1 | /* Extended regular expression matching and search library. |
2 | Copyright (C) 2002-2019 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <https://www.gnu.org/licenses/>. */ |
19 | |
20 | static reg_errcode_t match_ctx_init (re_match_context_t *cache, int eflags, |
21 | Idx n); |
22 | static void match_ctx_clean (re_match_context_t *mctx); |
23 | static void match_ctx_free (re_match_context_t *cache); |
24 | static reg_errcode_t match_ctx_add_entry (re_match_context_t *cache, Idx node, |
25 | Idx str_idx, Idx from, Idx to); |
26 | static Idx search_cur_bkref_entry (const re_match_context_t *mctx, Idx str_idx); |
27 | static reg_errcode_t match_ctx_add_subtop (re_match_context_t *mctx, Idx node, |
28 | Idx str_idx); |
29 | static re_sub_match_last_t * match_ctx_add_sublast (re_sub_match_top_t *subtop, |
30 | Idx node, Idx str_idx); |
31 | static void sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, |
32 | re_dfastate_t **limited_sts, Idx last_node, |
33 | Idx last_str_idx); |
34 | static reg_errcode_t re_search_internal (const regex_t *preg, |
35 | const char *string, Idx length, |
36 | Idx start, Idx last_start, Idx stop, |
37 | size_t nmatch, regmatch_t pmatch[], |
38 | int eflags); |
39 | static regoff_t re_search_2_stub (struct re_pattern_buffer *bufp, |
40 | const char *string1, Idx length1, |
41 | const char *string2, Idx length2, |
42 | Idx start, regoff_t range, |
43 | struct re_registers *regs, |
44 | Idx stop, bool ret_len); |
45 | static regoff_t re_search_stub (struct re_pattern_buffer *bufp, |
46 | const char *string, Idx length, Idx start, |
47 | regoff_t range, Idx stop, |
48 | struct re_registers *regs, |
49 | bool ret_len); |
50 | static unsigned re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, |
51 | Idx nregs, int regs_allocated); |
52 | static reg_errcode_t prune_impossible_nodes (re_match_context_t *mctx); |
53 | static Idx check_matching (re_match_context_t *mctx, bool fl_longest_match, |
54 | Idx *p_match_first); |
55 | static Idx check_halt_state_context (const re_match_context_t *mctx, |
56 | const re_dfastate_t *state, Idx idx); |
57 | static void update_regs (const re_dfa_t *dfa, regmatch_t *pmatch, |
58 | regmatch_t *prev_idx_match, Idx cur_node, |
59 | Idx cur_idx, Idx nmatch); |
60 | static reg_errcode_t push_fail_stack (struct re_fail_stack_t *fs, |
61 | Idx str_idx, Idx dest_node, Idx nregs, |
62 | regmatch_t *regs, |
63 | re_node_set *eps_via_nodes); |
64 | static reg_errcode_t set_regs (const regex_t *preg, |
65 | const re_match_context_t *mctx, |
66 | size_t nmatch, regmatch_t *pmatch, |
67 | bool fl_backtrack); |
68 | static reg_errcode_t free_fail_stack_return (struct re_fail_stack_t *fs); |
69 | |
70 | #ifdef RE_ENABLE_I18N |
71 | static int sift_states_iter_mb (const re_match_context_t *mctx, |
72 | re_sift_context_t *sctx, |
73 | Idx node_idx, Idx str_idx, Idx max_str_idx); |
74 | #endif /* RE_ENABLE_I18N */ |
75 | static reg_errcode_t sift_states_backward (const re_match_context_t *mctx, |
76 | re_sift_context_t *sctx); |
77 | static reg_errcode_t build_sifted_states (const re_match_context_t *mctx, |
78 | re_sift_context_t *sctx, Idx str_idx, |
79 | re_node_set *cur_dest); |
80 | static reg_errcode_t update_cur_sifted_state (const re_match_context_t *mctx, |
81 | re_sift_context_t *sctx, |
82 | Idx str_idx, |
83 | re_node_set *dest_nodes); |
84 | static reg_errcode_t add_epsilon_src_nodes (const re_dfa_t *dfa, |
85 | re_node_set *dest_nodes, |
86 | const re_node_set *candidates); |
87 | static bool check_dst_limits (const re_match_context_t *mctx, |
88 | const re_node_set *limits, |
89 | Idx dst_node, Idx dst_idx, Idx src_node, |
90 | Idx src_idx); |
91 | static int check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, |
92 | int boundaries, Idx subexp_idx, |
93 | Idx from_node, Idx bkref_idx); |
94 | static int check_dst_limits_calc_pos (const re_match_context_t *mctx, |
95 | Idx limit, Idx subexp_idx, |
96 | Idx node, Idx str_idx, |
97 | Idx bkref_idx); |
98 | static reg_errcode_t check_subexp_limits (const re_dfa_t *dfa, |
99 | re_node_set *dest_nodes, |
100 | const re_node_set *candidates, |
101 | re_node_set *limits, |
102 | struct re_backref_cache_entry *bkref_ents, |
103 | Idx str_idx); |
104 | static reg_errcode_t sift_states_bkref (const re_match_context_t *mctx, |
105 | re_sift_context_t *sctx, |
106 | Idx str_idx, const re_node_set *candidates); |
107 | static reg_errcode_t merge_state_array (const re_dfa_t *dfa, |
108 | re_dfastate_t **dst, |
109 | re_dfastate_t **src, Idx num); |
110 | static re_dfastate_t *find_recover_state (reg_errcode_t *err, |
111 | re_match_context_t *mctx); |
112 | static re_dfastate_t *transit_state (reg_errcode_t *err, |
113 | re_match_context_t *mctx, |
114 | re_dfastate_t *state); |
115 | static re_dfastate_t *merge_state_with_log (reg_errcode_t *err, |
116 | re_match_context_t *mctx, |
117 | re_dfastate_t *next_state); |
118 | static reg_errcode_t check_subexp_matching_top (re_match_context_t *mctx, |
119 | re_node_set *cur_nodes, |
120 | Idx str_idx); |
121 | #if 0 |
122 | static re_dfastate_t *transit_state_sb (reg_errcode_t *err, |
123 | re_match_context_t *mctx, |
124 | re_dfastate_t *pstate); |
125 | #endif |
126 | #ifdef RE_ENABLE_I18N |
127 | static reg_errcode_t transit_state_mb (re_match_context_t *mctx, |
128 | re_dfastate_t *pstate); |
129 | #endif /* RE_ENABLE_I18N */ |
130 | static reg_errcode_t transit_state_bkref (re_match_context_t *mctx, |
131 | const re_node_set *nodes); |
132 | static reg_errcode_t get_subexp (re_match_context_t *mctx, |
133 | Idx bkref_node, Idx bkref_str_idx); |
134 | static reg_errcode_t get_subexp_sub (re_match_context_t *mctx, |
135 | const re_sub_match_top_t *sub_top, |
136 | re_sub_match_last_t *sub_last, |
137 | Idx bkref_node, Idx bkref_str); |
138 | static Idx find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, |
139 | Idx subexp_idx, int type); |
140 | static reg_errcode_t check_arrival (re_match_context_t *mctx, |
141 | state_array_t *path, Idx top_node, |
142 | Idx top_str, Idx last_node, Idx last_str, |
143 | int type); |
144 | static reg_errcode_t check_arrival_add_next_nodes (re_match_context_t *mctx, |
145 | Idx str_idx, |
146 | re_node_set *cur_nodes, |
147 | re_node_set *next_nodes); |
148 | static reg_errcode_t check_arrival_expand_ecl (const re_dfa_t *dfa, |
149 | re_node_set *cur_nodes, |
150 | Idx ex_subexp, int type); |
151 | static reg_errcode_t check_arrival_expand_ecl_sub (const re_dfa_t *dfa, |
152 | re_node_set *dst_nodes, |
153 | Idx target, Idx ex_subexp, |
154 | int type); |
155 | static reg_errcode_t expand_bkref_cache (re_match_context_t *mctx, |
156 | re_node_set *cur_nodes, Idx cur_str, |
157 | Idx subexp_num, int type); |
158 | static bool build_trtable (const re_dfa_t *dfa, re_dfastate_t *state); |
159 | #ifdef RE_ENABLE_I18N |
160 | static int check_node_accept_bytes (const re_dfa_t *dfa, Idx node_idx, |
161 | const re_string_t *input, Idx idx); |
162 | # ifdef _LIBC |
163 | static unsigned int find_collation_sequence_value (const unsigned char *mbs, |
164 | size_t name_len); |
165 | # endif /* _LIBC */ |
166 | #endif /* RE_ENABLE_I18N */ |
167 | static Idx group_nodes_into_DFAstates (const re_dfa_t *dfa, |
168 | const re_dfastate_t *state, |
169 | re_node_set *states_node, |
170 | bitset_t *states_ch); |
171 | static bool check_node_accept (const re_match_context_t *mctx, |
172 | const re_token_t *node, Idx idx); |
173 | static reg_errcode_t extend_buffers (re_match_context_t *mctx, int min_len); |
174 | |
175 | /* Entry point for POSIX code. */ |
176 | |
177 | /* regexec searches for a given pattern, specified by PREG, in the |
178 | string STRING. |
179 | |
180 | If NMATCH is zero or REG_NOSUB was set in the cflags argument to |
181 | 'regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at |
182 | least NMATCH elements, and we set them to the offsets of the |
183 | corresponding matched substrings. |
184 | |
185 | EFLAGS specifies "execution flags" which affect matching: if |
186 | REG_NOTBOL is set, then ^ does not match at the beginning of the |
187 | string; if REG_NOTEOL is set, then $ does not match at the end. |
188 | |
189 | We return 0 if we find a match and REG_NOMATCH if not. */ |
190 | |
191 | int |
192 | regexec (const regex_t *__restrict preg, const char *__restrict string, |
193 | size_t nmatch, regmatch_t pmatch[], int eflags) |
194 | { |
195 | reg_errcode_t err; |
196 | Idx start, length; |
197 | re_dfa_t *dfa = preg->buffer; |
198 | |
199 | if (eflags & ~(REG_NOTBOL | REG_NOTEOL | REG_STARTEND)) |
200 | return REG_BADPAT; |
201 | |
202 | if (eflags & REG_STARTEND) |
203 | { |
204 | start = pmatch[0].rm_so; |
205 | length = pmatch[0].rm_eo; |
206 | } |
207 | else |
208 | { |
209 | start = 0; |
210 | length = strlen (string); |
211 | } |
212 | |
213 | lock_lock (dfa->lock); |
214 | if (preg->no_sub) |
215 | err = re_search_internal (preg, string, length, start, length, |
216 | length, 0, NULL, eflags); |
217 | else |
218 | err = re_search_internal (preg, string, length, start, length, |
219 | length, nmatch, pmatch, eflags); |
220 | lock_unlock (dfa->lock); |
221 | return err != REG_NOERROR; |
222 | } |
223 | |
224 | #ifdef _LIBC |
225 | libc_hidden_def (__regexec) |
226 | |
227 | # include <shlib-compat.h> |
228 | versioned_symbol (libc, __regexec, regexec, GLIBC_2_3_4); |
229 | |
230 | # if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3_4) |
