1 | /* Convert string representing a number to float value, using given locale. |
2 | Copyright (C) 1997-2019 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <http://www.gnu.org/licenses/>. */ |
19 | |
20 | #include <bits/floatn.h> |
21 | |
22 | #ifdef FLOAT |
23 | # define BUILD_DOUBLE 0 |
24 | #else |
25 | # define BUILD_DOUBLE 1 |
26 | #endif |
27 | |
28 | #if BUILD_DOUBLE |
29 | # if __HAVE_FLOAT64 && !__HAVE_DISTINCT_FLOAT64 |
30 | # define strtof64_l __hide_strtof64_l |
31 | # define wcstof64_l __hide_wcstof64_l |
32 | # endif |
33 | # if __HAVE_FLOAT32X && !__HAVE_DISTINCT_FLOAT32X |
34 | # define strtof32x_l __hide_strtof32x_l |
35 | # define wcstof32x_l __hide_wcstof32x_l |
36 | # endif |
37 | #endif |
38 | |
39 | #include <locale.h> |
40 | |
41 | extern double ____strtod_l_internal (const char *, char **, int, locale_t); |
42 | |
43 | /* Configuration part. These macros are defined by `strtold.c', |
44 | `strtof.c', `wcstod.c', `wcstold.c', and `wcstof.c' to produce the |
45 | `long double' and `float' versions of the reader. */ |
46 | #ifndef FLOAT |
47 | # include <math_ldbl_opt.h> |
48 | # define FLOAT double |
49 | # define FLT DBL |
50 | # ifdef USE_WIDE_CHAR |
51 | # define STRTOF wcstod_l |
52 | # define __STRTOF __wcstod_l |
53 | # define STRTOF_NAN __wcstod_nan |
54 | # else |
55 | # define STRTOF strtod_l |
56 | # define __STRTOF __strtod_l |
57 | # define STRTOF_NAN __strtod_nan |
58 | # endif |
59 | # define MPN2FLOAT __mpn_construct_double |
60 | # define FLOAT_HUGE_VAL HUGE_VAL |
61 | #endif |
62 | /* End of configuration part. */ |
63 | |
64 | #include <ctype.h> |
65 | #include <errno.h> |
66 | #include <float.h> |
67 | #include "../locale/localeinfo.h" |
68 | #include <math.h> |
69 | #include <math-barriers.h> |
70 | #include <math-narrow-eval.h> |
71 | #include <stdlib.h> |
72 | #include <string.h> |
73 | #include <stdint.h> |
74 | #include <rounding-mode.h> |
75 | #include <tininess.h> |
76 | |
77 | /* The gmp headers need some configuration frobs. */ |
78 | #define HAVE_ALLOCA 1 |
79 | |
80 | /* Include gmp-mparam.h first, such that definitions of _SHORT_LIMB |
81 | and _LONG_LONG_LIMB in it can take effect into gmp.h. */ |
82 | #include <gmp-mparam.h> |
83 | #include <gmp.h> |
84 | #include "gmp-impl.h" |
85 | #include "longlong.h" |
86 | #include "fpioconst.h" |
87 | |
88 | #include <assert.h> |
89 | |
90 | |
91 | /* We use this code for the extended locale handling where the |
92 | function gets as an additional argument the locale which has to be |
93 | used. To access the values we have to redefine the _NL_CURRENT and |
94 | _NL_CURRENT_WORD macros. */ |
95 | #undef _NL_CURRENT |
96 | #define _NL_CURRENT(category, item) \ |
97 | (current->values[_NL_ITEM_INDEX (item)].string) |
98 | #undef _NL_CURRENT_WORD |
99 | #define _NL_CURRENT_WORD(category, item) \ |
100 | ((uint32_t) current->values[_NL_ITEM_INDEX (item)].word) |
101 | |
102 | #if defined _LIBC || defined HAVE_WCHAR_H |
103 | # include <wchar.h> |
104 | #endif |
105 | |
106 | #ifdef USE_WIDE_CHAR |
107 | # include <wctype.h> |
108 | # define STRING_TYPE wchar_t |
109 | # define CHAR_TYPE wint_t |
110 | # define L_(Ch) L##Ch |
111 | # define ISSPACE(Ch) __iswspace_l ((Ch), loc) |
112 | # define ISDIGIT(Ch) __iswdigit_l ((Ch), loc) |
113 | # define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc) |
114 | # define TOLOWER(Ch) __towlower_l ((Ch), loc) |
115 | # define TOLOWER_C(Ch) __towlower_l ((Ch), _nl_C_locobj_ptr) |
116 | # define STRNCASECMP(S1, S2, N) \ |
117 | __wcsncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr) |
118 | #else |
119 | # define STRING_TYPE char |
120 | # define CHAR_TYPE char |
121 | # define L_(Ch) Ch |
122 | # define ISSPACE(Ch) __isspace_l ((Ch), loc) |
123 | # define ISDIGIT(Ch) __isdigit_l ((Ch), loc) |
124 | # define ISXDIGIT(Ch) __isxdigit_l ((Ch), loc) |
125 | # define TOLOWER(Ch) __tolower_l ((Ch), loc) |
126 | # define TOLOWER_C(Ch) __tolower_l ((Ch), _nl_C_locobj_ptr) |
127 | # define STRNCASECMP(S1, S2, N) \ |
128 | __strncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr) |
129 | #endif |
130 | |
131 | |
132 | /* Constants we need from float.h; select the set for the FLOAT precision. */ |
133 | #define MANT_DIG PASTE(FLT,_MANT_DIG) |
134 | #define DIG PASTE(FLT,_DIG) |
135 | #define MAX_EXP PASTE(FLT,_MAX_EXP) |
136 | #define MIN_EXP PASTE(FLT,_MIN_EXP) |
137 | #define MAX_10_EXP PASTE(FLT,_MAX_10_EXP) |
138 | #define MIN_10_EXP PASTE(FLT,_MIN_10_EXP) |
139 | #define MAX_VALUE PASTE(FLT,_MAX) |
140 | #define MIN_VALUE PASTE(FLT,_MIN) |
141 | |
142 | /* Extra macros required to get FLT expanded before the pasting. */ |
143 | #define PASTE(a,b) PASTE1(a,b) |
144 | #define PASTE1(a,b) a##b |
145 | |
146 | /* Function to construct a floating point number from an MP integer |
147 | containing the fraction bits, a base 2 exponent, and a sign flag. */ |
148 | extern FLOAT MPN2FLOAT (mp_srcptr mpn, int exponent, int negative); |
149 | |
150 | /* Definitions according to limb size used. */ |
151 | #if BITS_PER_MP_LIMB == 32 |
152 | # define MAX_DIG_PER_LIMB 9 |
153 | # define MAX_FAC_PER_LIMB 1000000000UL |
154 | #elif BITS_PER_MP_LIMB == 64 |
155 | # define MAX_DIG_PER_LIMB 19 |
156 | # define MAX_FAC_PER_LIMB 10000000000000000000ULL |
157 | #else |
158 | # error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for" |
159 | #endif |
160 | |
161 | extern const mp_limb_t _tens_in_limb[MAX_DIG_PER_LIMB + 1]; |
162 | |
163 | #ifndef howmany |
164 | #define howmany(x,y) (((x)+((y)-1))/(y)) |
165 | #endif |
166 | #define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; }) |
167 | |
168 | #define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB) |
169 | |
170 | #define RETURN(val,end) \ |
171 | do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end); \ |
172 | return val; } while (0) |
173 | |
174 | /* Maximum size necessary for mpn integers to hold floating point |
175 | numbers. The largest number we need to hold is 10^n where 2^-n is |
176 | 1/4 ulp of the smallest representable value (that is, n = MANT_DIG |
177 | - MIN_EXP + 2). Approximate using 10^3 < 2^10. */ |
178 | #define MPNSIZE (howmany (1 + ((MANT_DIG - MIN_EXP + 2) * 10) / 3, \ |
179 | BITS_PER_MP_LIMB) + 2) |
180 | /* Declare an mpn integer variable that big. */ |
181 | #define MPN_VAR(name) mp_limb_t name[MPNSIZE]; mp_size_t name##size |
182 | /* Copy an mpn integer value. */ |
183 | #define MPN_ASSIGN(dst, src) \ |
184 | memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t)) |
185 | |
186 | |
187 | /* Set errno and return an overflowing value with sign specified by |
188 | NEGATIVE. */ |
189 | static FLOAT |
190 | overflow_value (int negative) |
191 | { |
192 | __set_errno (ERANGE); |
193 | FLOAT result = math_narrow_eval ((negative ? -MAX_VALUE : MAX_VALUE) |
194 | * MAX_VALUE); |
195 | return result; |
196 | } |
197 | |
198 | |
199 | /* Set errno and return an underflowing value with sign specified by |
200 | NEGATIVE. */ |
201 | static FLOAT |
202 | underflow_value (int negative) |
203 | { |
204 | __set_errno (ERANGE); |
205 | FLOAT result = math_narrow_eval ((negative ? -MIN_VALUE : MIN_VALUE) |
206 | * MIN_VALUE); |
207 | return result; |
208 | } |
209 | |
210 | |
211 | /* Return a floating point number of the needed type according to the given |
