internal (struct tm *tp, |
323 | struct tm *(*convert) (const time_t *, struct tm *), |
324 | mktime_offset_t *offset) |
325 | { |
326 | struct tm tm; |
327 | |
328 | /* The maximum number of probes (calls to CONVERT) should be enough |
329 | to handle any combinations of time zone rule changes, solar time, |
330 | leap seconds, and oscillations around a spring-forward gap. |
331 | POSIX.1 prohibits leap seconds, but some hosts have them anyway. */ |
332 | int remaining_probes = 6; |
333 | |
334 | /* Time requested. Copy it in case CONVERT modifies *TP; this can |
335 | occur if TP is localtime's returned value and CONVERT is localtime. */ |
336 | int sec = tp->tm_sec; |
337 | int min = tp->tm_min; |
338 | int hour = tp->tm_hour; |
339 | int mday = tp->tm_mday; |
340 | int mon = tp->tm_mon; |
341 | int year_requested = tp->tm_year; |
342 | int isdst = tp->tm_isdst; |
343 | |
344 | /* 1 if the previous probe was DST. */ |
345 | int dst2 = 0; |
346 | |
347 | /* Ensure that mon is in range, and set year accordingly. */ |
348 | int mon_remainder = mon % 12; |
349 | int negative_mon_remainder = mon_remainder < 0; |
350 | int mon_years = mon / 12 - negative_mon_remainder; |
351 | long_int lyear_requested = year_requested; |
352 | long_int year = lyear_requested + mon_years; |
353 | |
354 | /* The other values need not be in range: |
355 | the remaining code handles overflows correctly. */ |
356 | |
357 | /* Calculate day of year from year, month, and day of month. |
358 | The result need not be in range. */ |
359 | int mon_yday = ((__mon_yday[leapyear (year)] |
360 | [mon_remainder + 12 * negative_mon_remainder]) |
361 | - 1); |
362 | long_int lmday = mday; |
363 | long_int yday = mon_yday + lmday; |
364 | |
365 | mktime_offset_t off = *offset; |
366 | int negative_offset_guess; |
367 | |
368 | int sec_requested = sec; |
369 | |
370 | if (LEAP_SECONDS_POSSIBLE) |
371 | { |
372 | /* Handle out-of-range seconds specially, |
373 | since ydhms_diff assumes every minute has 60 seconds. */ |
374 | if (sec < 0) |
375 | sec = 0; |
376 | if (59 < sec) |
377 | sec = 59; |
378 | } |
379 | |
380 | /* Invert CONVERT by probing. First assume the same offset as last |
381 | time. */ |
382 | |
383 | INT_SUBTRACT_WRAPV (0, off, &negative_offset_guess); |
384 | long_int t0 = ydhms_diff (year, yday, hour, min, sec, |
385 | EPOCH_YEAR - TM_YEAR_BASE, 0, 0, 0, |
386 | negative_offset_guess); |
387 | long_int t = t0, t1 = t0, t2 = t0; |
388 | |
389 | /* Repeatedly use the error to improve the guess. */ |
390 | |
391 | while (true) |
392 | { |
393 | if (! ranged_convert (convert, &t, &tm)) |
394 | return -1; |
395 | long_int dt = tm_diff (year, yday, hour, min, sec, &tm); |
396 | if (dt == 0) |
397 | break; |
398 | |
399 | if (t == t1 && t != t2 |
400 | && (tm.tm_isdst < 0 |
401 | || (isdst < 0 |
402 | ? dst2 <= (tm.tm_isdst != 0) |
403 | : (isdst != 0) != (tm.tm_isdst != 0)))) |
404 | /* We can't possibly find a match, as we are oscillating |
405 | between two values. The requested time probably falls |
406 | within a spring-forward gap of size DT. Follow the common |
407 | practice in this case, which is to return a time that is DT |
408 | away from the requested time, preferring a time whose |
409 | tm_isdst differs from the requested value. (If no tm_isdst |
410 | was requested and only one of the two values has a nonzero |
411 | tm_isdst, prefer that value.) In practice, this is more |
412 | useful than returning -1. */ |
413 | goto offset_found; |
414 | |
415 | remaining_probes--; |
416 | if (remaining_probes == 0) |
417 | { |
418 | __set_errno (EOVERFLOW); |
419 | return -1; |
420 | } |
421 | |
422 | t1 = t2, t2 = t, t += dt, dst2 = tm.tm_isdst != 0; |
423 | } |
424 | |
425 | /* We have a match. Check whether tm.tm_isdst has the requested |
426 | value, if any. */ |
427 | if (isdst_differ (isdst, tm.tm_isdst)) |
428 | { |
429 | /* tm.tm_isdst has the wrong value. Look for a neighboring |
430 | time with the right value, and use its UTC offset. |
431 | |
432 | Heuristic: probe the adjacent timestamps in both directions, |
433 | looking for the desired isdst. This should work for all real |