231 | __typeof__ (__regexec) __compat_regexec; |
232 | |
233 | int |
234 | attribute_compat_text_section |
235 | __compat_regexec (const regex_t *__restrict preg, |
236 | const char *__restrict string, size_t nmatch, |
237 | regmatch_t pmatch[], int eflags) |
238 | { |
239 | return regexec (preg, string, nmatch, pmatch, |
240 | eflags & (REG_NOTBOL | REG_NOTEOL)); |
241 | } |
242 | compat_symbol (libc, __compat_regexec, regexec, GLIBC_2_0); |
243 | # endif |
244 | #endif |
245 | |
246 | /* Entry points for GNU code. */ |
247 | |
248 | /* re_match, re_search, re_match_2, re_search_2 |
249 | |
250 | The former two functions operate on STRING with length LENGTH, |
251 | while the later two operate on concatenation of STRING1 and STRING2 |
252 | with lengths LENGTH1 and LENGTH2, respectively. |
253 | |
254 | re_match() matches the compiled pattern in BUFP against the string, |
255 | starting at index START. |
256 | |
257 | re_search() first tries matching at index START, then it tries to match |
258 | starting from index START + 1, and so on. The last start position tried |
259 | is START + RANGE. (Thus RANGE = 0 forces re_search to operate the same |
260 | way as re_match().) |
261 | |
262 | The parameter STOP of re_{match,search}_2 specifies that no match exceeding |
263 | the first STOP characters of the concatenation of the strings should be |
264 | concerned. |
265 | |
266 | If REGS is not NULL, and BUFP->no_sub is not set, the offsets of the match |
267 | and all groups is stored in REGS. (For the "_2" variants, the offsets are |
268 | computed relative to the concatenation, not relative to the individual |
269 | strings.) |
270 | |
271 | On success, re_match* functions return the length of the match, re_search* |
272 | return the position of the start of the match. Return value -1 means no |
273 | match was found and -2 indicates an internal error. */ |
274 | |
275 | regoff_t |
276 | re_match (struct re_pattern_buffer *bufp, const char *string, Idx length, |
277 | Idx start, struct re_registers *regs) |
278 | { |
279 | return re_search_stub (bufp, string, length, start, 0, length, regs, true); |
280 | } |
281 | #ifdef _LIBC |
282 | weak_alias (__re_match, re_match) |
283 | #endif |
284 | |
285 | regoff_t |
286 | re_search (struct re_pattern_buffer *bufp, const char *string, Idx length, |
287 | Idx start, regoff_t range, struct re_registers *regs) |
288 | { |
289 | return re_search_stub (bufp, string, length, start, range, length, regs, |
290 | false); |
291 | } |
292 | #ifdef _LIBC |
293 | weak_alias (__re_search, re_search) |
294 | #endif |
295 | |
296 | regoff_t |
297 | re_match_2 (struct re_pattern_buffer *bufp, const char *string1, Idx length1, |
298 | const char *string2, Idx length2, Idx start, |
299 | struct re_registers *regs, Idx stop) |
300 | { |
301 | return re_search_2_stub (bufp, string1, length1, string2, length2, |
302 | start, 0, regs, stop, true); |
303 | } |
304 | #ifdef _LIBC |
305 | weak_alias (__re_match_2, re_match_2) |
306 | #endif |
307 | |
308 | regoff_t |
309 | re_search_2 (struct re_pattern_buffer *bufp, const char *string1, Idx length1, |
310 | const char *string2, Idx length2, Idx start, regoff_t range, |
311 | struct re_registers *regs, Idx stop) |
312 | { |
313 | return re_search_2_stub (bufp, string1, length1, string2, length2, |
314 | start, range, regs, stop, false); |
315 | } |
316 | #ifdef _LIBC |
317 | weak_alias (__re_search_2, re_search_2) |
318 | #endif |
319 | |
320 | static regoff_t |
321 | re_search_2_stub (struct re_pattern_buffer *bufp, const char *string1, |
322 | Idx length1, const char *string2, Idx length2, Idx start, |
323 | regoff_t range, struct re_registers *regs, |
324 | Idx stop, bool ret_len) |
325 | { |
326 | const char *str; |
327 | regoff_t rval; |
328 | Idx len; |
329 | char *s = NULL; |
330 | |
331 | if (__glibc_unlikely ((length1 < 0 || length2 < 0 || stop < 0 |
332 | || INT_ADD_WRAPV (length1, length2, &len)))) |
333 | return -2; |
334 | |
335 | /* Concatenate the strings. */ |
336 | if (length2 > 0) |
337 | if (length1 > 0) |
338 | { |
339 | s = re_malloc (char, len); |
340 | |
341 | if (__glibc_unlikely (s == NULL)) |
342 | return -2; |
343 | #ifdef _LIBC |
344 | memcpy (__mempcpy (s, string1, length1), string2, length2); |
345 | #else |
346 | memcpy (s, string1, length1); |
347 | memcpy (s + length1, string2, length2); |
348 | #endif |
349 | str = s; |
350 | } |
351 | else |
352 | str = string2; |
353 | else |
354 | str = string1; |
355 | |
356 | rval = re_search_stub (bufp, str, len, start, range, stop, regs, |
357 | ret_len); |
358 | re_free (s); |
359 | return rval; |
360 | } |
361 | |
362 | /* The parameters have the same meaning as those of re_search. |
363 | Additional parameters: |
364 | If RET_LEN is true the length of the match is returned (re_match style); |
365 | otherwise the position of the match is returned. */ |
366 | |
367 | static regoff_t |
368 | re_search_stub (struct re_pattern_buffer *bufp, const char *string, Idx length, |
369 | Idx start, regoff_t range, Idx stop, struct re_registers *regs, |
370 | bool ret_len) |
371 | { |
372 | reg_errcode_t result; |
373 | regmatch_t *pmatch; |
374 | Idx nregs; |
375 | regoff_t rval; |
376 | int eflags = 0; |
377 | re_dfa_t *dfa = bufp->buffer; |
378 | Idx last_start = start + range; |
379 | |
380 | /* Check for out-of-range. */ |
381 | if (__glibc_unlikely (start < 0 || start > length)) |
382 | return -1; |
383 | if (__glibc_unlikely (length < last_start |
384 | || (0 <= range && last_start < start))) |
385 | last_start = length; |
386 | else if (__glibc_unlikely (last_start < 0 |
387 | || (range < 0 && start <= last_start))) |
388 | last_start = 0; |
389 | |
390 | lock_lock (dfa->lock); |
391 | |
392 | eflags |= (bufp->not_bol) ? REG_NOTBOL : 0; |
393 | eflags |= (bufp->not_eol) ? REG_NOTEOL : 0; |
394 | |
395 | /* Compile fastmap if we haven't yet. */ |
396 | if (start < last_start && bufp->fastmap != NULL && !bufp->fastmap_accurate) |
397 | re_compile_fastmap (bufp); |
398 | |
399 | if (__glibc_unlikely (bufp->no_sub)) |
400 | regs = NULL; |
401 | |
402 | /* We need at least 1 register. */ |
403 | if (regs == NULL) |
404 | nregs = 1; |
405 | else if (__glibc_unlikely (bufp->regs_allocated == REGS_FIXED |
406 | && regs->num_regs <= bufp->re_nsub)) |
407 | { |
408 | nregs = regs->num_regs; |
409 | if (__glibc_unlikely (nregs < 1)) |
410 | { |
411 | /* Nothing can be copied to regs. */ |
412 | regs = NULL; |
413 | nregs = 1; |
414 | } |
415 | } |
416 | else |
417 | nregs = bufp->re_nsub + 1; |
418 | pmatch = re_malloc (regmatch_t, nregs); |
419 | if (__glibc_unlikely (pmatch == NULL)) |
420 | { |
421 | rval = -2; |
422 | goto out; |
423 | } |
424 | |
425 | result = re_search_internal (bufp, string, length, start, last_start, stop, |
426 | nregs, pmatch, eflags); |
427 | |
428 | rval = 0; |
429 | |
430 | /* I hope we needn't fill their regs with -1's when no match was found. */ |
431 | if (result != REG_NOERROR) |
432 | rval = result == REG_NOMATCH ? -1 : -2; |
433 | else if (regs != NULL) |
434 | { |
435 | /* If caller wants register contents data back, copy them. */ |
436 | bufp->regs_allocated = re_copy_regs (regs, pmatch, nregs, |
437 | bufp->regs_allocated); |
438 | if (__glibc_unlikely (bufp->regs_allocated == REGS_UNALLOCATED)) |
439 | rval = -2; |
440 | } |
441 | |
442 | if (__glibc_likely (rval == 0)) |
443 | { |
444 | if (ret_len) |
445 | { |
446 | assert (pmatch[0].rm_so == start); |
447 | rval = pmatch[0].rm_eo - start; |
448 | } |
449 | else |
450 | rval = pmatch[0].rm_so; |
451 | } |
452 | re_free (pmatch); |
453 | out: |
454 | lock_unlock (dfa->lock); |
455 | return rval; |
456 | } |
457 | |
458 | static unsigned |
459 | re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, Idx nregs, |
460 | int regs_allocated) |
461 | { |
462 | int rval = REGS_REALLOCATE; |
463 | Idx i; |
464 | Idx need_regs = nregs + 1; |
465 | /* We need one extra element beyond 'num_regs' for the '-1' marker GNU code |
466 | uses. */ |
467 | |
468 | /* Have the register data arrays been allocated? */ |
469 | if (regs_allocated == REGS_UNALLOCATED) |
470 | { /* No. So allocate them with malloc. */ |
471 | regs->start = re_malloc (regoff_t, need_regs); |
472 | if (__glibc_unlikely (regs->start == NULL)) |
473 | return REGS_UNALLOCATED; |
474 | regs->end = re_malloc (regoff_t, need_regs); |
475 | if (__glibc_unlikely (regs->end == NULL)) |
476 | { |
477 | re_free (regs->start); |
478 | return REGS_UNALLOCATED; |
479 | } |
480 | regs->num_regs = need_regs; |
481 | } |
482 | else if (regs_allocated == REGS_REALLOCATE) |
483 | { /* Yes. If we need more elements than were already |
484 | allocated, reallocate them. If we need fewer, just |
485 | leave it alone. */ |
486 | if (__glibc_unlikely (need_regs > regs->num_regs)) |
487 | { |
488 | regoff_t *new_start = re_realloc (regs->start, regoff_t, need_regs); |
489 | regoff_t *new_end; |
490 | if (__glibc_unlikely (new_start == NULL)) |
491 | return REGS_UNALLOCATED; |
492 | new_end = re_realloc (regs->end, regoff_t, need_regs); |
493 | if (__glibc_unlikely (new_end == NULL)) |
494 | { |
495 | re_free (new_start); |
496 | return REGS_UNALLOCATED; |
497 | } |
498 | regs->start = new_start; |
499 | regs->end = new_end; |
500 | regs->num_regs = need_regs; |
501 | } |
502 | } |
503 | else |
504 | { |
505 | assert (regs_allocated == REGS_FIXED); |
506 | /* This function may not be called with REGS_FIXED and nregs too big. */ |