212 | multi-precision number after possible rounding. */ |
213 | static FLOAT |
214 | round_and_return (mp_limb_t *retval, intmax_t exponent, int negative, |
215 | mp_limb_t round_limb, mp_size_t round_bit, int more_bits) |
216 | { |
217 | int mode = get_rounding_mode (); |
218 | |
219 | if (exponent < MIN_EXP - 1) |
220 | { |
221 | if (exponent < MIN_EXP - 1 - MANT_DIG) |
222 | return underflow_value (negative); |
223 | |
224 | mp_size_t shift = MIN_EXP - 1 - exponent; |
225 | bool is_tiny = true; |
226 | |
227 | more_bits |= (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0; |
228 | if (shift == MANT_DIG) |
229 | /* This is a special case to handle the very seldom case where |
230 | the mantissa will be empty after the shift. */ |
231 | { |
232 | int i; |
233 | |
234 | round_limb = retval[RETURN_LIMB_SIZE - 1]; |
235 | round_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB; |
236 | for (i = 0; i < RETURN_LIMB_SIZE - 1; ++i) |
237 | more_bits |= retval[i] != 0; |
238 | MPN_ZERO (retval, RETURN_LIMB_SIZE); |
239 | } |
240 | else if (shift >= BITS_PER_MP_LIMB) |
241 | { |
242 | int i; |
243 | |
244 | round_limb = retval[(shift - 1) / BITS_PER_MP_LIMB]; |
245 | round_bit = (shift - 1) % BITS_PER_MP_LIMB; |
246 | for (i = 0; i < (shift - 1) / BITS_PER_MP_LIMB; ++i) |
247 | more_bits |= retval[i] != 0; |
248 | more_bits |= ((round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) |
249 | != 0); |
250 | |
251 | /* __mpn_rshift requires 0 < shift < BITS_PER_MP_LIMB. */ |
252 | if ((shift % BITS_PER_MP_LIMB) != 0) |
253 | (void) __mpn_rshift (retval, &retval[shift / BITS_PER_MP_LIMB], |
254 | RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB), |
255 | shift % BITS_PER_MP_LIMB); |
256 | else |
257 | for (i = 0; i < RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB); i++) |
258 | retval[i] = retval[i + (shift / BITS_PER_MP_LIMB)]; |
259 | MPN_ZERO (&retval[RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB)], |
260 | shift / BITS_PER_MP_LIMB); |
261 | } |
262 | else if (shift > 0) |
263 | { |
264 | if (TININESS_AFTER_ROUNDING && shift == 1) |
265 | { |
266 | /* Whether the result counts as tiny depends on whether, |
267 | after rounding to the normal precision, it still has |
268 | a subnormal exponent. */ |
269 | mp_limb_t retval_normal[RETURN_LIMB_SIZE]; |
270 | if (round_away (negative, |
271 | (retval[0] & 1) != 0, |
272 | (round_limb |
273 | & (((mp_limb_t) 1) << round_bit)) != 0, |
274 | (more_bits |
275 | || ((round_limb |
276 | & ((((mp_limb_t) 1) << round_bit) - 1)) |
277 | != 0)), |
278 | mode)) |
279 | { |
280 | mp_limb_t cy = __mpn_add_1 (retval_normal, retval, |
281 | RETURN_LIMB_SIZE, 1); |
282 | |
283 | if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) || |
284 | ((MANT_DIG % BITS_PER_MP_LIMB) != 0 && |
285 | ((retval_normal[RETURN_LIMB_SIZE - 1] |
286 | & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB))) |
287 | != 0))) |
288 | is_tiny = false; |
289 | } |
290 | } |
291 | round_limb = retval[0]; |
292 | round_bit = shift - 1; |
293 | (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, shift); |
294 | } |
295 | /* This is a hook for the m68k long double format, where the |
296 | exponent bias is the same for normalized and denormalized |
297 | numbers. */ |
298 | #ifndef DENORM_EXP |
299 | # define DENORM_EXP (MIN_EXP - 2) |
300 | #endif |
301 | exponent = DENORM_EXP; |
302 | if (is_tiny |
303 | && ((round_limb & (((mp_limb_t) 1) << round_bit)) != 0 |
304 | || more_bits |
305 | || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0)) |
306 | { |
307 | __set_errno (ERANGE); |
308 | FLOAT force_underflow = MIN_VALUE * MIN_VALUE; |
309 | math_force_eval (force_underflow); |
310 | } |
311 | } |
312 | |
313 | if (exponent >= MAX_EXP) |
314 | goto overflow; |
315 | |
316 | bool half_bit = (round_limb & (((mp_limb_t) 1) << round_bit)) != 0; |
317 | bool more_bits_nonzero |
318 | = (more_bits |
319 | || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0); |
320 | if (round_away (negative, |
321 | (retval[0] & 1) != 0, |
322 | half_bit, |
323 | more_bits_nonzero, |
324 | mode)) |
325 | { |
326 | mp_limb_t cy = __mpn_add_1 (retval, retval, RETURN_LIMB_SIZE, 1); |
327 | |
328 | if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) || |
329 | ((MANT_DIG % BITS_PER_MP_LIMB) != 0 && |
330 | (retval[RETURN_LIMB_SIZE - 1] |
331 | & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB))) != 0)) |
332 | { |
333 | ++exponent; |
334 | (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, 1); |
335 | retval[RETURN_LIMB_SIZE - 1] |
336 | |= ((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB); |
337 | } |
338 | else if (exponent == DENORM_EXP |
339 | && (retval[RETURN_LIMB_SIZE - 1] |
340 | & (((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB))) |
341 | != 0) |
342 | /* The number was denormalized but now normalized. */ |
343 | exponent = MIN_EXP - 1; |
344 | } |
345 | |
346 | if (exponent >= MAX_EXP) |
347 | overflow: |
348 | return overflow_value (negative); |
349 | |
350 | if (half_bit || more_bits_nonzero) |
351 | { |
352 | FLOAT force_inexact = (FLOAT) 1 + MIN_VALUE; |
353 | math_force_eval (force_inexact); |
354 | } |
355 | return MPN2FLOAT (retval, exponent, negative); |
356 | } |
357 | |
358 | |
359 | /* Read a multi-precision integer starting at STR with exactly DIGCNT digits |
360 | into N. Return the size of the number limbs in NSIZE at the first |
361 | character od the string that is not part of the integer as the function |
362 | value. If the EXPONENT is small enough to be taken as an additional |
363 | factor for the resulting number (see code) multiply by it. */ |
364 | static const STRING_TYPE * |
365 | str_to_mpn (const STRING_TYPE *str, int digcnt, mp_limb_t *n, mp_size_t *nsize, |
366 | intmax_t *exponent |
367 | #ifndef USE_WIDE_CHAR |
368 | , const char *decimal, size_t decimal_len, const char *thousands |
369 | #endif |
370 | |
371 | ) |
372 | { |
373 | /* Number of digits for actual limb. */ |
374 | int cnt = 0; |
375 | mp_limb_t low = 0; |
376 | mp_limb_t start; |
377 | |
378 | *nsize = 0; |
379 | assert (digcnt > 0); |
380 | do |
381 | { |
382 | if (cnt == MAX_DIG_PER_LIMB) |
383 | { |
384 | if (*nsize == 0) |
385 | { |
386 | n[0] = low; |
387 | *nsize = 1; |
388 | } |
389 | else |
390 | { |
391 | mp_limb_t cy; |
392 | cy = __mpn_mul_1 (n, n, *nsize, MAX_FAC_PER_LIMB); |
393 | cy += __mpn_add_1 (n, n, *nsize, low); |
394 | if (cy != 0) |
395 | { |
396 | assert (*nsize < MPNSIZE); |
397 | n[*nsize] = cy; |
398 | ++(*nsize); |
399 | } |
400 | } |
401 | cnt = 0; |
402 | low = 0; |
403 | } |
404 | |
405 | /* There might be thousands separators or radix characters in |
406 | the string. But these all can be ignored because we know the |
407 | format of the number is correct and we have an exact number |
408 | of characters to read. */ |
409 | #ifdef USE_WIDE_CHAR |
410 | if (*str < L'0' || *str > L'9') |
411 | ++str; |
412 | #else |
413 | if (*str < '0' || *str > '9') |
414 | { |
415 | int inner = 0; |
416 | if (thousands != NULL && *str == *thousands |
417 | && ({ for (inner = 1; thousands[inner] != '\0'; ++inner) |
418 | if (thousands[inner] != str[inner]) |
419 | break; |
420 | thousands[inner] == '\0'; })) |
421 | str += inner; |
422 | else |
423 | str += decimal_len; |
424 | } |
425 | #endif |
