1 | /* Copyright (C) 1991-2019 Free Software Foundation, Inc. |
2 | This file is part of the GNU C Library. |
3 | Written by Douglas C. Schmidt (schmidt@ics.uci.edu). |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <http://www.gnu.org/licenses/>. */ |
18 | |
19 | /* If you consider tuning this algorithm, you should consult first: |
20 | Engineering a sort function; Jon Bentley and M. Douglas McIlroy; |
21 | Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993. */ |
22 | |
23 | #include <alloca.h> |
24 | #include <limits.h> |
25 | #include <stdlib.h> |
26 | #include <string.h> |
27 | |
28 | /* Byte-wise swap two items of size SIZE. */ |
29 | #define SWAP(a, b, size) \ |
30 | do \ |
31 | { \ |
32 | size_t __size = (size); \ |
33 | char *__a = (a), *__b = (b); \ |
34 | do \ |
35 | { \ |
36 | char __tmp = *__a; \ |
37 | *__a++ = *__b; \ |
38 | *__b++ = __tmp; \ |
39 | } while (--__size > 0); \ |
40 | } while (0) |
41 | |
42 | /* Discontinue quicksort algorithm when partition gets below this size. |
43 | This particular magic number was chosen to work best on a Sun 4/260. */ |
44 | #define MAX_THRESH 4 |
45 | |
46 | /* Stack node declarations used to store unfulfilled partition obligations. */ |
47 | typedef struct |
48 | { |
49 | char *lo; |
50 | char *hi; |
51 | } stack_node; |
52 | |
53 | /* The next 4 #defines implement a very fast in-line stack abstraction. */ |
54 | /* The stack needs log (total_elements) entries (we could even subtract |
55 | log(MAX_THRESH)). Since total_elements has type size_t, we get as |
56 | upper bound for log (total_elements): |
57 | bits per byte (CHAR_BIT) * sizeof(size_t). */ |
58 | #define STACK_SIZE (CHAR_BIT * sizeof(size_t)) |
59 | #define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top)) |
60 | #define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi))) |
61 | #define STACK_NOT_EMPTY (stack < top) |
62 | |
63 | |
64 | /* Order size using quicksort. This implementation incorporates |
65 | four optimizations discussed in Sedgewick: |
66 | |
67 | 1. Non-recursive, using an explicit stack of pointer that store the |
68 | next array partition to sort. To save time, this maximum amount |
69 | of space required to store an array of SIZE_MAX is allocated on the |
70 | stack. Assuming a 32-bit (64 bit) integer for size_t, this needs |
71 | only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes). |
72 | Pretty cheap, actually. |
73 | |
74 | 2. Chose the pivot element using a median-of-three decision tree. |
75 | This reduces the probability of selecting a bad pivot value and |
76 | eliminates certain extraneous comparisons. |
77 | |
78 | 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving |
79 | insertion sort to order the MAX_THRESH items within each partition. |
80 | This is a big win, since insertion sort is faster for small, mostly |
81 | sorted array segments. |
82 | |
83 | 4. The larger of the two sub-partitions is always pushed onto the |
84 | stack first, with the algorithm then concentrating on the |
85 | smaller partition. This *guarantees* no more than log (total_elems) |
86 | stack size is needed (actually O(1) in this case)! */ |
87 | |
88 | void |
89 | _quicksort (void *const pbase, size_t total_elems, size_t size, |
90 | __compar_d_fn_t cmp, void *arg) |
91 | { |
92 | char *base_ptr = (char *) pbase; |
93 | |
94 | const size_t max_thresh = MAX_THRESH * size; |
95 | |
96 | if (total_elems == 0) |
97 | /* Avoid lossage with unsigned arithmetic below. */ |
98 | return; |
99 | |
100 | if (total_elems > MAX_THRESH) |
101 | { |
102 | char *lo = base_ptr; |
103 | char *hi = &lo[size * (total_elems - 1)]; |
104 | stack_node stack[STACK_SIZE]; |
105 | stack_node *top = stack; |
106 | |
107 | PUSH (NULL, NULL); |
108 | |
109 | while (STACK_NOT_EMPTY) |
110 | { |
111 | char *left_ptr; |
112 | char *right_ptr; |
113 | |
114 | /* Select median value from among LO, MID, and HI. Rearrange |
115 | LO and HI so the three values are sorted. This lowers the |
116 | probability of picking a pathological pivot value and |
117 | skips a comparison for both the LEFT_PTR and RIGHT_PTR in |
118 | the while loops. */ |