507 | assert (regs->num_regs >= nregs); |
508 | rval = REGS_FIXED; |
509 | } |
510 | |
511 | /* Copy the regs. */ |
512 | for (i = 0; i < nregs; ++i) |
513 | { |
514 | regs->start[i] = pmatch[i].rm_so; |
515 | regs->end[i] = pmatch[i].rm_eo; |
516 | } |
517 | for ( ; i < regs->num_regs; ++i) |
518 | regs->start[i] = regs->end[i] = -1; |
519 | |
520 | return rval; |
521 | } |
522 | |
523 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and |
524 | ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use |
525 | this memory for recording register information. STARTS and ENDS |
526 | must be allocated using the malloc library routine, and must each |
527 | be at least NUM_REGS * sizeof (regoff_t) bytes long. |
528 | |
529 | If NUM_REGS == 0, then subsequent matches should allocate their own |
530 | register data. |
531 | |
532 | Unless this function is called, the first search or match using |
533 | PATTERN_BUFFER will allocate its own register data, without |
534 | freeing the old data. */ |
535 | |
536 | void |
537 | re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs, |
538 | __re_size_t num_regs, regoff_t *starts, regoff_t *ends) |
539 | { |
540 | if (num_regs) |
541 | { |
542 | bufp->regs_allocated = REGS_REALLOCATE; |
543 | regs->num_regs = num_regs; |
544 | regs->start = starts; |
545 | regs->end = ends; |
546 | } |
547 | else |
548 | { |
549 | bufp->regs_allocated = REGS_UNALLOCATED; |
550 | regs->num_regs = 0; |
551 | regs->start = regs->end = NULL; |
552 | } |
553 | } |
554 | #ifdef _LIBC |
555 | weak_alias (__re_set_registers, re_set_registers) |
556 | #endif |
557 | |
558 | /* Entry points compatible with 4.2 BSD regex library. We don't define |
559 | them unless specifically requested. */ |
560 | |
561 | #if defined _REGEX_RE_COMP || defined _LIBC |
562 | int |
563 | # ifdef _LIBC |
564 | weak_function |
565 | # endif |
566 | re_exec (const char *s) |
567 | { |
568 | return 0 == regexec (&re_comp_buf, s, 0, NULL, 0); |
569 | } |
570 | #endif /* _REGEX_RE_COMP */ |
571 | |
572 | /* Internal entry point. */ |
573 | |
574 | /* Searches for a compiled pattern PREG in the string STRING, whose |
575 | length is LENGTH. NMATCH, PMATCH, and EFLAGS have the same |
576 | meaning as with regexec. LAST_START is START + RANGE, where |
577 | START and RANGE have the same meaning as with re_search. |
578 | Return REG_NOERROR if we find a match, and REG_NOMATCH if not, |
579 | otherwise return the error code. |
580 | Note: We assume front end functions already check ranges. |
581 | (0 <= LAST_START && LAST_START <= LENGTH) */ |
582 | |
583 | static reg_errcode_t |
584 | __attribute_warn_unused_result__ |
585 | re_search_internal (const regex_t *preg, const char *string, Idx length, |
586 | Idx start, Idx last_start, Idx stop, size_t nmatch, |
587 | regmatch_t pmatch[], int eflags) |
588 | { |
589 | reg_errcode_t err; |
590 | const re_dfa_t *dfa = preg->buffer; |
591 | Idx left_lim, right_lim; |
592 | int incr; |
593 | bool fl_longest_match; |
594 | int match_kind; |
595 | Idx match_first; |
596 | Idx match_last = -1; |
597 | Idx ; |
598 | bool sb; |
599 | int ch; |
600 | #if defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L) |
601 | re_match_context_t mctx = { .dfa = dfa }; |
602 | #else |
603 | re_match_context_t mctx; |
604 | #endif |
605 | char *fastmap = ((preg->fastmap != NULL && preg->fastmap_accurate |
606 | && start != last_start && !preg->can_be_null) |
607 | ? preg->fastmap : NULL); |
608 | RE_TRANSLATE_TYPE t = preg->translate; |
609 | |
610 | #if !(defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L)) |
611 | memset (&mctx, '\0', sizeof (re_match_context_t)); |
612 | mctx.dfa = dfa; |
613 | #endif |
614 | |
615 | extra_nmatch = (nmatch > preg->re_nsub) ? nmatch - (preg->re_nsub + 1) : 0; |
616 | nmatch -= extra_nmatch; |
617 | |
618 | /* Check if the DFA haven't been compiled. */ |
619 | if (__glibc_unlikely (preg->used == 0 || dfa->init_state == NULL |
620 | || dfa->init_state_word == NULL |
621 | || dfa->init_state_nl == NULL |
622 | || dfa->init_state_begbuf == NULL)) |
623 | return REG_NOMATCH; |
624 | |
625 | #ifdef DEBUG |
626 | /* We assume front-end functions already check them. */ |
627 | assert (0 <= last_start && last_start <= length); |
628 | #endif |
629 | |
630 | /* If initial states with non-begbuf contexts have no elements, |
631 | the regex must be anchored. If preg->newline_anchor is set, |
632 | we'll never use init_state_nl, so do not check it. */ |
633 | if (dfa->init_state->nodes.nelem == 0 |
634 | && dfa->init_state_word->nodes.nelem == 0 |
635 | && (dfa->init_state_nl->nodes.nelem == 0 |
636 | || !preg->newline_anchor)) |
637 | { |
638 | if (start != 0 && last_start != 0) |
639 | return REG_NOMATCH; |
640 | start = last_start = 0; |
641 | } |
642 | |
643 | /* We must check the longest matching, if nmatch > 0. */ |
644 | fl_longest_match = (nmatch != 0 || dfa->nbackref); |
645 | |
646 | err = re_string_allocate (&mctx.input, string, length, dfa->nodes_len + 1, |
647 | preg->translate, (preg->syntax & RE_ICASE) != 0, |
648 | dfa); |
649 | if (__glibc_unlikely (err != REG_NOERROR)) |
650 | goto free_return; |
651 | mctx.input.stop = stop; |
652 | mctx.input.raw_stop = stop; |
653 | mctx.input.newline_anchor = preg->newline_anchor; |
654 | |
655 | err = match_ctx_init (&mctx, eflags, dfa->nbackref * 2); |
656 | if (__glibc_unlikely (err != REG_NOERROR)) |
657 | goto free_return; |
658 | |
659 | /* We will log all the DFA states through which the dfa pass, |
660 | if nmatch > 1, or this dfa has "multibyte node", which is a |
661 | back-reference or a node which can accept multibyte character or |
662 | multi character collating element. */ |
663 | if (nmatch > 1 || dfa->has_mb_node) |
664 | { |
665 | /* Avoid overflow. */ |
666 | if (__glibc_unlikely ((MIN (IDX_MAX, SIZE_MAX / sizeof (re_dfastate_t *)) |
667 | <= mctx.input.bufs_len))) |
668 | { |
669 | err = REG_ESPACE; |
670 | goto free_return; |
671 | } |
672 | |
673 | mctx.state_log = re_malloc (re_dfastate_t *, mctx.input.bufs_len + 1); |
674 | if (__glibc_unlikely (mctx.state_log == NULL)) |
675 | { |
676 | err = REG_ESPACE; |
677 | goto free_return; |
678 | } |
679 | } |
680 | else |
681 | mctx.state_log = NULL; |
682 | |
683 | match_first = start; |
684 | mctx.input.tip_context = (eflags & REG_NOTBOL) ? CONTEXT_BEGBUF |
685 | : CONTEXT_NEWLINE | CONTEXT_BEGBUF; |
686 | |
687 | /* Check incrementally whether the input string matches. */ |
688 | incr = (last_start < start) ? -1 : 1; |
689 | left_lim = (last_start < start) ? last_start : start; |
690 | right_lim = (last_start < start) ? start : last_start; |
691 | sb = dfa->mb_cur_max == 1; |
692 | match_kind = |
693 | (fastmap |
694 | ? ((sb || !(preg->syntax & RE_ICASE || t) ? 4 : 0) |
695 | | (start <= last_start ? 2 : 0) |
696 | | (t != NULL ? 1 : 0)) |
697 | : 8); |
698 | |
699 | for (;; match_first += incr) |
700 | { |
701 | err = REG_NOMATCH; |
702 | if (match_first < left_lim || right_lim < match_first) |
703 | goto free_return; |
704 | |
705 | /* Advance as rapidly as possible through the string, until we |
706 | find a plausible place to start matching. This may be done |
707 | with varying efficiency, so there are various possibilities: |
708 | only the most common of them are specialized, in order to |
709 | save on code size. We use a switch statement for speed. */ |
710 | switch (match_kind) |
711 | { |
712 | case 8: |
713 | /* No fastmap. */ |
714 | break; |
715 | |
716 | case 7: |
717 | /* Fastmap with single-byte translation, match forward. */ |
718 | while (__glibc_likely (match_first < right_lim) |
719 | && !fastmap[t[(unsigned char) string[match_first]]]) |
720 | ++match_first; |
721 | goto forward_match_found_start_or_reached_end; |
722 | |
723 | case 6: |
724 | /* Fastmap without translation, match forward. */ |
725 | while (__glibc_likely (match_first < right_lim) |
726 | && !fastmap[(unsigned char) string[match_first]]) |
727 | ++match_first; |
728 | |
729 | forward_match_found_start_or_reached_end: |
730 | if (__glibc_unlikely (match_first == right_lim)) |
731 | { |
732 | ch = match_first >= length |
733 | ? 0 : (unsigned char) string[match_first]; |
734 | if (!fastmap[t ? t[ch] : ch]) |
735 | goto free_return; |
736 | } |
737 | break; |
738 | |
739 | case 4: |
740 | case 5: |
741 | /* Fastmap without multi-byte translation, match backwards. */ |
742 | while (match_first >= left_lim) |
743 | { |
744 | ch = match_first >= length |
745 | ? 0 : (unsigned char) string[match_first]; |
746 | if (fastmap[t ? t[ch] : ch]) |
747 | break; |
748 | --match_first; |
749 | } |
750 | if (match_first < left_lim) |
751 | goto free_return; |
752 | break; |
753 | |
754 | default: |
755 | /* In this case, we can't determine easily the current byte, |
756 | since it might be a component byte of a multibyte |
757 | character. Then we use the constructed buffer instead. */ |
758 | for (;;) |
759 | { |
760 | /* If MATCH_FIRST is out of the valid range, reconstruct the |
761 | buffers. */ |
762 | __re_size_t offset = match_first - mctx.input.raw_mbs_idx; |
763 | if (__glibc_unlikely (offset |
764 | >= (__re_size_t) mctx.input.valid_raw_len)) |
765 | { |
766 | err = re_string_reconstruct (&mctx.input, match_first, |
767 | eflags); |
768 | if (__glibc_unlikely (err != REG_NOERROR)) |
769 | goto free_return; |
770 | |
771 | offset = match_first - mctx.input.raw_mbs_idx; |