426 | low = low * 10 + *str++ - L_('0'); |
427 | ++cnt; |
428 | } |
429 | while (--digcnt > 0); |
430 | |
431 | if (*exponent > 0 && *exponent <= MAX_DIG_PER_LIMB - cnt) |
432 | { |
433 | low *= _tens_in_limb[*exponent]; |
434 | start = _tens_in_limb[cnt + *exponent]; |
435 | *exponent = 0; |
436 | } |
437 | else |
438 | start = _tens_in_limb[cnt]; |
439 | |
440 | if (*nsize == 0) |
441 | { |
442 | n[0] = low; |
443 | *nsize = 1; |
444 | } |
445 | else |
446 | { |
447 | mp_limb_t cy; |
448 | cy = __mpn_mul_1 (n, n, *nsize, start); |
449 | cy += __mpn_add_1 (n, n, *nsize, low); |
450 | if (cy != 0) |
451 | { |
452 | assert (*nsize < MPNSIZE); |
453 | n[(*nsize)++] = cy; |
454 | } |
455 | } |
456 | |
457 | return str; |
458 | } |
459 | |
460 | |
461 | /* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits |
462 | with the COUNT most significant bits of LIMB. |
463 | |
464 | Implemented as a macro, so that __builtin_constant_p works even at -O0. |
465 | |
466 | Tege doesn't like this macro so I have to write it here myself. :) |
467 | --drepper */ |
468 | #define __mpn_lshift_1(ptr, size, count, limb) \ |
469 | do \ |
470 | { \ |
471 | mp_limb_t *__ptr = (ptr); \ |
472 | if (__builtin_constant_p (count) && count == BITS_PER_MP_LIMB) \ |
473 | { \ |
474 | mp_size_t i; \ |
475 | for (i = (size) - 1; i > 0; --i) \ |
476 | __ptr[i] = __ptr[i - 1]; \ |
477 | __ptr[0] = (limb); \ |
478 | } \ |
479 | else \ |
480 | { \ |
481 | /* We assume count > 0 && count < BITS_PER_MP_LIMB here. */ \ |
482 | unsigned int __count = (count); \ |
483 | (void) __mpn_lshift (__ptr, __ptr, size, __count); \ |
484 | __ptr[0] |= (limb) >> (BITS_PER_MP_LIMB - __count); \ |
485 | } \ |
486 | } \ |
487 | while (0) |
488 | |
489 | |
490 | #define INTERNAL(x) INTERNAL1(x) |
491 | #define INTERNAL1(x) __##x##_internal |
492 | #ifndef ____STRTOF_INTERNAL |
493 | # define ____STRTOF_INTERNAL INTERNAL (__STRTOF) |
494 | #endif |
495 | |
496 | /* This file defines a function to check for correct grouping. */ |
497 | #include "grouping.h" |
498 | |
499 | |
500 | /* Return a floating point number with the value of the given string NPTR. |
501 | Set *ENDPTR to the character after the last used one. If the number is |
502 | smaller than the smallest representable number, set `errno' to ERANGE and |
503 | return 0.0. If the number is too big to be represented, set `errno' to |
504 | ERANGE and return HUGE_VAL with the appropriate sign. */ |
505 | FLOAT |
506 | ____STRTOF_INTERNAL (const STRING_TYPE *nptr, STRING_TYPE **endptr, int group, |
507 | locale_t loc) |
508 | { |
509 | int negative; /* The sign of the number. */ |
510 | MPN_VAR (num); /* MP representation of the number. */ |
511 | intmax_t exponent; /* Exponent of the number. */ |
512 | |
513 | /* Numbers starting `0X' or `0x' have to be processed with base 16. */ |
514 | int base = 10; |
515 | |
516 | /* When we have to compute fractional digits we form a fraction with a |
517 | second multi-precision number (and we sometimes need a second for |
518 | temporary results). */ |
519 | MPN_VAR (den); |
520 | |
521 | /* Representation for the return value. */ |
522 | mp_limb_t retval[RETURN_LIMB_SIZE]; |
523 | /* Number of bits currently in result value. */ |
524 | int bits; |
525 | |
526 | /* Running pointer after the last character processed in the string. */ |
527 | const STRING_TYPE *cp, *tp; |
528 | /* Start of significant part of the number. */ |
529 | const STRING_TYPE *startp, *start_of_digits; |
530 | /* Points at the character following the integer and fractional digits. */ |
531 | const STRING_TYPE *expp; |
532 | /* Total number of digit and number of digits in integer part. */ |
533 | size_t dig_no, int_no, lead_zero; |
534 | /* Contains the last character read. */ |
535 | CHAR_TYPE c; |
536 | |
537 | /* We should get wint_t from <stddef.h>, but not all GCC versions define it |
538 | there. So define it ourselves if it remains undefined. */ |
539 | #ifndef _WINT_T |
540 | typedef unsigned int wint_t; |
541 | #endif |
542 | /* The radix character of the current locale. */ |
543 | #ifdef USE_WIDE_CHAR |
544 | wchar_t decimal; |
545 | #else |
546 | const char *decimal; |
547 | size_t decimal_len; |
548 | #endif |
549 | /* The thousands character of the current locale. */ |
550 | #ifdef USE_WIDE_CHAR |
551 | wchar_t thousands = L'\0'; |
552 | #else |
553 | const char *thousands = NULL; |
554 | #endif |
555 | /* The numeric grouping specification of the current locale, |
556 | in the format described in <locale.h>. */ |
557 | const char *grouping; |
558 | /* Used in several places. */ |
559 | int cnt; |
560 | |
561 | struct __locale_data *current = loc->__locales[LC_NUMERIC]; |
562 | |
563 | if (__glibc_unlikely (group)) |
564 | { |
565 | grouping = _NL_CURRENT (LC_NUMERIC, GROUPING); |
566 | if (*grouping <= 0 || *grouping == CHAR_MAX) |
567 | grouping = NULL; |
568 | else |
569 | { |
570 | /* Figure out the thousands separator character. */ |
571 | #ifdef USE_WIDE_CHAR |
572 | thousands = _NL_CURRENT_WORD (LC_NUMERIC, |
573 | _NL_NUMERIC_THOUSANDS_SEP_WC); |
574 | if (thousands == L'\0') |
575 | grouping = NULL; |
576 | #else |
577 | thousands = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP); |
578 | if (*thousands == '\0') |
579 | { |
580 | thousands = NULL; |
581 | grouping = NULL; |
582 | } |
583 | #endif |
584 | } |
585 | } |
586 | else |
587 | grouping = NULL; |
588 | |
589 | /* Find the locale's decimal point character. */ |
590 | #ifdef USE_WIDE_CHAR |
591 | decimal = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC); |
592 | assert (decimal != L'\0'); |
593 | # define decimal_len 1 |
594 | #else |
595 | decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT); |
596 | decimal_len = strlen (decimal); |
597 | assert (decimal_len > 0); |
598 | #endif |
599 | |
600 | /* Prepare number representation. */ |
601 | exponent = 0; |
602 | negative = 0; |
603 | bits = 0; |
604 | |
605 | /* Parse string to get maximal legal prefix. We need the number of |
606 | characters of the integer part, the fractional part and the exponent. */ |
607 | cp = nptr - 1; |
608 | /* Ignore leading white space. */ |
609 | do |
610 | c = *++cp; |
611 | while (ISSPACE (c)); |
612 | |
613 | /* Get sign of the result. */ |
614 | if (c == L_('-')) |
615 | { |
616 | negative = 1; |
617 | c = *++cp; |
618 | } |
619 | else if (c == L_('+')) |
620 | c = *++cp; |
621 | |
622 | /* Return 0.0 if no legal string is found. |
623 | No character is used even if a sign was found. */ |
624 | #ifdef USE_WIDE_CHAR |
625 | if (c == (wint_t) decimal |
626 | && (wint_t) cp[1] >= L'0' && (wint_t) cp[1] <= L'9') |
627 | { |
628 | /* We accept it. This funny construct is here only to indent |
629 | the code correctly. */ |
630 | } |
631 | #else |
632 | for (cnt = 0; decimal[cnt] != '\0'; ++cnt) |
633 | if (cp[cnt] != decimal[cnt]) |
634 | break; |
635 | if (decimal[cnt] == '\0' && cp[cnt] >= '0' && cp[cnt] <= '9') |
636 | { |
637 | /* We accept it. This funny construct is here only to indent |
638 | the code correctly. */ |
639 | } |
640 | #endif |
641 | else if (c < L_('0') || c > L_('9')) |
642 | { |
643 | /* Check for `INF' or `INFINITY'. */ |
644 | CHAR_TYPE lowc = TOLOWER_C (c); |
645 | |
646 | if (lowc == L_('i') && STRNCASECMP (cp, L_("inf" ), 3) == 0) |
647 | { |
648 | /* Return +/- infinity. */ |