119 | |
120 | char *mid = lo + size * ((hi - lo) / size >> 1); |
121 | |
122 | if ((*cmp) ((void *) mid, (void *) lo, arg) < 0) |
123 | SWAP (mid, lo, size); |
124 | if ((*cmp) ((void *) hi, (void *) mid, arg) < 0) |
125 | SWAP (mid, hi, size); |
126 | else |
127 | goto jump_over; |
128 | if ((*cmp) ((void *) mid, (void *) lo, arg) < 0) |
129 | SWAP (mid, lo, size); |
130 | jump_over:; |
131 | |
132 | left_ptr = lo + size; |
133 | right_ptr = hi - size; |
134 | |
135 | /* Here's the famous ``collapse the walls'' section of quicksort. |
136 | Gotta like those tight inner loops! They are the main reason |
137 | that this algorithm runs much faster than others. */ |
138 | do |
139 | { |
140 | while ((*cmp) ((void *) left_ptr, (void *) mid, arg) < 0) |
141 | left_ptr += size; |
142 | |
143 | while ((*cmp) ((void *) mid, (void *) right_ptr, arg) < 0) |
144 | right_ptr -= size; |
145 | |
146 | if (left_ptr < right_ptr) |
147 | { |
148 | SWAP (left_ptr, right_ptr, size); |
149 | if (mid == left_ptr) |
150 | mid = right_ptr; |
151 | else if (mid == right_ptr) |
152 | mid = left_ptr; |
153 | left_ptr += size; |
154 | right_ptr -= size; |
155 | } |
156 | else if (left_ptr == right_ptr) |
157 | { |
158 | left_ptr += size; |
159 | right_ptr -= size; |
160 | break; |
161 | } |
162 | } |
163 | while (left_ptr <= right_ptr); |
164 | |
165 | /* Set up pointers for next iteration. First determine whether |
166 | left and right partitions are below the threshold size. If so, |
167 | ignore one or both. Otherwise, push the larger partition's |
168 | bounds on the stack and continue sorting the smaller one. */ |
169 | |
170 | if ((size_t) (right_ptr - lo) <= max_thresh) |
171 | { |
172 | if ((size_t) (hi - left_ptr) <= max_thresh) |
173 | /* Ignore both small partitions. */ |
174 | POP (lo, hi); |
175 | else |
176 | /* Ignore small left partition. */ |
177 | lo = left_ptr; |
178 | } |
179 | else if ((size_t) (hi - left_ptr) <= max_thresh) |
180 | /* Ignore small right partition. */ |
181 | hi = right_ptr; |
182 | else if ((right_ptr - lo) > (hi - left_ptr)) |
183 | { |
184 | /* Push larger left partition indices. */ |
185 | PUSH (lo, right_ptr); |
186 | lo = left_ptr; |
187 | } |
188 | else |
189 | { |
190 | /* Push larger right partition indices. */ |
191 | PUSH (left_ptr, hi); |
192 | hi = right_ptr; |
193 | } |
194 | } |
195 | } |
196 | |
197 | /* Once the BASE_PTR array is partially sorted by quicksort the rest |
198 | is completely sorted using insertion sort, since this is efficient |
199 | for partitions below MAX_THRESH size. BASE_PTR points to the beginning |
200 | of the array to sort, and END_PTR points at the very last element in |
201 | the array (*not* one beyond it!). */ |
202 | |
203 | #define min(x, y) ((x) < (y) ? (x) : (y)) |
204 | |
205 | { |
206 | char *const end_ptr = &base_ptr[size * (total_elems - 1)]; |
207 | char *tmp_ptr = base_ptr; |
208 | char *thresh = min(end_ptr, base_ptr + max_thresh); |
209 | char *run_ptr; |
210 | |
211 | /* Find smallest element in first threshold and place it at the |
212 | array's beginning. This is the smallest array element, |
213 | and the operation speeds up insertion sort's inner loop. */ |
214 | |
215 | for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size) |
216 | if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0) |
217 | tmp_ptr = run_ptr; |
218 | |
219 | if (tmp_ptr != base_ptr) |
220 | SWAP (tmp_ptr, base_ptr, size); |
221 | |
222 | /* Insertion sort, running from left-hand-side up to right-hand-side. */ |
223 | |
224 | run_ptr = base_ptr + size; |
225 | while ((run_ptr += size) <= end_ptr) |
226 | { |
227 | tmp_ptr = run_ptr - size; |
228 | while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0) |
229 | tmp_ptr -= size; |
230 | |
231 | tmp_ptr += size; |
232 | if (tmp_ptr != run_ptr) |
233 | { |
234 | char *trav; |
235 | |
236 | trav = run_ptr + size; |
237 | while (--trav >= run_ptr) |
238 | { |
239 | char c = *trav; |
240 | char *hi, *lo; |
241 | |
242 | for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo) |
243 | *hi = *lo; |
244 | *hi = c; |
245 | } |
246 | } |
247 | } |
248 | } |
249 | } |
250 | |