772 | } |
773 | /* If MATCH_FIRST is out of the buffer, leave it as '\0'. |
774 | Note that MATCH_FIRST must not be smaller than 0. */ |
775 | ch = (match_first >= length |
776 | ? 0 : re_string_byte_at (&mctx.input, offset)); |
777 | if (fastmap[ch]) |
778 | break; |
779 | match_first += incr; |
780 | if (match_first < left_lim || match_first > right_lim) |
781 | { |
782 | err = REG_NOMATCH; |
783 | goto free_return; |
784 | } |
785 | } |
786 | break; |
787 | } |
788 | |
789 | /* Reconstruct the buffers so that the matcher can assume that |
790 | the matching starts from the beginning of the buffer. */ |
791 | err = re_string_reconstruct (&mctx.input, match_first, eflags); |
792 | if (__glibc_unlikely (err != REG_NOERROR)) |
793 | goto free_return; |
794 | |
795 | #ifdef RE_ENABLE_I18N |
796 | /* Don't consider this char as a possible match start if it part, |
797 | yet isn't the head, of a multibyte character. */ |
798 | if (!sb && !re_string_first_byte (&mctx.input, 0)) |
799 | continue; |
800 | #endif |
801 | |
802 | /* It seems to be appropriate one, then use the matcher. */ |
803 | /* We assume that the matching starts from 0. */ |
804 | mctx.state_log_top = mctx.nbkref_ents = mctx.max_mb_elem_len = 0; |
805 | match_last = check_matching (&mctx, fl_longest_match, |
806 | start <= last_start ? &match_first : NULL); |
807 | if (match_last != -1) |
808 | { |
809 | if (__glibc_unlikely (match_last == -2)) |
810 | { |
811 | err = REG_ESPACE; |
812 | goto free_return; |
813 | } |
814 | else |
815 | { |
816 | mctx.match_last = match_last; |
817 | if ((!preg->no_sub && nmatch > 1) || dfa->nbackref) |
818 | { |
819 | re_dfastate_t *pstate = mctx.state_log[match_last]; |
820 | mctx.last_node = check_halt_state_context (&mctx, pstate, |
821 | match_last); |
822 | } |
823 | if ((!preg->no_sub && nmatch > 1 && dfa->has_plural_match) |
824 | || dfa->nbackref) |
825 | { |
826 | err = prune_impossible_nodes (&mctx); |
827 | if (err == REG_NOERROR) |
828 | break; |
829 | if (__glibc_unlikely (err != REG_NOMATCH)) |
830 | goto free_return; |
831 | match_last = -1; |
832 | } |
833 | else |
834 | break; /* We found a match. */ |
835 | } |
836 | } |
837 | |
838 | match_ctx_clean (&mctx); |
839 | } |
840 | |
841 | #ifdef DEBUG |
842 | assert (match_last != -1); |
843 | assert (err == REG_NOERROR); |
844 | #endif |
845 | |
846 | /* Set pmatch[] if we need. */ |
847 | if (nmatch > 0) |
848 | { |
849 | Idx reg_idx; |
850 | |
851 | /* Initialize registers. */ |
852 | for (reg_idx = 1; reg_idx < nmatch; ++reg_idx) |
853 | pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1; |
854 | |
855 | /* Set the points where matching start/end. */ |
856 | pmatch[0].rm_so = 0; |
857 | pmatch[0].rm_eo = mctx.match_last; |
858 | /* FIXME: This function should fail if mctx.match_last exceeds |
859 | the maximum possible regoff_t value. We need a new error |
860 | code REG_OVERFLOW. */ |
861 | |
862 | if (!preg->no_sub && nmatch > 1) |
863 | { |
864 | err = set_regs (preg, &mctx, nmatch, pmatch, |
865 | dfa->has_plural_match && dfa->nbackref > 0); |
866 | if (__glibc_unlikely (err != REG_NOERROR)) |
867 | goto free_return; |
868 | } |
869 | |
870 | /* At last, add the offset to each register, since we slid |
871 | the buffers so that we could assume that the matching starts |
872 | from 0. */ |
873 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) |
874 | if (pmatch[reg_idx].rm_so != -1) |
875 | { |
876 | #ifdef RE_ENABLE_I18N |
877 | if (__glibc_unlikely (mctx.input.offsets_needed != 0)) |
878 | { |
879 | pmatch[reg_idx].rm_so = |
880 | (pmatch[reg_idx].rm_so == mctx.input.valid_len |
881 | ? mctx.input.valid_raw_len |
882 | : mctx.input.offsets[pmatch[reg_idx].rm_so]); |
883 | pmatch[reg_idx].rm_eo = |
884 | (pmatch[reg_idx].rm_eo == mctx.input.valid_len |
885 | ? mctx.input.valid_raw_len |
886 | : mctx.input.offsets[pmatch[reg_idx].rm_eo]); |
887 | } |
888 | #else |
889 | assert (mctx.input.offsets_needed == 0); |
890 | #endif |
891 | pmatch[reg_idx].rm_so += match_first; |
892 | pmatch[reg_idx].rm_eo += match_first; |
893 | } |
894 | for (reg_idx = 0; reg_idx < extra_nmatch; ++reg_idx) |
895 | { |
896 | pmatch[nmatch + reg_idx].rm_so = -1; |
897 | pmatch[nmatch + reg_idx].rm_eo = -1; |
898 | } |
899 | |
900 | if (dfa->subexp_map) |
901 | for (reg_idx = 0; reg_idx + 1 < nmatch; reg_idx++) |
902 | if (dfa->subexp_map[reg_idx] != reg_idx) |
903 | { |
904 | pmatch[reg_idx + 1].rm_so |
905 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_so; |
906 | pmatch[reg_idx + 1].rm_eo |
907 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_eo; |
908 | } |
909 | } |
910 | |
911 | free_return: |
912 | re_free (mctx.state_log); |
913 | if (dfa->nbackref) |
914 | match_ctx_free (&mctx); |
915 | re_string_destruct (&mctx.input); |
916 | return err; |
917 | } |
918 | |
919 | static reg_errcode_t |
920 | __attribute_warn_unused_result__ |
921 | prune_impossible_nodes (re_match_context_t *mctx) |
922 | { |
923 | const re_dfa_t *const dfa = mctx->dfa; |
924 | Idx halt_node, match_last; |
925 | reg_errcode_t ret; |
926 | re_dfastate_t **sifted_states; |
927 | re_dfastate_t **lim_states = NULL; |
928 | re_sift_context_t sctx; |
929 | #ifdef DEBUG |
930 | assert (mctx->state_log != NULL); |
931 | #endif |
932 | match_last = mctx->match_last; |
933 | halt_node = mctx->last_node; |
934 | |
935 | /* Avoid overflow. */ |
936 | if (__glibc_unlikely (MIN (IDX_MAX, SIZE_MAX / sizeof (re_dfastate_t *)) |
937 | <= match_last)) |
938 | return REG_ESPACE; |
939 | |
940 | sifted_states = re_malloc (re_dfastate_t *, match_last + 1); |
941 | if (__glibc_unlikely (sifted_states == NULL)) |
942 | { |
943 | ret = REG_ESPACE; |
944 | goto free_return; |
945 | } |
946 | if (dfa->nbackref) |
947 | { |
948 | lim_states = re_malloc (re_dfastate_t *, match_last + 1); |
949 | if (__glibc_unlikely (lim_states == NULL)) |
950 | { |
951 | ret = REG_ESPACE; |
952 | goto free_return; |
953 | } |
954 | while (1) |
955 | { |
956 | memset (lim_states, '\0', |
957 | sizeof (re_dfastate_t *) * (match_last + 1)); |
958 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, |
959 | match_last); |
960 | ret = sift_states_backward (mctx, &sctx); |
961 | re_node_set_free (&sctx.limits); |
962 | if (__glibc_unlikely (ret != REG_NOERROR)) |
963 | goto free_return; |
964 | if (sifted_states[0] != NULL || lim_states[0] != NULL) |
965 | break; |
966 | do |
967 | { |
968 | --match_last; |
969 | if (match_last < 0) |
970 | { |
971 | ret = REG_NOMATCH; |
972 | goto free_return; |
973 | } |
974 | } while (mctx->state_log[match_last] == NULL |
975 | || !mctx->state_log[match_last]->halt); |
976 | halt_node = check_halt_state_context (mctx, |
977 | mctx->state_log[match_last], |
978 | match_last); |
979 | } |
980 | ret = merge_state_array (dfa, sifted_states, lim_states, |
981 | match_last + 1); |
982 | re_free (lim_states); |
983 | lim_states = NULL; |
984 | if (__glibc_unlikely (ret != REG_NOERROR)) |
985 | goto free_return; |
986 | } |
987 | else |
988 | { |
989 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, match_last); |
990 | ret = sift_states_backward (mctx, &sctx); |
991 | re_node_set_free (&sctx.limits); |
992 | if (__glibc_unlikely (ret != REG_NOERROR)) |
993 | goto free_return; |
994 | if (sifted_states[0] == NULL) |
995 | { |
996 | ret = REG_NOMATCH; |
997 | goto free_return; |
998 | } |
999 | } |
1000 | re_free (mctx->state_log); |
1001 | mctx->state_log = sifted_states; |
1002 | sifted_states = NULL; |
1003 | mctx->last_node = halt_node; |
1004 | mctx->match_last = match_last; |
1005 | ret = REG_NOERROR; |
1006 | free_return: |
1007 | re_free (sifted_states); |
1008 | re_free (lim_states); |
1009 | return ret; |
1010 | } |
1011 | |
1012 | /* Acquire an initial state and return it. |
1013 | We must select appropriate initial state depending on the context, |
1014 | since initial states may have constraints like "\<", "^", etc.. */ |
1015 | |
1016 | static inline re_dfastate_t * |
1017 | __attribute__ ((always_inline)) |
1018 | acquire_init_state_context (reg_errcode_t *err, const re_match_context_t *mctx, |
1019 | Idx idx) |
1020 | { |
1021 | const re_dfa_t *const dfa = mctx->dfa; |
1022 | if (dfa->init_state->has_constraint) |
1023 | { |
1024 | unsigned int context; |
1025 | context = re_string_context_at (&mctx->input, idx - 1, mctx->eflags); |
1026 | if (IS_WORD_CONTEXT (context)) |
1027 | return dfa->init_state_word; |
1028 | else if (IS_ORDINARY_CONTEXT (context)) |
1029 | return dfa->init_state; |
1030 | else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context)) |
1031 | return dfa->init_state_begbuf; |
1032 | else if (IS_NEWLINE_CONTEXT (context)) |
1033 | return dfa->init_state_nl; |
1034 | else if (IS_BEGBUF_CONTEXT (context)) |
1035 | { |
1036 | /* It is relatively rare case, then calculate on demand. */ |
1037 | return re_acquire_state_context (err, dfa, |
1038 | dfa->init_state->entrance_nodes, |
1039 | context); |
1040 | } |
1041 | else |
1042 | /* Must not happen? */ |
1043 | return dfa->init_state; |
1044 | } |
1045 | else |
1046 | return dfa->init_state; |
1047 | } |
1048 | |
1049 | /* Check whether the regular expression match input string INPUT or not, |
1050 | and return the index where the matching end. Return -1 if |
1051 | there is no match, and return -2 in case of an error. |
1052 | FL_LONGEST_MATCH means we want the POSIX longest matching. |
1053 | If P_MATCH_FIRST is not NULL, and the match fails, it is set to the |