649 | if (endptr != NULL) |
650 | *endptr = (STRING_TYPE *) |
651 | (cp + (STRNCASECMP (cp + 3, L_("inity" ), 5) == 0 |
652 | ? 8 : 3)); |
653 | |
654 | return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL; |
655 | } |
656 | |
657 | if (lowc == L_('n') && STRNCASECMP (cp, L_("nan" ), 3) == 0) |
658 | { |
659 | /* Return NaN. */ |
660 | FLOAT retval = NAN; |
661 | |
662 | cp += 3; |
663 | |
664 | /* Match `(n-char-sequence-digit)'. */ |
665 | if (*cp == L_('(')) |
666 | { |
667 | const STRING_TYPE *startp = cp; |
668 | STRING_TYPE *endp; |
669 | retval = STRTOF_NAN (cp + 1, &endp, L_(')')); |
670 | if (*endp == L_(')')) |
671 | /* Consume the closing parenthesis. */ |
672 | cp = endp + 1; |
673 | else |
674 | /* Only match the NAN part. */ |
675 | cp = startp; |
676 | } |
677 | |
678 | if (endptr != NULL) |
679 | *endptr = (STRING_TYPE *) cp; |
680 | |
681 | return negative ? -retval : retval; |
682 | } |
683 | |
684 | /* It is really a text we do not recognize. */ |
685 | RETURN (0.0, nptr); |
686 | } |
687 | |
688 | /* First look whether we are faced with a hexadecimal number. */ |
689 | if (c == L_('0') && TOLOWER (cp[1]) == L_('x')) |
690 | { |
691 | /* Okay, it is a hexa-decimal number. Remember this and skip |
692 | the characters. BTW: hexadecimal numbers must not be |
693 | grouped. */ |
694 | base = 16; |
695 | cp += 2; |
696 | c = *cp; |
697 | grouping = NULL; |
698 | } |
699 | |
700 | /* Record the start of the digits, in case we will check their grouping. */ |
701 | start_of_digits = startp = cp; |
702 | |
703 | /* Ignore leading zeroes. This helps us to avoid useless computations. */ |
704 | #ifdef USE_WIDE_CHAR |
705 | while (c == L'0' || ((wint_t) thousands != L'\0' && c == (wint_t) thousands)) |
706 | c = *++cp; |
707 | #else |
708 | if (__glibc_likely (thousands == NULL)) |
709 | while (c == '0') |
710 | c = *++cp; |
711 | else |
712 | { |
713 | /* We also have the multibyte thousands string. */ |
714 | while (1) |
715 | { |
716 | if (c != '0') |
717 | { |
718 | for (cnt = 0; thousands[cnt] != '\0'; ++cnt) |
719 | if (thousands[cnt] != cp[cnt]) |
720 | break; |
721 | if (thousands[cnt] != '\0') |
722 | break; |
723 | cp += cnt - 1; |
724 | } |
725 | c = *++cp; |
726 | } |
727 | } |
728 | #endif |
729 | |
730 | /* If no other digit but a '0' is found the result is 0.0. |
731 | Return current read pointer. */ |
732 | CHAR_TYPE lowc = TOLOWER (c); |
733 | if (!((c >= L_('0') && c <= L_('9')) |
734 | || (base == 16 && lowc >= L_('a') && lowc <= L_('f')) |
735 | || ( |
736 | #ifdef USE_WIDE_CHAR |
737 | c == (wint_t) decimal |
738 | #else |
739 | ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt) |
740 | if (decimal[cnt] != cp[cnt]) |
741 | break; |
742 | decimal[cnt] == '\0'; }) |
743 | #endif |
744 | /* '0x.' alone is not a valid hexadecimal number. |
745 | '.' alone is not valid either, but that has been checked |
746 | already earlier. */ |
747 | && (base != 16 |
748 | || cp != start_of_digits |
749 | || (cp[decimal_len] >= L_('0') && cp[decimal_len] <= L_('9')) |
750 | || ({ CHAR_TYPE lo = TOLOWER (cp[decimal_len]); |
751 | lo >= L_('a') && lo <= L_('f'); }))) |
752 | || (base == 16 && (cp != start_of_digits |
753 | && lowc == L_('p'))) |
754 | || (base != 16 && lowc == L_('e')))) |
755 | { |
756 | #ifdef USE_WIDE_CHAR |
757 | tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands, |
758 | grouping); |
759 | #else |
760 | tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands, |
761 | grouping); |
762 | #endif |
763 | /* If TP is at the start of the digits, there was no correctly |
764 | grouped prefix of the string; so no number found. */ |
765 | RETURN (negative ? -0.0 : 0.0, |
766 | tp == start_of_digits ? (base == 16 ? cp - 1 : nptr) : tp); |
767 | } |
768 | |
769 | /* Remember first significant digit and read following characters until the |
770 | decimal point, exponent character or any non-FP number character. */ |
771 | startp = cp; |
772 | dig_no = 0; |
773 | while (1) |
774 | { |
775 | if ((c >= L_('0') && c <= L_('9')) |
776 | || (base == 16 |
777 | && ({ CHAR_TYPE lo = TOLOWER (c); |
778 | lo >= L_('a') && lo <= L_('f'); }))) |
779 | ++dig_no; |
780 | else |
781 | { |
782 | #ifdef USE_WIDE_CHAR |
783 | if (__builtin_expect ((wint_t) thousands == L'\0', 1) |
784 | || c != (wint_t) thousands) |
785 | /* Not a digit or separator: end of the integer part. */ |
786 | break; |
787 | #else |
788 | if (__glibc_likely (thousands == NULL)) |
789 | break; |
790 | else |
791 | { |
792 | for (cnt = 0; thousands[cnt] != '\0'; ++cnt) |
793 | if (thousands[cnt] != cp[cnt]) |
794 | break; |
795 | if (thousands[cnt] != '\0') |
796 | break; |
797 | cp += cnt - 1; |
798 | } |
799 | #endif |
800 | } |
801 | c = *++cp; |
802 | } |
803 | |
804 | if (__builtin_expect (grouping != NULL, 0) && cp > start_of_digits) |
805 | { |
806 | /* Check the grouping of the digits. */ |
807 | #ifdef USE_WIDE_CHAR |
808 | tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands, |
809 | grouping); |
810 | #else |
811 | tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands, |
812 | grouping); |
813 | #endif |
814 | if (cp != tp) |
815 | { |
816 | /* Less than the entire string was correctly grouped. */ |
817 | |
818 | if (tp == start_of_digits) |
819 | /* No valid group of numbers at all: no valid number. */ |
820 | RETURN (0.0, nptr); |
821 | |
822 | if (tp < startp) |
823 | /* The number is validly grouped, but consists |
824 | only of zeroes. The whole value is zero. */ |
825 | RETURN (negative ? -0.0 : 0.0, tp); |
826 | |
827 | /* Recompute DIG_NO so we won't read more digits than |
828 | are properly grouped. */ |
829 | cp = tp; |
830 | dig_no = 0; |
831 | for (tp = startp; tp < cp; ++tp) |
832 | if (*tp >= L_('0') && *tp <= L_('9')) |
833 | ++dig_no; |
834 | |
835 | int_no = dig_no; |
836 | lead_zero = 0; |
837 | |
838 | goto number_parsed; |
839 | } |
840 | } |
841 | |
842 | /* We have the number of digits in the integer part. Whether these |
843 | are all or any is really a fractional digit will be decided |
844 | later. */ |
845 | int_no = dig_no; |
846 | lead_zero = int_no == 0 ? (size_t) -1 : 0; |
847 | |
848 | /* Read the fractional digits. A special case are the 'american |
849 | style' numbers like `16.' i.e. with decimal point but without |
850 | trailing digits. */ |
851 | if ( |
852 | #ifdef USE_WIDE_CHAR |
853 | c == (wint_t) decimal |
854 | #else |
855 | ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt) |
856 | if (decimal[cnt] != cp[cnt]) |
857 | break; |
858 | decimal[cnt] == '\0'; }) |
859 | #endif |
860 | ) |
861 | { |
862 | cp += decimal_len; |
863 | c = *cp; |
864 | while ((c >= L_('0') && c <= L_('9')) || |
865 | (base == 16 && ({ CHAR_TYPE lo = TOLOWER (c); |
866 | lo >= L_('a') && lo <= L_('f'); }))) |
867 | { |
868 | if (c != L_('0') && lead_zero == (size_t) -1) |
869 | lead_zero = dig_no - int_no; |
870 | ++dig_no; |
871 | c = *++cp; |
872 | } |
873 | } |
874 | assert (dig_no <= (uintmax_t) INTMAX_MAX); |
875 | |
876 | /* Remember start of exponent (if any). */ |
877 | expp = cp; |
878 | |
879 | /* Read exponent. */ |
880 | lowc = TOLOWER (c); |
881 | if ((base == 16 && lowc == L_('p')) |
882 | || (base != 16 && lowc == L_('e'))) |
883 | { |
884 | int exp_negative = 0; |
885 | |
886 | c = *++cp; |