434 | time zone histories in the tz database. */ |
435 | |
436 | /* Distance between probes when looking for a DST boundary. In |
437 | tzdata2003a, the shortest period of DST is 601200 seconds |
438 | (e.g., America/Recife starting 2000-10-08 01:00), and the |
439 | shortest period of non-DST surrounded by DST is 694800 |
440 | seconds (Africa/Tunis starting 1943-04-17 01:00). Use the |
441 | minimum of these two values, so we don't miss these short |
442 | periods when probing. */ |
443 | int stride = 601200; |
444 | |
445 | /* The longest period of DST in tzdata2003a is 536454000 seconds |
446 | (e.g., America/Jujuy starting 1946-10-01 01:00). The longest |
447 | period of non-DST is much longer, but it makes no real sense |
448 | to search for more than a year of non-DST, so use the DST |
449 | max. */ |
450 | int duration_max = 536454000; |
451 | |
452 | /* Search in both directions, so the maximum distance is half |
453 | the duration; add the stride to avoid off-by-1 problems. */ |
454 | int delta_bound = duration_max / 2 + stride; |
455 | |
456 | int delta, direction; |
457 | |
458 | for (delta = stride; delta < delta_bound; delta += stride) |
459 | for (direction = -1; direction <= 1; direction += 2) |
460 | { |
461 | long_int ot; |
462 | if (! INT_ADD_WRAPV (t, delta * direction, &ot)) |
463 | { |
464 | struct tm otm; |
465 | if (! ranged_convert (convert, &ot, &otm)) |
466 | return -1; |
467 | if (! isdst_differ (isdst, otm.tm_isdst)) |
468 | { |
469 | /* We found the desired tm_isdst. |
470 | Extrapolate back to the desired time. */ |
471 | long_int gt = ot + tm_diff (year, yday, hour, min, sec, |
472 | &otm); |
473 | if (mktime_min <= gt && gt <= mktime_max) |
474 | { |
475 | if (convert_time (convert, gt, &tm)) |
476 | { |
477 | t = gt; |
478 | goto offset_found; |
479 | } |
480 | if (errno != EOVERFLOW) |
481 | return -1; |
482 | } |
483 | } |
484 | } |
485 | } |
486 | |
487 | __set_errno (EOVERFLOW); |
488 | return -1; |
489 | } |
490 | |
491 | offset_found: |
492 | /* Set *OFFSET to the low-order bits of T - T0 - NEGATIVE_OFFSET_GUESS. |
493 | This is just a heuristic to speed up the next mktime call, and |
494 | correctness is unaffected if integer overflow occurs here. */ |
495 | INT_SUBTRACT_WRAPV (t, t0, offset); |
496 | INT_SUBTRACT_WRAPV (*offset, negative_offset_guess, offset); |
497 | |
498 | if (LEAP_SECONDS_POSSIBLE && sec_requested != tm.tm_sec) |
499 | { |
500 | /* Adjust time to reflect the tm_sec requested, not the normalized value. |
501 | Also, repair any damage from a false match due to a leap second. */ |
502 | long_int sec_adjustment = sec == 0 && tm.tm_sec == 60; |
503 | sec_adjustment -= sec; |
504 | sec_adjustment += sec_requested; |
505 | if (INT_ADD_WRAPV (t, sec_adjustment, &t) |
506 | || ! (mktime_min <= t && t <= mktime_max)) |
507 | { |
508 | __set_errno (EOVERFLOW); |
509 | return -1; |
510 | } |
511 | if (! convert_time (convert, t, &tm)) |
512 | return -1; |
513 | } |
514 | |
515 | *tp = tm; |
516 | return t; |
517 | } |
518 | |
519 | #endif /* _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_INTERNAL */ |
520 | |
521 | #if defined _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_WINDOWS |
522 | |
523 | /* Convert *TP to a time_t value. */ |
524 | time_t |
525 | mktime (struct tm *tp) |
526 | { |
527 | /* POSIX.1 8.1.1 requires that whenever mktime() is called, the |
528 | time zone names contained in the external variable 'tzname' shall |
529 | be set as if the tzset() function had been called. */ |
530 | __tzset (); |
531 | |
532 | # if defined _LIBC || NEED_MKTIME_WORKING |
533 | static mktime_offset_t localtime_offset; |
534 | return __mktime_internal (tp, __localtime_r, &localtime_offset); |
535 | # else |
536 | # undef mktime |
537 | return mktime (tp); |
538 | # endif |
539 | } |
540 | #endif /* _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_WINDOWS */ |
541 | |
542 | #ifdef weak_alias |
543 | weak_alias (mktime, timelocal) |
544 | #endif |
545 | |
546 | #ifdef _LIBC |
547 | libc_hidden_def (mktime) |
548 | libc_hidden_weak (timelocal) |
549 | #endif |
550 | |