1054 | next place where we may want to try matching. |
1055 | Note that the matcher assumes that the matching starts from the current |
1056 | index of the buffer. */ |
1057 | |
1058 | static Idx |
1059 | __attribute_warn_unused_result__ |
1060 | check_matching (re_match_context_t *mctx, bool fl_longest_match, |
1061 | Idx *p_match_first) |
1062 | { |
1063 | const re_dfa_t *const dfa = mctx->dfa; |
1064 | reg_errcode_t err; |
1065 | Idx match = 0; |
1066 | Idx match_last = -1; |
1067 | Idx cur_str_idx = re_string_cur_idx (&mctx->input); |
1068 | re_dfastate_t *cur_state; |
1069 | bool at_init_state = p_match_first != NULL; |
1070 | Idx next_start_idx = cur_str_idx; |
1071 | |
1072 | err = REG_NOERROR; |
1073 | cur_state = acquire_init_state_context (&err, mctx, cur_str_idx); |
1074 | /* An initial state must not be NULL (invalid). */ |
1075 | if (__glibc_unlikely (cur_state == NULL)) |
1076 | { |
1077 | assert (err == REG_ESPACE); |
1078 | return -2; |
1079 | } |
1080 | |
1081 | if (mctx->state_log != NULL) |
1082 | { |
1083 | mctx->state_log[cur_str_idx] = cur_state; |
1084 | |
1085 | /* Check OP_OPEN_SUBEXP in the initial state in case that we use them |
1086 | later. E.g. Processing back references. */ |
1087 | if (__glibc_unlikely (dfa->nbackref)) |
1088 | { |
1089 | at_init_state = false; |
1090 | err = check_subexp_matching_top (mctx, &cur_state->nodes, 0); |
1091 | if (__glibc_unlikely (err != REG_NOERROR)) |
1092 | return err; |
1093 | |
1094 | if (cur_state->has_backref) |
1095 | { |
1096 | err = transit_state_bkref (mctx, &cur_state->nodes); |
1097 | if (__glibc_unlikely (err != REG_NOERROR)) |
1098 | return err; |
1099 | } |
1100 | } |
1101 | } |
1102 | |
1103 | /* If the RE accepts NULL string. */ |
1104 | if (__glibc_unlikely (cur_state->halt)) |
1105 | { |
1106 | if (!cur_state->has_constraint |
1107 | || check_halt_state_context (mctx, cur_state, cur_str_idx)) |
1108 | { |
1109 | if (!fl_longest_match) |
1110 | return cur_str_idx; |
1111 | else |
1112 | { |
1113 | match_last = cur_str_idx; |
1114 | match = 1; |
1115 | } |
1116 | } |
1117 | } |
1118 | |
1119 | while (!re_string_eoi (&mctx->input)) |
1120 | { |
1121 | re_dfastate_t *old_state = cur_state; |
1122 | Idx next_char_idx = re_string_cur_idx (&mctx->input) + 1; |
1123 | |
1124 | if ((__glibc_unlikely (next_char_idx >= mctx->input.bufs_len) |
1125 | && mctx->input.bufs_len < mctx->input.len) |
1126 | || (__glibc_unlikely (next_char_idx >= mctx->input.valid_len) |
1127 | && mctx->input.valid_len < mctx->input.len)) |
1128 | { |
1129 | err = extend_buffers (mctx, next_char_idx + 1); |
1130 | if (__glibc_unlikely (err != REG_NOERROR)) |
1131 | { |
1132 | assert (err == REG_ESPACE); |
1133 | return -2; |
1134 | } |
1135 | } |
1136 | |
1137 | cur_state = transit_state (&err, mctx, cur_state); |
1138 | if (mctx->state_log != NULL) |
1139 | cur_state = merge_state_with_log (&err, mctx, cur_state); |
1140 | |
1141 | if (cur_state == NULL) |
1142 | { |
1143 | /* Reached the invalid state or an error. Try to recover a valid |
1144 | state using the state log, if available and if we have not |
1145 | already found a valid (even if not the longest) match. */ |
1146 | if (__glibc_unlikely (err != REG_NOERROR)) |
1147 | return -2; |
1148 | |
1149 | if (mctx->state_log == NULL |
1150 | || (match && !fl_longest_match) |
1151 | || (cur_state = find_recover_state (&err, mctx)) == NULL) |
1152 | break; |
1153 | } |
1154 | |
1155 | if (__glibc_unlikely (at_init_state)) |
1156 | { |
1157 | if (old_state == cur_state) |
1158 | next_start_idx = next_char_idx; |
1159 | else |
1160 | at_init_state = false; |
1161 | } |
1162 | |
1163 | if (cur_state->halt) |
1164 | { |
1165 | /* Reached a halt state. |
1166 | Check the halt state can satisfy the current context. */ |
1167 | if (!cur_state->has_constraint |
1168 | || check_halt_state_context (mctx, cur_state, |
1169 | re_string_cur_idx (&mctx->input))) |
1170 | { |
1171 | /* We found an appropriate halt state. */ |
1172 | match_last = re_string_cur_idx (&mctx->input); |
1173 | match = 1; |
1174 | |
1175 | /* We found a match, do not modify match_first below. */ |
1176 | p_match_first = NULL; |
1177 | if (!fl_longest_match) |
1178 | break; |
1179 | } |
1180 | } |
1181 | } |
1182 | |
1183 | if (p_match_first) |
1184 | *p_match_first += next_start_idx; |
1185 | |
1186 | return match_last; |
1187 | } |
1188 | |
1189 | /* Check NODE match the current context. */ |
1190 | |
1191 | static bool |
1192 | check_halt_node_context (const re_dfa_t *dfa, Idx node, unsigned int context) |
1193 | { |
1194 | re_token_type_t type = dfa->nodes[node].type; |
1195 | unsigned int constraint = dfa->nodes[node].constraint; |
1196 | if (type != END_OF_RE) |
1197 | return false; |
1198 | if (!constraint) |
1199 | return true; |
1200 | if (NOT_SATISFY_NEXT_CONSTRAINT (constraint, context)) |
1201 | return false; |
1202 | return true; |
1203 | } |
1204 | |
1205 | /* Check the halt state STATE match the current context. |
1206 | Return 0 if not match, if the node, STATE has, is a halt node and |
1207 | match the context, return the node. */ |
1208 | |
1209 | static Idx |
1210 | check_halt_state_context (const re_match_context_t *mctx, |
1211 | const re_dfastate_t *state, Idx idx) |
1212 | { |
1213 | Idx i; |
1214 | unsigned int context; |
1215 | #ifdef DEBUG |
1216 | assert (state->halt); |
1217 | #endif |
1218 | context = re_string_context_at (&mctx->input, idx, mctx->eflags); |
1219 | for (i = 0; i < state->nodes.nelem; ++i) |
1220 | if (check_halt_node_context (mctx->dfa, state->nodes.elems[i], context)) |
1221 | return state->nodes.elems[i]; |
1222 | return 0; |
1223 | } |
1224 | |
1225 | /* Compute the next node to which "NFA" transit from NODE("NFA" is a NFA |
1226 | corresponding to the DFA). |
1227 | Return the destination node, and update EPS_VIA_NODES; |
1228 | return -1 in case of errors. */ |
1229 | |
1230 | static Idx |
1231 | proceed_next_node (const re_match_context_t *mctx, Idx nregs, regmatch_t *regs, |
1232 | Idx *pidx, Idx node, re_node_set *eps_via_nodes, |
1233 | struct re_fail_stack_t *fs) |
1234 | { |
1235 | const re_dfa_t *const dfa = mctx->dfa; |
1236 | Idx i; |
1237 | bool ok; |
1238 | if (IS_EPSILON_NODE (dfa->nodes[node].type)) |
1239 | { |
1240 | re_node_set *cur_nodes = &mctx->state_log[*pidx]->nodes; |
1241 | re_node_set *edests = &dfa->edests[node]; |
1242 | Idx dest_node; |
1243 | ok = re_node_set_insert (eps_via_nodes, node); |
1244 | if (__glibc_unlikely (! ok)) |
1245 | return -2; |
1246 | /* Pick up a valid destination, or return -1 if none |
1247 | is found. */ |
1248 | for (dest_node = -1, i = 0; i < edests->nelem; ++i) |
1249 | { |
1250 | Idx candidate = edests->elems[i]; |
1251 | if (!re_node_set_contains (cur_nodes, candidate)) |
1252 | continue; |
1253 | if (dest_node == -1) |
1254 | dest_node = candidate; |
1255 | |
1256 | else |
1257 | { |
1258 | /* In order to avoid infinite loop like "(a*)*", return the second |
1259 | epsilon-transition if the first was already considered. */ |
1260 | if (re_node_set_contains (eps_via_nodes, dest_node)) |
1261 | return candidate; |
1262 | |
1263 | /* Otherwise, push the second epsilon-transition on the fail stack. */ |
1264 | else if (fs != NULL |
1265 | && push_fail_stack (fs, *pidx, candidate, nregs, regs, |
1266 | eps_via_nodes)) |
1267 | return -2; |
1268 | |
1269 | /* We know we are going to exit. */ |
1270 | break; |
1271 | } |
1272 | } |
1273 | return dest_node; |
1274 | } |
1275 | else |
1276 | { |
1277 | Idx naccepted = 0; |
1278 | re_token_type_t type = dfa->nodes[node].type; |
1279 | |
1280 | #ifdef RE_ENABLE_I18N |
1281 | if (dfa->nodes[node].accept_mb) |
1282 | naccepted = check_node_accept_bytes (dfa, node, &mctx->input, *pidx); |
1283 | else |
1284 | #endif /* RE_ENABLE_I18N */ |
1285 | if (type == OP_BACK_REF) |
1286 | { |
1287 | Idx subexp_idx = dfa->nodes[node].opr.idx + 1; |
1288 | naccepted = regs[subexp_idx].rm_eo - regs[subexp_idx].rm_so; |
1289 | if (fs != NULL) |
1290 | { |
1291 | if (regs[subexp_idx].rm_so == -1 || regs[subexp_idx].rm_eo == -1) |
1292 | return -1; |
1293 | else if (naccepted) |
1294 | { |
1295 | char *buf = (char *) re_string_get_buffer (&mctx->input); |
1296 | if (memcmp (buf + regs[subexp_idx].rm_so, buf + *pidx, |
1297 | naccepted) != 0) |
1298 | return -1; |
1299 | } |
1300 | } |
1301 | |
1302 | if (naccepted == 0) |
1303 | { |
1304 | Idx dest_node; |
1305 | ok = re_node_set_insert (eps_via_nodes, node); |
1306 | if (__glibc_unlikely (! ok)) |
1307 | return -2; |
1308 | dest_node = dfa->edests[node].elems[0]; |
1309 | if (re_node_set_contains (&mctx->state_log[*pidx]->nodes, |
1310 | dest_node)) |
1311 | return dest_node; |
1312 | } |
1313 | } |
1314 | |
1315 | if (naccepted != 0 |
1316 | || check_node_accept (mctx, dfa->nodes + node, *pidx)) |
1317 | { |
1318 | Idx dest_node = dfa->nexts[node]; |
1319 | *pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted; |
1320 | if (fs && (*pidx > mctx->match_last || mctx->state_log[*pidx] == NULL |
1321 | || !re_node_set_contains (&mctx->state_log[*pidx]->nodes, |
1322 | dest_node))) |
1323 | return -1; |
1324 | re_node_set_empty (eps_via_nodes); |
1325 | return dest_node; |
1326 | } |
1327 | } |
1328 | return -1; |
1329 | } |
1330 | |
1331 | static reg_errcode_t |
1332 | __attribute_warn_unused_result__ |
1333 | push_fail_stack (struct re_fail_stack_t *fs, Idx str_idx, Idx dest_node, |