887 | if (c == L_('-')) |
888 | { |
889 | exp_negative = 1; |
890 | c = *++cp; |
891 | } |
892 | else if (c == L_('+')) |
893 | c = *++cp; |
894 | |
895 | if (c >= L_('0') && c <= L_('9')) |
896 | { |
897 | intmax_t exp_limit; |
898 | |
899 | /* Get the exponent limit. */ |
900 | if (base == 16) |
901 | { |
902 | if (exp_negative) |
903 | { |
904 | assert (int_no <= (uintmax_t) (INTMAX_MAX |
905 | + MIN_EXP - MANT_DIG) / 4); |
906 | exp_limit = -MIN_EXP + MANT_DIG + 4 * (intmax_t) int_no; |
907 | } |
908 | else |
909 | { |
910 | if (int_no) |
911 | { |
912 | assert (lead_zero == 0 |
913 | && int_no <= (uintmax_t) INTMAX_MAX / 4); |
914 | exp_limit = MAX_EXP - 4 * (intmax_t) int_no + 3; |
915 | } |
916 | else if (lead_zero == (size_t) -1) |
917 | { |
918 | /* The number is zero and this limit is |
919 | arbitrary. */ |
920 | exp_limit = MAX_EXP + 3; |
921 | } |
922 | else |
923 | { |
924 | assert (lead_zero |
925 | <= (uintmax_t) (INTMAX_MAX - MAX_EXP - 3) / 4); |
926 | exp_limit = (MAX_EXP |
927 | + 4 * (intmax_t) lead_zero |
928 | + 3); |
929 | } |
930 | } |
931 | } |
932 | else |
933 | { |
934 | if (exp_negative) |
935 | { |
936 | assert (int_no |
937 | <= (uintmax_t) (INTMAX_MAX + MIN_10_EXP - MANT_DIG)); |
938 | exp_limit = -MIN_10_EXP + MANT_DIG + (intmax_t) int_no; |
939 | } |
940 | else |
941 | { |
942 | if (int_no) |
943 | { |
944 | assert (lead_zero == 0 |
945 | && int_no <= (uintmax_t) INTMAX_MAX); |
946 | exp_limit = MAX_10_EXP - (intmax_t) int_no + 1; |
947 | } |
948 | else if (lead_zero == (size_t) -1) |
949 | { |
950 | /* The number is zero and this limit is |
951 | arbitrary. */ |
952 | exp_limit = MAX_10_EXP + 1; |
953 | } |
954 | else |
955 | { |
956 | assert (lead_zero |
957 | <= (uintmax_t) (INTMAX_MAX - MAX_10_EXP - 1)); |
958 | exp_limit = MAX_10_EXP + (intmax_t) lead_zero + 1; |
959 | } |
960 | } |
961 | } |
962 | |
963 | if (exp_limit < 0) |
964 | exp_limit = 0; |
965 | |
966 | do |
967 | { |
968 | if (__builtin_expect ((exponent > exp_limit / 10 |
969 | || (exponent == exp_limit / 10 |
970 | && c - L_('0') > exp_limit % 10)), 0)) |
971 | /* The exponent is too large/small to represent a valid |
972 | number. */ |
973 | { |
974 | FLOAT result; |
975 | |
976 | /* We have to take care for special situation: a joker |
977 | might have written "0.0e100000" which is in fact |
978 | zero. */ |
979 | if (lead_zero == (size_t) -1) |
980 | result = negative ? -0.0 : 0.0; |
981 | else |
982 | { |
983 | /* Overflow or underflow. */ |
984 | result = (exp_negative |
985 | ? underflow_value (negative) |
986 | : overflow_value (negative)); |
987 | } |
988 | |
989 | /* Accept all following digits as part of the exponent. */ |
990 | do |
991 | ++cp; |
992 | while (*cp >= L_('0') && *cp <= L_('9')); |
993 | |
994 | RETURN (result, cp); |
995 | /* NOTREACHED */ |
996 | } |
997 | |
998 | exponent *= 10; |
999 | exponent += c - L_('0'); |
1000 | |
1001 | c = *++cp; |
1002 | } |
1003 | while (c >= L_('0') && c <= L_('9')); |
1004 | |
1005 | if (exp_negative) |
1006 | exponent = -exponent; |
1007 | } |
1008 | else |
1009 | cp = expp; |
1010 | } |
1011 | |
1012 | /* We don't want to have to work with trailing zeroes after the radix. */ |
1013 | if (dig_no > int_no) |
1014 | { |
1015 | while (expp[-1] == L_('0')) |
1016 | { |
1017 | --expp; |
1018 | --dig_no; |
1019 | } |
1020 | assert (dig_no >= int_no); |
1021 | } |
1022 | |
1023 | if (dig_no == int_no && dig_no > 0 && exponent < 0) |
1024 | do |
1025 | { |
1026 | while (! (base == 16 ? ISXDIGIT (expp[-1]) : ISDIGIT (expp[-1]))) |
1027 | --expp; |
1028 | |
1029 | if (expp[-1] != L_('0')) |
1030 | break; |
1031 | |
1032 | --expp; |
1033 | --dig_no; |
1034 | --int_no; |
1035 | exponent += base == 16 ? 4 : 1; |
1036 | } |
1037 | while (dig_no > 0 && exponent < 0); |
1038 | |
1039 | number_parsed: |
1040 | |
1041 | /* The whole string is parsed. Store the address of the next character. */ |
1042 | if (endptr) |
1043 | *endptr = (STRING_TYPE *) cp; |
1044 | |
1045 | if (dig_no == 0) |
1046 | return negative ? -0.0 : 0.0; |
1047 | |
1048 | if (lead_zero) |
1049 | { |
1050 | /* Find the decimal point */ |
1051 | #ifdef USE_WIDE_CHAR |
1052 | while (*startp != decimal) |
1053 | ++startp; |
1054 | #else |
1055 | while (1) |
1056 | { |
1057 | if (*startp == decimal[0]) |
1058 | { |
1059 | for (cnt = 1; decimal[cnt] != '\0'; ++cnt) |
1060 | if (decimal[cnt] != startp[cnt]) |
1061 | break; |
1062 | if (decimal[cnt] == '\0') |
1063 | break; |
1064 | } |
1065 | ++startp; |
1066 | } |
1067 | #endif |
1068 | startp += lead_zero + decimal_len; |
1069 | assert (lead_zero <= (base == 16 |
1070 | ? (uintmax_t) INTMAX_MAX / 4 |
1071 | : (uintmax_t) INTMAX_MAX)); |
1072 | assert (lead_zero <= (base == 16 |
1073 | ? ((uintmax_t) exponent |
1074 | - (uintmax_t) INTMAX_MIN) / 4 |
1075 | : ((uintmax_t) exponent - (uintmax_t) INTMAX_MIN))); |
1076 | exponent -= base == 16 ? 4 * (intmax_t) lead_zero : (intmax_t) lead_zero; |
1077 | dig_no -= lead_zero; |
1078 | } |
1079 | |
1080 | /* If the BASE is 16 we can use a simpler algorithm. */ |
1081 | if (base == 16) |
1082 | { |
1083 | static const int nbits[16] = { 0, 1, 2, 2, 3, 3, 3, 3, |
1084 | 4, 4, 4, 4, 4, 4, 4, 4 }; |
1085 | int idx = (MANT_DIG - 1) / BITS_PER_MP_LIMB; |
1086 | int pos = (MANT_DIG - 1) % BITS_PER_MP_LIMB; |
1087 | mp_limb_t val; |
1088 | |
1089 | while (!ISXDIGIT (*startp)) |
1090 | ++startp; |
1091 | while (*startp == L_('0')) |
1092 | ++startp; |
1093 | if (ISDIGIT (*startp)) |
1094 | val = *startp++ - L_('0'); |
1095 | else |
1096 | val = 10 + TOLOWER (*startp++) - L_('a'); |
1097 | bits = nbits[val]; |
1098 | /* We cannot have a leading zero. */ |
1099 | assert (bits != 0); |
1100 | |
1101 | if (pos + 1 >= 4 || pos + 1 >= bits) |
1102 | { |
1103 | /* We don't have to care for wrapping. This is the normal |
1104 | case so we add the first clause in the `if' expression as |
1105 | an optimization. It is a compile-time constant and so does |
1106 | not cost anything. */ |
1107 | retval[idx] = val << (pos - bits + 1); |
1108 | pos -= bits; |
1109 | } |
1110 | else |
1111 | { |
1112 | retval[idx--] = val >> (bits - pos - 1); |
1113 | retval[idx] = val << (BITS_PER_MP_LIMB - (bits - pos - 1)); |
1114 | pos = BITS_PER_MP_LIMB - 1 - (bits - pos - 1); |
1115 | } |
1116 | |
1117 | /* Adjust the exponent for the bits we are shifting in. */ |
1118 | assert (int_no <= (uintmax_t) (exponent < 0 |
1119 | ? (INTMAX_MAX - bits + 1) / 4 |
1120 | : (INTMAX_MAX - exponent - bits + 1) / 4)); |
1121 | exponent += bits - 1 + ((intmax_t) int_no - 1) * 4; |
1122 | |
1123 | while (--dig_no > 0 && idx >= 0) |
1124 | { |
1125 | if (!ISXDIGIT (*startp)) |
1126 | startp += decimal_len; |
1127 | if (ISDIGIT (*startp)) |
1128 | val = *startp++ - L_('0'); |
1129 | else |
1130 | val = 10 + TOLOWER (*startp++) - L_('a'); |
1131 | |
1132 | if (pos + 1 >= 4) |
1133 | { |
1134 | retval[idx] |= val << (pos - 4 + 1); |
1135 | pos -= 4; |
1136 | } |
1137 | else |
1138 | { |
1139 | retval[idx--] |= val >> (4 - pos - 1); |
1140 | val <<= BITS_PER_MP_LIMB - (4 - pos - 1); |
1141 | if (idx < 0) |
1142 | { |
1143 | int rest_nonzero = 0; |
1144 | while (--dig_no > 0) |
1145 | { |
1146 | if (*startp != L_('0')) |
1147 | { |
1148 | rest_nonzero = 1; |
1149 | break; |
1150 | } |
1151 | startp++; |
1152 | } |
1153 | return round_and_return (retval, exponent, negative, val, |