1334 | Idx nregs, regmatch_t *regs, re_node_set *eps_via_nodes) |
1335 | { |
1336 | reg_errcode_t err; |
1337 | Idx num = fs->num++; |
1338 | if (fs->num == fs->alloc) |
1339 | { |
1340 | struct re_fail_stack_ent_t *new_array; |
1341 | new_array = re_realloc (fs->stack, struct re_fail_stack_ent_t, |
1342 | fs->alloc * 2); |
1343 | if (new_array == NULL) |
1344 | return REG_ESPACE; |
1345 | fs->alloc *= 2; |
1346 | fs->stack = new_array; |
1347 | } |
1348 | fs->stack[num].idx = str_idx; |
1349 | fs->stack[num].node = dest_node; |
1350 | fs->stack[num].regs = re_malloc (regmatch_t, nregs); |
1351 | if (fs->stack[num].regs == NULL) |
1352 | return REG_ESPACE; |
1353 | memcpy (fs->stack[num].regs, regs, sizeof (regmatch_t) * nregs); |
1354 | err = re_node_set_init_copy (&fs->stack[num].eps_via_nodes, eps_via_nodes); |
1355 | return err; |
1356 | } |
1357 | |
1358 | static Idx |
1359 | pop_fail_stack (struct re_fail_stack_t *fs, Idx *pidx, Idx nregs, |
1360 | regmatch_t *regs, re_node_set *eps_via_nodes) |
1361 | { |
1362 | Idx num = --fs->num; |
1363 | assert (num >= 0); |
1364 | *pidx = fs->stack[num].idx; |
1365 | memcpy (regs, fs->stack[num].regs, sizeof (regmatch_t) * nregs); |
1366 | re_node_set_free (eps_via_nodes); |
1367 | re_free (fs->stack[num].regs); |
1368 | *eps_via_nodes = fs->stack[num].eps_via_nodes; |
1369 | return fs->stack[num].node; |
1370 | } |
1371 | |
1372 | /* Set the positions where the subexpressions are starts/ends to registers |
1373 | PMATCH. |
1374 | Note: We assume that pmatch[0] is already set, and |
1375 | pmatch[i].rm_so == pmatch[i].rm_eo == -1 for 0 < i < nmatch. */ |
1376 | |
1377 | static reg_errcode_t |
1378 | __attribute_warn_unused_result__ |
1379 | set_regs (const regex_t *preg, const re_match_context_t *mctx, size_t nmatch, |
1380 | regmatch_t *pmatch, bool fl_backtrack) |
1381 | { |
1382 | const re_dfa_t *dfa = preg->buffer; |
1383 | Idx idx, cur_node; |
1384 | re_node_set eps_via_nodes; |
1385 | struct re_fail_stack_t *fs; |
1386 | struct re_fail_stack_t fs_body = { 0, 2, NULL }; |
1387 | regmatch_t *prev_idx_match; |
1388 | bool prev_idx_match_malloced = false; |
1389 | |
1390 | #ifdef DEBUG |
1391 | assert (nmatch > 1); |
1392 | assert (mctx->state_log != NULL); |
1393 | #endif |
1394 | if (fl_backtrack) |
1395 | { |
1396 | fs = &fs_body; |
1397 | fs->stack = re_malloc (struct re_fail_stack_ent_t, fs->alloc); |
1398 | if (fs->stack == NULL) |
1399 | return REG_ESPACE; |
1400 | } |
1401 | else |
1402 | fs = NULL; |
1403 | |
1404 | cur_node = dfa->init_node; |
1405 | re_node_set_init_empty (&eps_via_nodes); |
1406 | |
1407 | if (__libc_use_alloca (nmatch * sizeof (regmatch_t))) |
1408 | prev_idx_match = (regmatch_t *) alloca (nmatch * sizeof (regmatch_t)); |
1409 | else |
1410 | { |
1411 | prev_idx_match = re_malloc (regmatch_t, nmatch); |
1412 | if (prev_idx_match == NULL) |
1413 | { |
1414 | free_fail_stack_return (fs); |
1415 | return REG_ESPACE; |
1416 | } |
1417 | prev_idx_match_malloced = true; |
1418 | } |
1419 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); |
1420 | |
1421 | for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;) |
1422 | { |
1423 | update_regs (dfa, pmatch, prev_idx_match, cur_node, idx, nmatch); |
1424 | |
1425 | if (idx == pmatch[0].rm_eo && cur_node == mctx->last_node) |
1426 | { |
1427 | Idx reg_idx; |
1428 | if (fs) |
1429 | { |
1430 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) |
1431 | if (pmatch[reg_idx].rm_so > -1 && pmatch[reg_idx].rm_eo == -1) |
1432 | break; |
1433 | if (reg_idx == nmatch) |
1434 | { |
1435 | re_node_set_free (&eps_via_nodes); |
1436 | if (prev_idx_match_malloced) |
1437 | re_free (prev_idx_match); |
1438 | return free_fail_stack_return (fs); |
1439 | } |
1440 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, |
1441 | &eps_via_nodes); |
1442 | } |
1443 | else |
1444 | { |
1445 | re_node_set_free (&eps_via_nodes); |
1446 | if (prev_idx_match_malloced) |
1447 | re_free (prev_idx_match); |
1448 | return REG_NOERROR; |
1449 | } |
1450 | } |
1451 | |
1452 | /* Proceed to next node. */ |
1453 | cur_node = proceed_next_node (mctx, nmatch, pmatch, &idx, cur_node, |
1454 | &eps_via_nodes, fs); |
1455 | |
1456 | if (__glibc_unlikely (cur_node < 0)) |
1457 | { |
1458 | if (__glibc_unlikely (cur_node == -2)) |
1459 | { |
1460 | re_node_set_free (&eps_via_nodes); |
1461 | if (prev_idx_match_malloced) |
1462 | re_free (prev_idx_match); |
1463 | free_fail_stack_return (fs); |
1464 | return REG_ESPACE; |
1465 | } |
1466 | if (fs) |
1467 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, |
1468 | &eps_via_nodes); |
1469 | else |
1470 | { |
1471 | re_node_set_free (&eps_via_nodes); |
1472 | if (prev_idx_match_malloced) |
1473 | re_free (prev_idx_match); |
1474 | return REG_NOMATCH; |
1475 | } |
1476 | } |
1477 | } |
1478 | re_node_set_free (&eps_via_nodes); |
1479 | if (prev_idx_match_malloced) |
1480 | re_free (prev_idx_match); |
1481 | return free_fail_stack_return (fs); |
1482 | } |
1483 | |
1484 | static reg_errcode_t |
1485 | free_fail_stack_return (struct re_fail_stack_t *fs) |
1486 | { |
1487 | if (fs) |
1488 | { |
1489 | Idx fs_idx; |
1490 | for (fs_idx = 0; fs_idx < fs->num; ++fs_idx) |
1491 | { |
1492 | re_node_set_free (&fs->stack[fs_idx].eps_via_nodes); |
1493 | re_free (fs->stack[fs_idx].regs); |
1494 | } |
1495 | re_free (fs->stack); |
1496 | } |
1497 | return REG_NOERROR; |
1498 | } |
1499 | |
1500 | static void |
1501 | update_regs (const re_dfa_t *dfa, regmatch_t *pmatch, |
1502 | regmatch_t *prev_idx_match, Idx cur_node, Idx cur_idx, Idx nmatch) |
1503 | { |
1504 | int type = dfa->nodes[cur_node].type; |
1505 | if (type == OP_OPEN_SUBEXP) |
1506 | { |
1507 | Idx reg_num = dfa->nodes[cur_node].opr.idx + 1; |
1508 | |
1509 | /* We are at the first node of this sub expression. */ |
1510 | if (reg_num < nmatch) |
1511 | { |
1512 | pmatch[reg_num].rm_so = cur_idx; |
1513 | pmatch[reg_num].rm_eo = -1; |
1514 | } |
1515 | } |
1516 | else if (type == OP_CLOSE_SUBEXP) |
1517 | { |
1518 | Idx reg_num = dfa->nodes[cur_node].opr.idx + 1; |
1519 | if (reg_num < nmatch) |
1520 | { |
1521 | /* We are at the last node of this sub expression. */ |
1522 | if (pmatch[reg_num].rm_so < cur_idx) |
1523 | { |
1524 | pmatch[reg_num].rm_eo = cur_idx; |
1525 | /* This is a non-empty match or we are not inside an optional |
1526 | subexpression. Accept this right away. */ |
1527 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); |
1528 | } |
1529 | else |
1530 | { |
1531 | if (dfa->nodes[cur_node].opt_subexp |
1532 | && prev_idx_match[reg_num].rm_so != -1) |
1533 | /* We transited through an empty match for an optional |
1534 | subexpression, like (a?)*, and this is not the subexp's |
1535 | first match. Copy back the old content of the registers |
1536 | so that matches of an inner subexpression are undone as |
1537 | well, like in ((a?))*. */ |
1538 | memcpy (pmatch, prev_idx_match, sizeof (regmatch_t) * nmatch); |
1539 | else |
1540 | /* We completed a subexpression, but it may be part of |
1541 | an optional one, so do not update PREV_IDX_MATCH. */ |
1542 | pmatch[reg_num].rm_eo = cur_idx; |
1543 | } |
1544 | } |
1545 | } |
1546 | } |
1547 | |
1548 | /* This function checks the STATE_LOG from the SCTX->last_str_idx to 0 |
1549 | and sift the nodes in each states according to the following rules. |
1550 | Updated state_log will be wrote to STATE_LOG. |
1551 | |
1552 | Rules: We throw away the Node 'a' in the STATE_LOG[STR_IDX] if... |
1553 | 1. When STR_IDX == MATCH_LAST(the last index in the state_log): |
1554 | If 'a' isn't the LAST_NODE and 'a' can't epsilon transit to |
1555 | the LAST_NODE, we throw away the node 'a'. |
1556 | 2. When 0 <= STR_IDX < MATCH_LAST and 'a' accepts |
1557 | string 's' and transit to 'b': |
1558 | i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw |
1559 | away the node 'a'. |
1560 | ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is |
1561 | thrown away, we throw away the node 'a'. |
1562 | 3. When 0 <= STR_IDX < MATCH_LAST and 'a' epsilon transit to 'b': |
1563 | i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the |
1564 | node 'a'. |
1565 | ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is thrown away, |
1566 | we throw away the node 'a'. */ |
1567 | |
1568 | #define STATE_NODE_CONTAINS(state,node) \ |
1569 | ((state) != NULL && re_node_set_contains (&(state)->nodes, node)) |
1570 | |
1571 | static reg_errcode_t |
1572 | sift_states_backward (const re_match_context_t *mctx, re_sift_context_t *sctx) |
1573 | { |
1574 | reg_errcode_t err; |
1575 | int null_cnt = 0; |
1576 | Idx str_idx = sctx->last_str_idx; |
1577 | re_node_set cur_dest; |
1578 | |
1579 | #ifdef DEBUG |
1580 | assert (mctx->state_log != NULL && mctx->state_log[str_idx] != NULL); |
1581 | #endif |
1582 | |
1583 | /* Build sifted state_log[str_idx]. It has the nodes which can epsilon |
1584 | transit to the last_node and the last_node itself. */ |
1585 | err = re_node_set_init_1 (&cur_dest, sctx->last_node); |
1586 | if (__glibc_unlikely (err != REG_NOERROR)) |
1587 | return err; |
1588 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); |
1589 | if (__glibc_unlikely (err != REG_NOERROR)) |
1590 | goto free_return; |
1591 | |
1592 | /* Then check each states in the state_log. */ |
1593 | while (str_idx > 0) |
1594 | { |
1595 | /* Update counters. */ |
1596 | null_cnt = (sctx->sifted_states[str_idx] == NULL) ? null_cnt + 1 : 0; |
1597 | if (null_cnt > mctx->max_mb_elem_len) |
1598 | { |
1599 | memset (sctx->sifted_states, '\0', |
1600 | sizeof (re_dfastate_t *) * str_idx); |
1601 | re_node_set_free (&cur_dest); |
1602 | return REG_NOERROR; |
1603 | } |
1604 | re_node_set_empty (&cur_dest); |
1605 | --str_idx; |
1606 | |
1607 | if (mctx->state_log[str_idx]) |
1608 | { |
1609 | err = build_sifted_states (mctx, sctx, str_idx, &cur_dest); |
1610 | if (__glibc_unlikely (err != REG_NOERROR)) |
1611 | goto free_return; |
1612 | } |
1613 | |
1614 | /* Add all the nodes which satisfy the following conditions: |
1615 | - It can epsilon transit to a node in CUR_DEST. |
1616 | - It is in CUR_SRC. |
1617 | And update state_log. */ |
1618 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); |
1619 | if (__glibc_unlikely (err != REG_NOERROR)) |
1620 | goto free_return; |
1621 | } |
1622 | err = REG_NOERROR; |
1623 | free_return: |
1624 | re_node_set_free (&cur_dest); |
1625 | return err; |
1626 | } |
1627 | |
1628 | static reg_errcode_t |
1629 | __attribute_warn_unused_result__ |
1630 | build_sifted_states (const re_match_context_t *mctx, re_sift_context_t *sctx, |
1631 | Idx str_idx, re_node_set *cur_dest) |
1632 | { |
1633 | const re_dfa_t *const dfa = mctx->dfa; |
1634 | const re_node_set *cur_src = &mctx->state_log[str_idx]->non_eps_nodes; |
1635 | Idx i; |
1636 | |
1637 | /* Then build the next sifted state. |
1638 | We build the next sifted state on 'cur_dest', and update |
1639 | 'sifted_states[str_idx]' with 'cur_dest'. |
1640 | Note: |
1641 | 'cur_dest' is the sifted state from 'state_log[str_idx + 1]'. |
1642 | 'cur_src' points the node_set of the old 'state_log[str_idx]' |
1643 | (with the epsilon nodes pre-filtered out). */ |
1644 | for (i = 0; i < cur_src->nelem; i++) |
1645 | { |
1646 | Idx prev_node = cur_src->elems[i]; |
1647 | int naccepted = 0; |
1648 | bool ok; |
1649 | |
1650 | #ifdef DEBUG |
1651 | re_token_type_t type = dfa->nodes[prev_node].type; |
1652 | assert (!IS_EPSILON_NODE (type)); |
1653 | #endif |
1654 | #ifdef RE_ENABLE_I18N |
1655 | /* If the node may accept "multi byte". */ |
1656 | if (dfa->nodes[prev_node].accept_mb) |
1657 | naccepted = sift_states_iter_mb (mctx, sctx, prev_node, |
1658 | str_idx, sctx->last_str_idx); |
1659 | #endif /* RE_ENABLE_I18N */ |
1660 | |
1661 | /* We don't check backreferences here. |
1662 | See update_cur_sifted_state(). */ |
1663 | if (!naccepted |
1664 | && check_node_accept (mctx, dfa->nodes + prev_node, str_idx) |
1665 | && STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + 1], |
1666 | dfa->nexts[prev_node])) |
1667 | naccepted = 1; |
1668 | |
1669 | if (naccepted == 0) |
1670 | continue; |
1671 | |
1672 | if (sctx->limits.nelem) |
1673 | { |
1674 | Idx to_idx = str_idx + naccepted; |
1675 | if (check_dst_limits (mctx, &sctx->limits, |
1676 | dfa->nexts[prev_node], to_idx, |
1677 | prev_node, str_idx)) |
1678 | continue; |
1679 | } |
1680 | ok = re_node_set_insert (cur_dest, prev_node); |
1681 | if (__glibc_unlikely (! ok)) |
1682 | return REG_ESPACE; |
1683 | } |
1684 | |
1685 | return REG_NOERROR; |
1686 | } |
1687 | |
1688 | /* Helper functions. */ |
1689 | |
1690 | static reg_errcode_t |
1691 | clean_state_log_if_needed (re_match_context_t *mctx, Idx next_state_log_idx) |
1692 | { |
1693 | Idx top = mctx->state_log_top; |
1694 | |
1695 | if ((next_state_log_idx >= mctx->input.bufs_len |
1696 | && mctx->input.bufs_len < mctx->input.len) |
1697 | || (next_state_log_idx >= mctx->input.valid_len |
1698 | && mctx->input.valid_len < mctx->input.len)) |
1699 | { |
1700 | reg_errcode_t err; |
1701 | err = extend_buffers (mctx, next_state_log_idx + 1); |
1702 | if (__glibc_unlikely (err != REG_NOERROR)) |
1703 | return err; |
1704 | } |
1705 | |
1706 | if (top < next_state_log_idx) |
1707 | { |
1708 | memset (mctx->state_log + top + 1, '\0', |
1709 | sizeof (re_dfastate_t *) * (next_state_log_idx - top)); |
1710 | mctx->state_log_top = next_state_log_idx; |
1711 | } |
1712 | return REG_NOERROR; |
1713 | } |
1714 | |
1715 | static reg_errcode_t |
1716 | merge_state_array (const re_dfa_t *dfa, re_dfastate_t **dst, |
1717 | re_dfastate_t **src, Idx num) |
1718 | { |
1719 | Idx st_idx; |
1720 | reg_errcode_t err; |
1721 | for (st_idx = 0; st_idx < num; ++st_idx) |
1722 | { |
1723 | if (dst[st_idx] == NULL) |
1724 | dst[st_idx] = src[st_idx]; |
1725 | else if (src[st_idx] != NULL) |
1726 | { |
1727 | re_node_set merged_set; |
1728 | err = re_node_set_init_union (&merged_set, &dst[st_idx]->nodes, |
1729 | &src[st_idx]->nodes); |
1730 | if (__glibc_unlikely (err != REG_NOERROR)) |
1731 | return err; |
1732 | dst[st_idx] = re_acquire_state (&err, dfa, &merged_set); |
1733 | re_node_set_free (&merged_set); |
1734 | if (__glibc_unlikely (err != REG_NOERROR)) |
1735 | return err; |
1736 | } |
1737 | } |
1738 | return REG_NOERROR; |
1739 | } |
1740 | |
1741 | static reg_errcode_t |
1742 | update_cur_sifted_state (const re_match_context_t *mctx, |
1743 | re_sift_context_t *sctx, Idx str_idx, |
1744 | re_node_set *dest_nodes) |
1745 | { |
1746 | const re_dfa_t *const dfa = mctx->dfa; |
1747 | reg_errcode_t err = REG_NOERROR; |
1748 | const re_node_set *candidates; |
1749 | candidates = ((mctx->state_log[str_idx] == NULL) ? NULL |
1750 | : &mctx->state_log[str_idx]->nodes); |
1751 | |
1752 | if (dest_nodes->nelem == 0) |
1753 | sctx->sifted_states[str_idx] = NULL; |
1754 | else |
1755 | { |
1756 | if (candidates) |
1757 | { |
1758 | /* At first, add the nodes which can epsilon transit to a node in |
1759 | DEST_NODE. */ |
1760 | err = add_epsilon_src_nodes (dfa, dest_nodes, candidates); |
1761 | if (__glibc_unlikely (err != REG_NOERROR)) |
1762 | return err; |
1763 | |
1764 | /* Then, check the limitations in the current sift_context. */ |
1765 | if (sctx->limits.nelem) |
1766 | { |
1767 | err = check_subexp_limits (dfa, dest_nodes, candidates, &sctx->limits, |
1768 | mctx->bkref_ents, str_idx); |
1769 | if (__glibc_unlikely (err != REG_NOERROR)) |
1770 | return err; |
1771 | } |
1772 | } |
1773 | |
1774 | sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes); |
1775 | if (__glibc_unlikely (err != REG_NOERROR)) |
1776 | return err; |
1777 | } |
1778 | |
1779 | if (candidates && mctx->state_log[str_idx]->has_backref) |
1780 | { |
1781 | err = sift_states_bkref (mctx, sctx, str_idx, candidates); |
1782 | if (__glibc_unlikely (err != REG_NOERROR)) |
1783 | return err; |
1784 | } |
1785 | return REG_NOERROR; |
1786 | } |
1787 | |
1788 | static reg_errcode_t |
1789 | __attribute_warn_unused_result__ |
1790 | add_epsilon_src_nodes (const re_dfa_t *dfa, re_node_set *dest_nodes, |
1791 | const re_node_set *candidates) |
1792 | { |
1793 | reg_errcode_t err = REG_NOERROR; |
1794 | Idx i; |
1795 | |
1796 | re_dfastate_t *state = re_acquire_state (&err, dfa, dest_nodes); |
1797 | if (__glibc_unlikely (err != REG_NOERROR)) |
1798 | return err; |
1799 | |
1800 | if (!state->inveclosure.alloc) |
1801 | { |
1802 | err = re_node_set_alloc (&state->inveclosure, dest_nodes->nelem); |
1803 | if (__glibc_unlikely (err != REG_NOERROR)) |
1804 | return REG_ESPACE; |
1805 | for (i = 0; i < dest_nodes->nelem; i++) |
1806 | { |
1807 | err = re_node_set_merge (&state->inveclosure, |
1808 | dfa->inveclosures + dest_nodes->elems[i]); |
1809 | if (__glibc_unlikely (err != REG_NOERROR)) |
1810 | return REG_ESPACE; |
1811 | } |
1812 | } |
1813 | return re_node_set_add_intersect (dest_nodes, candidates, |
1814 | &state->inveclosure); |
1815 | } |
1816 | |
1817 | static reg_errcode_t |
1818 | sub_epsilon_src_nodes (const re_dfa_t *dfa, Idx node, re_node_set *dest_nodes, |
1819 | const re_node_set *candidates) |
1820 | { |
1821 | Idx ecl_idx; |
1822 | reg_errcode_t err; |
1823 | re_node_set *inv_eclosure = dfa->inveclosures + node; |
1824 | re_node_set except_nodes; |
1825 | re_node_set_init_empty (&except_nodes); |
1826 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) |
1827 | { |
1828 | Idx cur_node = inv_eclosure->elems[ecl_idx]; |
1829 | if (cur_node == node) |
1830 | continue; |
1831 | if (IS_EPSILON_NODE (dfa->nodes[cur_node].type)) |
1832 | { |
1833 | Idx edst1 = dfa->edests[cur_node].elems[0]; |
1834 | Idx edst2 = ((dfa->edests[cur_node].nelem > 1) |
1835 | ? dfa->edests[cur_node].elems[1] : -1); |
1836 | if ((!re_node_set_contains (inv_eclosure, edst1) |
1837 | && re_node_set_contains (dest_nodes, edst1)) |
1838 | || (edst2 > 0 |
1839 | && !re_node_set_contains (inv_eclosure, edst2) |
1840 | && re_node_set_contains (dest_nodes, edst2))) |
1841 | { |
1842 | err = re_node_set_add_intersect (&except_nodes, candidates, |
1843 | dfa->inveclosures + cur_node); |
1844 | if (__glibc_unlikely (err != REG_NOERROR)) |
1845 | { |
1846 | re_node_set_free (&except_nodes); |
1847 | return err; |
1848 | } |
1849 | } |
1850 | } |
1851 | } |
1852 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) |
1853 | { |
1854 | Idx cur_node = inv_eclosure->elems[ecl_idx]; |
1855 | if (!re_node_set_contains (&except_nodes, cur_node)) |
1856 | { |
1857 | Idx idx = re_node_set_contains (dest_nodes, cur_node) - 1; |
1858 | re_node_set_remove_at (dest_nodes, idx); |
1859 | } |
1860 | } |
1861 | re_node_set_free (&except_nodes); |
1862 | return REG_NOERROR; |
1863 | } |
1864 | |
1865 | static bool |
1866 | check_dst_limits (const re_match_context_t *mctx, const re_node_set *limits, |
1867 | Idx dst_node, Idx dst_idx, Idx src_node, Idx src_idx) |
1868 | { |
1869 | const re_dfa_t *const dfa = mctx->dfa; |