1154 | BITS_PER_MP_LIMB - 1, rest_nonzero); |
1155 | } |
1156 | |
1157 | retval[idx] = val; |
1158 | pos = BITS_PER_MP_LIMB - 1 - (4 - pos - 1); |
1159 | } |
1160 | } |
1161 | |
1162 | /* We ran out of digits. */ |
1163 | MPN_ZERO (retval, idx); |
1164 | |
1165 | return round_and_return (retval, exponent, negative, 0, 0, 0); |
1166 | } |
1167 | |
1168 | /* Now we have the number of digits in total and the integer digits as well |
1169 | as the exponent and its sign. We can decide whether the read digits are |
1170 | really integer digits or belong to the fractional part; i.e. we normalize |
1171 | 123e-2 to 1.23. */ |
1172 | { |
1173 | intmax_t incr = (exponent < 0 |
1174 | ? MAX (-(intmax_t) int_no, exponent) |
1175 | : MIN ((intmax_t) dig_no - (intmax_t) int_no, exponent)); |
1176 | int_no += incr; |
1177 | exponent -= incr; |
1178 | } |
1179 | |
1180 | if (__glibc_unlikely (exponent > MAX_10_EXP + 1 - (intmax_t) int_no)) |
1181 | return overflow_value (negative); |
1182 | |
1183 | /* 10^(MIN_10_EXP-1) is not normal. Thus, 10^(MIN_10_EXP-1) / |
1184 | 2^MANT_DIG is below half the least subnormal, so anything with a |
1185 | base-10 exponent less than the base-10 exponent (which is |
1186 | MIN_10_EXP - 1 - ceil(MANT_DIG*log10(2))) of that value |
1187 | underflows. DIG is floor((MANT_DIG-1)log10(2)), so an exponent |
1188 | below MIN_10_EXP - (DIG + 3) underflows. But EXPONENT is |
1189 | actually an exponent multiplied only by a fractional part, not an |
1190 | integer part, so an exponent below MIN_10_EXP - (DIG + 2) |
1191 | underflows. */ |
1192 | if (__glibc_unlikely (exponent < MIN_10_EXP - (DIG + 2))) |
1193 | return underflow_value (negative); |
1194 | |
1195 | if (int_no > 0) |
1196 | { |
1197 | /* Read the integer part as a multi-precision number to NUM. */ |
1198 | startp = str_to_mpn (startp, int_no, num, &numsize, &exponent |
1199 | #ifndef USE_WIDE_CHAR |
1200 | , decimal, decimal_len, thousands |
1201 | #endif |
1202 | ); |
1203 | |
1204 | if (exponent > 0) |
1205 | { |
1206 | /* We now multiply the gained number by the given power of ten. */ |
1207 | mp_limb_t *psrc = num; |
1208 | mp_limb_t *pdest = den; |
1209 | int expbit = 1; |
1210 | const struct mp_power *ttab = &_fpioconst_pow10[0]; |
1211 | |
1212 | do |
1213 | { |
1214 | if ((exponent & expbit) != 0) |
1215 | { |
1216 | size_t size = ttab->arraysize - _FPIO_CONST_OFFSET; |
1217 | mp_limb_t cy; |
1218 | exponent ^= expbit; |
1219 | |
1220 | /* FIXME: not the whole multiplication has to be |
1221 | done. If we have the needed number of bits we |
1222 | only need the information whether more non-zero |
1223 | bits follow. */ |
1224 | if (numsize >= ttab->arraysize - _FPIO_CONST_OFFSET) |
1225 | cy = __mpn_mul (pdest, psrc, numsize, |
1226 | &__tens[ttab->arrayoff |
1227 | + _FPIO_CONST_OFFSET], |
1228 | size); |
1229 | else |
1230 | cy = __mpn_mul (pdest, &__tens[ttab->arrayoff |
1231 | + _FPIO_CONST_OFFSET], |
1232 | size, psrc, numsize); |
1233 | numsize += size; |
1234 | if (cy == 0) |
1235 | --numsize; |
1236 | (void) SWAP (psrc, pdest); |
1237 | } |
1238 | expbit <<= 1; |
1239 | ++ttab; |
1240 | } |
1241 | while (exponent != 0); |
1242 | |
1243 | if (psrc == den) |
1244 | memcpy (num, den, numsize * sizeof (mp_limb_t)); |
1245 | } |
1246 | |
1247 | /* Determine how many bits of the result we already have. */ |
1248 | count_leading_zeros (bits, num[numsize - 1]); |
1249 | bits = numsize * BITS_PER_MP_LIMB - bits; |
1250 | |
1251 | /* Now we know the exponent of the number in base two. |
1252 | Check it against the maximum possible exponent. */ |
1253 | if (__glibc_unlikely (bits > MAX_EXP)) |
1254 | return overflow_value (negative); |
1255 | |
1256 | /* We have already the first BITS bits of the result. Together with |
1257 | the information whether more non-zero bits follow this is enough |
1258 | to determine the result. */ |
1259 | if (bits > MANT_DIG) |
1260 | { |
1261 | int i; |
1262 | const mp_size_t least_idx = (bits - MANT_DIG) / BITS_PER_MP_LIMB; |
1263 | const mp_size_t least_bit = (bits - MANT_DIG) % BITS_PER_MP_LIMB; |
1264 | const mp_size_t round_idx = least_bit == 0 ? least_idx - 1 |
1265 | : least_idx; |
1266 | const mp_size_t round_bit = least_bit == 0 ? BITS_PER_MP_LIMB - 1 |
1267 | : least_bit - 1; |
1268 | |
1269 | if (least_bit == 0) |
1270 | memcpy (retval, &num[least_idx], |
1271 | RETURN_LIMB_SIZE * sizeof (mp_limb_t)); |
1272 | else |
1273 | { |
1274 | for (i = least_idx; i < numsize - 1; ++i) |
1275 | retval[i - least_idx] = (num[i] >> least_bit) |
1276 | | (num[i + 1] |
1277 | << (BITS_PER_MP_LIMB - least_bit)); |
1278 | if (i - least_idx < RETURN_LIMB_SIZE) |
1279 | retval[RETURN_LIMB_SIZE - 1] = num[i] >> least_bit; |
1280 | } |
1281 | |
1282 | /* Check whether any limb beside the ones in RETVAL are non-zero. */ |
1283 | for (i = 0; num[i] == 0; ++i) |
1284 | ; |
1285 | |
1286 | return round_and_return (retval, bits - 1, negative, |
1287 | num[round_idx], round_bit, |
1288 | int_no < dig_no || i < round_idx); |
1289 | /* NOTREACHED */ |
1290 | } |
1291 | else if (dig_no == int_no) |
1292 | { |
1293 | const mp_size_t target_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB; |
1294 | const mp_size_t is_bit = (bits - 1) % BITS_PER_MP_LIMB; |
1295 | |
1296 | if (target_bit == is_bit) |
1297 | { |
1298 | memcpy (&retval[RETURN_LIMB_SIZE - numsize], num, |
1299 | numsize * sizeof (mp_limb_t)); |
1300 | /* FIXME: the following loop can be avoided if we assume a |
1301 | maximal MANT_DIG value. */ |
1302 | MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize); |
1303 | } |
1304 | else if (target_bit > is_bit) |
1305 | { |
1306 | (void) __mpn_lshift (&retval[RETURN_LIMB_SIZE - numsize], |
1307 | num, numsize, target_bit - is_bit); |
1308 | /* FIXME: the following loop can be avoided if we assume a |
1309 | maximal MANT_DIG value. */ |
1310 | MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize); |
1311 | } |
1312 | else |
1313 | { |
1314 | mp_limb_t cy; |
1315 | assert (numsize < RETURN_LIMB_SIZE); |
1316 | |
1317 | cy = __mpn_rshift (&retval[RETURN_LIMB_SIZE - numsize], |
1318 | num, numsize, is_bit - target_bit); |
1319 | retval[RETURN_LIMB_SIZE - numsize - 1] = cy; |
1320 | /* FIXME: the following loop can be avoided if we assume a |
1321 | maximal MANT_DIG value. */ |
1322 | MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize - 1); |
1323 | } |
1324 | |
1325 | return round_and_return (retval, bits - 1, negative, 0, 0, 0); |
1326 | /* NOTREACHED */ |
1327 | } |
1328 | |
1329 | /* Store the bits we already have. */ |
1330 | memcpy (retval, num, numsize * sizeof (mp_limb_t)); |
1331 | #if RETURN_LIMB_SIZE > 1 |
1332 | if (numsize < RETURN_LIMB_SIZE) |
1333 | # if RETURN_LIMB_SIZE == 2 |
1334 | retval[numsize] = 0; |
1335 | # else |
1336 | MPN_ZERO (retval + numsize, RETURN_LIMB_SIZE - numsize); |
1337 | # endif |
1338 | #endif |
1339 | } |
1340 | |
1341 | /* We have to compute at least some of the fractional digits. */ |
1342 | { |
1343 | /* We construct a fraction and the result of the division gives us |
1344 | the needed digits. The denominator is 1.0 multiplied by the |
1345 | exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and |
1346 | 123e-6 gives 123 / 1000000. */ |
1347 | |
1348 | int expbit; |
1349 | int neg_exp; |
1350 | int more_bits; |
1351 | int need_frac_digits; |
1352 | mp_limb_t cy; |
1353 | mp_limb_t *psrc = den; |
1354 | mp_limb_t *pdest = num; |
1355 | const struct mp_power *ttab = &_fpioconst_pow10[0]; |
1356 | |
1357 | assert (dig_no > int_no |
1358 | && exponent <= 0 |
1359 | && exponent >= MIN_10_EXP - (DIG + 2)); |
1360 | |
1361 | /* We need to compute MANT_DIG - BITS fractional bits that lie |
1362 | within the mantissa of the result, the following bit for |
1363 | rounding, and to know whether any subsequent bit is 0. |
1364 | Computing a bit with value 2^-n means looking at n digits after |
1365 | the decimal point. */ |
1366 | if (bits > 0) |
1367 | { |
1368 | /* The bits required are those immediately after the point. */ |
1369 | assert (int_no > 0 && exponent == 0); |
1370 | need_frac_digits = 1 + MANT_DIG - bits; |
1371 | } |
1372 | else |
1373 | { |
1374 | /* The number is in the form .123eEXPONENT. */ |
1375 | assert (int_no == 0 && *startp != L_('0')); |
1376 | /* The number is at least 10^(EXPONENT-1), and 10^3 < |
1377 | 2^10. */ |
1378 | int neg_exp_2 = ((1 - exponent) * 10) / 3 + 1; |
1379 | /* The number is at least 2^-NEG_EXP_2. We need up to |
1380 | MANT_DIG bits following that bit. */ |
1381 | need_frac_digits = neg_exp_2 + MANT_DIG; |
1382 | /* However, we never need bits beyond 1/4 ulp of the smallest |
1383 | representable value. (That 1/4 ulp bit is only needed to |
1384 | determine tinyness on machines where tinyness is determined |
1385 | after rounding.) */ |
1386 | if (need_frac_digits > MANT_DIG - MIN_EXP + 2) |
1387 | need_frac_digits = MANT_DIG - MIN_EXP + 2; |
1388 | /* At this point, NEED_FRAC_DIGITS is the total number of |
1389 | digits needed after the point, but some of those may be |
1390 | leading 0s. */ |
1391 | need_frac_digits += exponent; |
1392 | /* Any cases underflowing enough that none of the fractional |
1393 | digits are needed should have been caught earlier (such |
1394 | cases are on the order of 10^-n or smaller where 2^-n is |
1395 | the least subnormal). */ |
1396 | assert (need_frac_digits > 0); |
1397 | } |
1398 | |
1399 | if (need_frac_digits > (intmax_t) dig_no - (intmax_t) int_no) |
1400 | need_frac_digits = (intmax_t) dig_no - (intmax_t) int_no; |
1401 | |
1402 | if ((intmax_t) dig_no > (intmax_t) int_no + need_frac_digits) |
1403 | { |
1404 | dig_no = int_no + need_frac_digits; |
1405 | more_bits = 1; |
1406 | } |
1407 | else |
1408 | more_bits = 0; |
1409 | |
1410 | neg_exp = (intmax_t) dig_no - (intmax_t) int_no - exponent; |
1411 | |
1412 | /* Construct the denominator. */ |
1413 | densize = 0; |
1414 | expbit = 1; |
1415 | do |
1416 | { |
1417 | if ((neg_exp & expbit) != 0) |
1418 | { |
1419 | mp_limb_t cy; |
1420 | neg_exp ^= expbit; |
1421 | |
1422 | if (densize == 0) |
1423 | { |
1424 | densize = ttab->arraysize - _FPIO_CONST_OFFSET; |
1425 | memcpy (psrc, &__tens[ttab->arrayoff + _FPIO_CONST_OFFSET], |
1426 | densize * sizeof (mp_limb_t)); |
1427 | } |
1428 | else |
1429 | { |
1430 | cy = __mpn_mul (pdest, &__tens[ttab->arrayoff |
1431 | + _FPIO_CONST_OFFSET], |
1432 | ttab->arraysize - _FPIO_CONST_OFFSET, |
1433 | psrc, densize); |
1434 | densize += ttab->arraysize - _FPIO_CONST_OFFSET; |
1435 | if (cy == 0) |
1436 | --densize; |
1437 | (void) SWAP (psrc, pdest); |
1438 | } |
1439 | } |
1440 | expbit <<= 1; |
1441 | ++ttab; |
1442 | } |
1443 | while (neg_exp != 0); |
1444 | |
1445 | if (psrc == num) |
1446 | memcpy (den, num, densize * sizeof (mp_limb_t)); |
1447 | |
1448 | /* Read the fractional digits from the string. */ |
1449 | (void) str_to_mpn (startp, dig_no - int_no, num, &numsize, &exponent |
1450 | #ifndef USE_WIDE_CHAR |
1451 | , decimal, decimal_len, thousands |
1452 | #endif |
1453 | ); |
1454 | |
1455 | /* We now have to shift both numbers so that the highest bit in the |
1456 | denominator is set. In the same process we copy the numerator to |
1457 | a high place in the array so that the division constructs the wanted |
1458 | digits. This is done by a "quasi fix point" number representation. |
1459 | |
1460 | num: ddddddddddd . 0000000000000000000000 |
1461 | |--- m ---| |
1462 | den: ddddddddddd n >= m |
1463 | |--- n ---| |
1464 | */ |
1465 | |
1466 | count_leading_zeros (cnt, den[densize - 1]); |
1467 | |
1468 | if (cnt > 0) |
1469 | { |
1470 | /* Don't call `mpn_shift' with a count of zero since the specification |
1471 | does not allow this. */ |
1472 | (void) __mpn_lshift (den, den, densize, cnt); |
1473 | cy = __mpn_lshift (num, num, numsize, cnt); |
1474 | if (cy != 0) |
1475 | num[numsize++] = cy; |
1476 | } |
1477 | |
1478 | /* Now we are ready for the division. But it is not necessary to |
1479 | do a full multi-precision division because we only need a small |
1480 | number of bits for the result. So we do not use __mpn_divmod |
1481 | here but instead do the division here by hand and stop whenever |
1482 | the needed number of bits is reached. The code itself comes |
1483 | from the GNU MP Library by Torbj\"orn Granlund. */ |
1484 | |
1485 | exponent = bits; |
1486 | |
1487 | switch (densize) |
1488 | { |
1489 | case 1: |
1490 | { |
1491 | mp_limb_t d, n, quot; |
1492 | int used = 0; |
1493 | |
1494 | n = num[0]; |
1495 | d = den[0]; |
1496 | assert (numsize == 1 && n < d); |
1497 | |
1498 | do |
1499 | { |
1500 | udiv_qrnnd (quot, n, n, 0, d); |
1501 | |
1502 | #define got_limb \ |
1503 | if (bits == 0) \ |
1504 | { \ |
1505 | int cnt; \ |
1506 | if (quot == 0) \ |
1507 | cnt = BITS_PER_MP_LIMB; \ |
1508 | else \ |
1509 | count_leading_zeros (cnt, quot); \ |
1510 | exponent -= cnt; \ |
1511 | if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \ |
1512 | { \ |
1513 | used = MANT_DIG + cnt; \ |
1514 | retval[0] = quot >> (BITS_PER_MP_LIMB - used); \ |
1515 | bits = MANT_DIG + 1; \ |
1516 | } \ |
1517 | else \ |
1518 | { \ |
1519 | /* Note that we only clear the second element. */ \ |
1520 | /* The conditional is determined at compile time. */ \ |
1521 | if (RETURN_LIMB_SIZE > 1) \ |
1522 | retval[1] = 0; \ |
1523 | retval[0] = quot; \ |
1524 | bits = -cnt; \ |
1525 | } \ |
1526 | } \ |
1527 | else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \ |
1528 | __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \ |
1529 | quot); \ |
1530 | else \ |
1531 | { \ |
1532 | used = MANT_DIG - bits; \ |
1533 | if (used > 0) \ |
1534 | __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \ |
1535 | } \ |
1536 | bits += BITS_PER_MP_LIMB |
1537 | |
1538 | got_limb; |
1539 | } |
1540 | while (bits <= MANT_DIG); |
1541 | |
1542 | return round_and_return (retval, exponent - 1, negative, |
1543 | quot, BITS_PER_MP_LIMB - 1 - used, |
1544 | more_bits || n != 0); |
1545 | } |
1546 | case 2: |
1547 | { |
1548 | mp_limb_t d0, d1, n0, n1; |
1549 | mp_limb_t quot = 0; |
1550 | int used = 0; |
1551 | |
1552 | d0 = den[0]; |
1553 | d1 = den[1]; |
1554 | |
1555 | if (numsize < densize) |
1556 | { |
1557 | if (num[0] >= d1) |
1558 | { |
1559 | /* The numerator of the number occupies fewer bits than |
1560 | the denominator but the one limb is bigger than the |
1561 | high limb of the numerator. */ |
1562 | n1 = 0; |
1563 | n0 = num[0]; |
1564 | } |
1565 | else |
1566 | { |
1567 | if (bits <= 0) |
1568 | exponent -= BITS_PER_MP_LIMB; |
1569 | else |
1570 | { |
1571 | if (bits + BITS_PER_MP_LIMB <= MANT_DIG) |
1572 | __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, |
1573 | BITS_PER_MP_LIMB, 0); |
1574 | else |
1575 | { |
1576 | used = MANT_DIG - bits; |
1577 | if (used > 0) |
1578 | __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0); |
1579 | } |
1580 | bits += BITS_PER_MP_LIMB; |
1581 | } |
1582 | n1 = num[0]; |
1583 | n0 = 0; |
1584 | } |
1585 | } |
1586 | else |
1587 | { |
1588 | n1 = num[1]; |
1589 | n0 = num[0]; |
1590 | } |
1591 | |
1592 | while (bits <= MANT_DIG) |
1593 | { |
1594 | mp_limb_t r; |
1595 | |
1596 | if (n1 == d1) |
1597 | { |
1598 | /* QUOT should be either 111..111 or 111..110. We need |
1599 | special treatment of this rare case as normal division |
1600 | would give overflow. */ |
1601 | quot = ~(mp_limb_t) 0; |
1602 | |
1603 | r = n0 + d1; |
1604 | if (r < d1) /* Carry in the addition? */ |
1605 | { |
1606 | add_ssaaaa (n1, n0, r - d0, 0, 0, d0); |
1607 | goto have_quot; |
1608 | } |
1609 | n1 = d0 - (d0 != 0); |
1610 | n0 = -d0; |
1611 | } |
1612 | else |
1613 | { |
1614 | udiv_qrnnd (quot, r, n1, n0, d1); |
1615 | umul_ppmm (n1, n0, d0, quot); |
1616 | } |
1617 | |
1618 | q_test: |
1619 | if (n1 > r || (n1 == r && n0 > 0)) |
1620 | { |
1621 | /* The estimated QUOT was too large. */ |
1622 | --quot; |
1623 | |
1624 | sub_ddmmss (n1, n0, n1, n0, 0, d0); |
1625 | r += d1; |
1626 | if (r >= d1) /* If not carry, test QUOT again. */ |
1627 | goto q_test; |
1628 | } |
1629 | sub_ddmmss (n1, n0, r, 0, n1, n0); |
1630 | |
1631 | have_quot: |
1632 | got_limb; |
1633 | } |
1634 | |
1635 | return round_and_return (retval, exponent - 1, negative, |
1636 | quot, BITS_PER_MP_LIMB - 1 - used, |
1637 | more_bits || n1 != 0 || n0 != 0); |
1638 | } |
1639 | default: |
1640 | { |
1641 | int i; |
1642 | mp_limb_t cy, dX, d1, n0, n1; |
1643 | mp_limb_t quot = 0; |
1644 | int used = 0; |
1645 | |
1646 | dX = den[densize - 1]; |
1647 | d1 = den[densize - 2]; |
1648 | |
1649 | /* The division does not work if the upper limb of the two-limb |
1650 | numerator is greater than the denominator. */ |
1651 | if (__mpn_cmp (num, &den[densize - numsize], numsize) > 0) |
1652 | num[numsize++] = 0; |
1653 | |
1654 | if (numsize < densize) |
1655 | { |
1656 | mp_size_t empty = densize - numsize; |
1657 | int i; |
1658 | |
1659 | if (bits <= 0) |
1660 | exponent -= empty * BITS_PER_MP_LIMB; |
1661 | else |
1662 | { |
1663 | if (bits + empty * BITS_PER_MP_LIMB <= MANT_DIG) |
1664 | { |
1665 | /* We make a difference here because the compiler |
1666 | cannot optimize the `else' case that good and |
1667 | this reflects all currently used FLOAT types |
1668 | and GMP implementations. */ |
1669 | #if RETURN_LIMB_SIZE <= 2 |
1670 | assert (empty == 1); |
1671 | __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, |
1672 | BITS_PER_MP_LIMB, 0); |
1673 | #else |
1674 | for (i = RETURN_LIMB_SIZE - 1; i >= empty; --i) |
1675 | retval[i] = retval[i - empty]; |
1676 | while (i >= 0) |
1677 | retval[i--] = 0; |
1678 | #endif |
1679 | } |
1680 | else |
1681 | { |
1682 | used = MANT_DIG - bits; |
1683 | if (used >= BITS_PER_MP_LIMB) |
1684 | { |
1685 | int i; |
1686 | (void) __mpn_lshift (&retval[used |
1687 | / BITS_PER_MP_LIMB], |
1688 | retval, |
1689 | (RETURN_LIMB_SIZE |
1690 | - used / BITS_PER_MP_LIMB), |
1691 | used % BITS_PER_MP_LIMB); |
1692 | for (i = used / BITS_PER_MP_LIMB - 1; i >= 0; --i) |
1693 | retval[i] = 0; |
1694 | } |
1695 | else if (used > 0) |
1696 | __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0); |
1697 | } |
1698 | bits += empty * BITS_PER_MP_LIMB; |
1699 | } |
1700 | for (i = numsize; i > 0; --i) |
1701 | num[i + empty] = num[i - 1]; |
1702 | MPN_ZERO (num, empty + 1); |
1703 | } |
1704 | else |
1705 | { |
1706 | int i; |
1707 | assert (numsize == densize); |
1708 | for (i = numsize; i > 0; --i) |
1709 | num[i] = num[i - 1]; |
1710 | num[0] = 0; |
1711 | } |
1712 | |
1713 | den[densize] = 0; |
1714 | n0 = num[densize]; |
1715 | |
1716 | while (bits <= MANT_DIG) |
1717 | { |
1718 | if (n0 == dX) |
1719 | /* This might over-estimate QUOT, but it's probably not |
1720 | worth the extra code here to find out. */ |
1721 | quot = ~(mp_limb_t) 0; |
1722 | else |
1723 | { |
1724 | mp_limb_t r; |
1725 | |
1726 | udiv_qrnnd (quot, r, n0, num[densize - 1], dX); |
1727 | umul_ppmm (n1, n0, d1, quot); |
1728 | |
1729 | while (n1 > r || (n1 == r && n0 > num[densize - 2])) |
1730 | { |
1731 | --quot; |
1732 | r += dX; |
1733 | if (r < dX) /* I.e. "carry in previous addition?" */ |
1734 | break; |
1735 | n1 -= n0 < d1; |
1736 | n0 -= d1; |
1737 | } |
1738 | } |
1739 | |
1740 | /* Possible optimization: We already have (q * n0) and (1 * n1) |
1741 | after the calculation of QUOT. Taking advantage of this, we |
1742 | could make this loop make two iterations less. */ |
1743 | |
1744 | cy = __mpn_submul_1 (num, den, densize + 1, quot); |
1745 | |
1746 | if (num[densize] != cy) |
1747 | { |
1748 | cy = __mpn_add_n (num, num, den, densize); |
1749 | assert (cy != 0); |
1750 | --quot; |
1751 | } |
1752 | n0 = num[densize] = num[densize - 1]; |
1753 | for (i = densize - 1; i > 0; --i) |
1754 | num[i] = num[i - 1]; |
1755 | num[0] = 0; |
1756 | |
1757 | got_limb; |
1758 | } |
1759 | |
1760 | for (i = densize; i >= 0 && num[i] == 0; --i) |
1761 | ; |
1762 | return round_and_return (retval, exponent - 1, negative, |
1763 | quot, BITS_PER_MP_LIMB - 1 - used, |
1764 | more_bits || i >= 0); |
1765 | } |
1766 | } |
1767 | } |
1768 | |
1769 | /* NOTREACHED */ |
1770 | } |
1771 | #if defined _LIBC && !defined USE_WIDE_CHAR |
1772 | libc_hidden_def (____STRTOF_INTERNAL) |
1773 | #endif |
1774 | |
1775 | /* External user entry point. */ |
1776 | |
1777 | FLOAT |
1778 | #ifdef weak_function |
1779 | weak_function |
1780 | #endif |
1781 | __STRTOF (const STRING_TYPE *nptr, STRING_TYPE **endptr, locale_t loc) |
1782 | { |
1783 | return ____STRTOF_INTERNAL (nptr, endptr, 0, loc); |
1784 | } |
1785 | #if defined _LIBC |
1786 | libc_hidden_def (__STRTOF) |
1787 | libc_hidden_ver (__STRTOF, STRTOF) |
1788 | #endif |
1789 | weak_alias (__STRTOF, STRTOF) |
1790 | |
1791 | #ifdef LONG_DOUBLE_COMPAT |
1792 | # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_1) |
1793 | # ifdef USE_WIDE_CHAR |
1794 | compat_symbol (libc, __wcstod_l, __wcstold_l, GLIBC_2_1); |
1795 | # else |
1796 | compat_symbol (libc, __strtod_l, __strtold_l, GLIBC_2_1); |
1797 | # endif |
1798 | # endif |
1799 | # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_3) |
1800 | # ifdef USE_WIDE_CHAR |
1801 | compat_symbol (libc, wcstod_l, wcstold_l, GLIBC_2_3); |
1802 | # else |
1803 | compat_symbol (libc, strtod_l, strtold_l, GLIBC_2_3); |
1804 | # endif |
1805 | # endif |
1806 | #endif |
1807 | |
1808 | #if BUILD_DOUBLE |
1809 | # if __HAVE_FLOAT64 && !__HAVE_DISTINCT_FLOAT64 |
1810 | # undef strtof64_l |
1811 | # undef wcstof64_l |
1812 | # ifdef USE_WIDE_CHAR |
1813 | weak_alias (wcstod_l, wcstof64_l) |
1814 | # else |
1815 | weak_alias (strtod_l, strtof64_l) |
1816 | # endif |
1817 | # endif |
1818 | # if __HAVE_FLOAT32X && !__HAVE_DISTINCT_FLOAT32X |
1819 | # undef strtof32x_l |
1820 | # undef wcstof32x_l |
1821 | # ifdef USE_WIDE_CHAR |
1822 | weak_alias (wcstod_l, wcstof32x_l) |
1823 | # else |
1824 | weak_alias (strtod_l, strtof32x_l) |
1825 | # endif |
1826 | # endif |
1827 | #endif |
1828 | |