1870 | Idx lim_idx, src_pos, dst_pos; |
1871 | |
1872 | Idx dst_bkref_idx = search_cur_bkref_entry (mctx, dst_idx); |
1873 | Idx src_bkref_idx = search_cur_bkref_entry (mctx, src_idx); |
1874 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) |
1875 | { |
1876 | Idx subexp_idx; |
1877 | struct re_backref_cache_entry *ent; |
1878 | ent = mctx->bkref_ents + limits->elems[lim_idx]; |
1879 | subexp_idx = dfa->nodes[ent->node].opr.idx; |
1880 | |
1881 | dst_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], |
1882 | subexp_idx, dst_node, dst_idx, |
1883 | dst_bkref_idx); |
1884 | src_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], |
1885 | subexp_idx, src_node, src_idx, |
1886 | src_bkref_idx); |
1887 | |
1888 | /* In case of: |
1889 | <src> <dst> ( <subexp> ) |
1890 | ( <subexp> ) <src> <dst> |
1891 | ( <subexp1> <src> <subexp2> <dst> <subexp3> ) */ |
1892 | if (src_pos == dst_pos) |
1893 | continue; /* This is unrelated limitation. */ |
1894 | else |
1895 | return true; |
1896 | } |
1897 | return false; |
1898 | } |
1899 | |
1900 | static int |
1901 | check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, int boundaries, |
1902 | Idx subexp_idx, Idx from_node, Idx bkref_idx) |
1903 | { |
1904 | const re_dfa_t *const dfa = mctx->dfa; |
1905 | const re_node_set *eclosures = dfa->eclosures + from_node; |
1906 | Idx node_idx; |
1907 | |
1908 | /* Else, we are on the boundary: examine the nodes on the epsilon |
1909 | closure. */ |
1910 | for (node_idx = 0; node_idx < eclosures->nelem; ++node_idx) |
1911 | { |
1912 | Idx node = eclosures->elems[node_idx]; |
1913 | switch (dfa->nodes[node].type) |
1914 | { |
1915 | case OP_BACK_REF: |
1916 | if (bkref_idx != -1) |
1917 | { |
1918 | struct re_backref_cache_entry *ent = mctx->bkref_ents + bkref_idx; |
1919 | do |
1920 | { |
1921 | Idx dst; |
1922 | int cpos; |
1923 | |
1924 | if (ent->node != node) |
1925 | continue; |
1926 | |
1927 | if (subexp_idx < BITSET_WORD_BITS |
1928 | && !(ent->eps_reachable_subexps_map |
1929 | & ((bitset_word_t) 1 << subexp_idx))) |
1930 | continue; |
1931 | |
1932 | /* Recurse trying to reach the OP_OPEN_SUBEXP and |
1933 | OP_CLOSE_SUBEXP cases below. But, if the |
1934 | destination node is the same node as the source |
1935 | node, don't recurse because it would cause an |
1936 | infinite loop: a regex that exhibits this behavior |
1937 | is ()\1*\1* */ |
1938 | dst = dfa->edests[node].elems[0]; |
1939 | if (dst == from_node) |
1940 | { |
1941 | if (boundaries & 1) |
1942 | return -1; |
1943 | else /* if (boundaries & 2) */ |
1944 | return 0; |
1945 | } |
1946 | |
1947 | cpos = |
1948 | check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, |
1949 | dst, bkref_idx); |
1950 | if (cpos == -1 /* && (boundaries & 1) */) |
1951 | return -1; |
1952 | if (cpos == 0 && (boundaries & 2)) |
1953 | return 0; |
1954 | |
1955 | if (subexp_idx < BITSET_WORD_BITS) |
1956 | ent->eps_reachable_subexps_map |
1957 | &= ~((bitset_word_t) 1 << subexp_idx); |
1958 | } |
1959 | while (ent++->more); |
1960 | } |
1961 | break; |
1962 | |
1963 | case OP_OPEN_SUBEXP: |
1964 | if ((boundaries & 1) && subexp_idx == dfa->nodes[node].opr.idx) |
1965 | return -1; |
1966 | break; |
1967 | |
1968 | case OP_CLOSE_SUBEXP: |
1969 | if ((boundaries & 2) && subexp_idx == dfa->nodes[node].opr.idx) |
1970 | return 0; |
1971 | break; |
1972 | |
1973 | default: |
1974 | break; |
1975 | } |
1976 | } |
1977 | |
1978 | return (boundaries & 2) ? 1 : 0; |
1979 | } |
1980 | |
1981 | static int |
1982 | check_dst_limits_calc_pos (const re_match_context_t *mctx, Idx limit, |
1983 | Idx subexp_idx, Idx from_node, Idx str_idx, |
1984 | Idx bkref_idx) |
1985 | { |
1986 | struct re_backref_cache_entry *lim = mctx->bkref_ents + limit; |
1987 | int boundaries; |
1988 | |
1989 | /* If we are outside the range of the subexpression, return -1 or 1. */ |
1990 | if (str_idx < lim->subexp_from) |
1991 | return -1; |
1992 | |
1993 | if (lim->subexp_to < str_idx) |
1994 | return 1; |
1995 | |
1996 | /* If we are within the subexpression, return 0. */ |
1997 | boundaries = (str_idx == lim->subexp_from); |
1998 | boundaries |= (str_idx == lim->subexp_to) << 1; |
1999 | if (boundaries == 0) |
2000 | return 0; |
2001 | |
2002 | /* Else, examine epsilon closure. */ |
2003 | return check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, |
2004 | from_node, bkref_idx); |
2005 | } |
2006 | |
2007 | /* Check the limitations of sub expressions LIMITS, and remove the nodes |
2008 | which are against limitations from DEST_NODES. */ |
2009 | |
2010 | static reg_errcode_t |
2011 | check_subexp_limits (const re_dfa_t *dfa, re_node_set *dest_nodes, |
2012 | const re_node_set *candidates, re_node_set *limits, |
2013 | struct re_backref_cache_entry *bkref_ents, Idx str_idx) |
2014 | { |
2015 | reg_errcode_t err; |
2016 | Idx node_idx, lim_idx; |
2017 | |
2018 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) |
2019 | { |
2020 | Idx subexp_idx; |
2021 | struct re_backref_cache_entry *ent; |
2022 | ent = bkref_ents + limits->elems[lim_idx]; |
2023 | |
2024 | if (str_idx <= ent->subexp_from || ent->str_idx < str_idx) |
2025 | continue; /* This is unrelated limitation. */ |
2026 | |
2027 | subexp_idx = dfa->nodes[ent->node].opr.idx; |
2028 | if (ent->subexp_to == str_idx) |
2029 | { |
2030 | Idx ops_node = -1; |
2031 | Idx cls_node = -1; |
2032 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) |
2033 | { |
2034 | Idx node = dest_nodes->elems[node_idx]; |
2035 | re_token_type_t type = dfa->nodes[node].type; |
2036 | if (type == OP_OPEN_SUBEXP |
2037 | && subexp_idx == dfa->nodes[node].opr.idx) |
2038 | ops_node = node; |
2039 | else if (type == OP_CLOSE_SUBEXP |
2040 | && subexp_idx == dfa->nodes[node].opr.idx) |
2041 | cls_node = node; |
2042 | } |
2043 | |
2044 | /* Check the limitation of the open subexpression. */ |
2045 | /* Note that (ent->subexp_to = str_idx != ent->subexp_from). */ |
2046 | if (ops_node >= 0) |
2047 | { |
2048 | err = sub_epsilon_src_nodes (dfa, ops_node, dest_nodes, |
2049 | candidates); |
2050 | if (__glibc_unlikely (err != REG_NOERROR)) |
2051 | return err; |
2052 | } |
2053 | |
2054 | /* Check the limitation of the close subexpression. */ |
2055 | if (cls_node >= 0) |
2056 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) |
2057 | { |
2058 | Idx node = dest_nodes->elems[node_idx]; |
2059 | if (!re_node_set_contains (dfa->inveclosures + node, |
2060 | cls_node) |
2061 | && !re_node_set_contains (dfa->eclosures + node, |
2062 | cls_node)) |
2063 | { |
2064 | /* It is against this limitation. |
2065 | Remove it form the current sifted state. */ |
2066 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes, |
2067 | candidates); |
2068 | if (__glibc_unlikely (err != REG_NOERROR)) |
2069 | return err; |
2070 | --node_idx; |
2071 | } |
2072 | } |
2073 | } |
2074 | else /* (ent->subexp_to != str_idx) */ |
2075 | { |
2076 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) |
2077 | { |
2078 | Idx node = dest_nodes->elems[node_idx]; |
2079 | re_token_type_t type = dfa->nodes[node].type; |
2080 | if (type == OP_CLOSE_SUBEXP || type == OP_OPEN_SUBEXP) |
2081 | { |
2082 | if (subexp_idx != dfa->nodes[node].opr.idx) |
2083 | continue; |
2084 | /* It is against this limitation. |
2085 | Remove it form the current sifted state. */ |
2086 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes, |
2087 | candidates); |
2088 | if (__glibc_unlikely (err != REG_NOERROR)) |
2089 | return err; |
2090 | } |
2091 | } |
2092 | } |
2093 | } |
2094 | return REG_NOERROR; |
2095 | } |
2096 | |
2097 | static reg_errcode_t |
2098 | __attribute_warn_unused_result__ |
2099 | sift_states_bkref (const re_match_context_t *mctx, re_sift_context_t *sctx, |
2100 | Idx str_idx, const re_node_set *candidates) |
2101 | { |
2102 | const re_dfa_t *const dfa = mctx->dfa; |
2103 | reg_errcode_t err; |
2104 | Idx node_idx, node; |
2105 | re_sift_context_t local_sctx; |
2106 | Idx first_idx = search_cur_bkref_entry (mctx, str_idx); |
2107 | |
2108 | if (first_idx == -1) |
2109 | return REG_NOERROR; |
2110 | |
2111 | local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized. */ |
2112 | |
2113 | for (node_idx = 0; node_idx < candidates->nelem; ++node_idx) |
2114 | { |
2115 | Idx enabled_idx; |
2116 | re_token_type_t type; |
2117 | struct re_backref_cache_entry *entry; |
2118 | node = candidates->elems[node_idx]; |
2119 | type = dfa->nodes[node].type; |
2120 | /* Avoid infinite loop for the REs like "()\1+". */ |
2121 | if (node == sctx->last_node && str_idx == sctx->last_str_idx) |
2122 | continue; |
2123 | if (type != OP_BACK_REF) |
2124 | continue; |
2125 | |
2126 | entry = mctx->bkref_ents + first_idx; |
2127 | enabled_idx = first_idx; |
2128 | do |
2129 | { |
2130 | Idx subexp_len; |
2131 | Idx to_idx; |
2132 | Idx dst_node; |
2133 | bool ok; |
2134 | re_dfastate_t *cur_state; |
2135 | |
2136 | if (entry->node != node) |
2137 | continue; |
2138 | subexp_len = entry->subexp_to - entry->subexp_from; |
2139 | to_idx = str_idx + subexp_len; |
2140 | dst_node = (subexp_len ? dfa->nexts[node] |
2141 | : dfa->edests[node].elems[0]); |
2142 | |
2143 | if (to_idx > sctx->last_str_idx |
2144 | || sctx->sifted_states[to_idx] == NULL |
2145 | || !STATE_NODE_CONTAINS (sctx->sifted_states[to_idx], dst_node) |
2146 | || check_dst_limits (mctx, &sctx->limits, node, |
2147 | str_idx, dst_node, to_idx)) |
2148 | continue; |
2149 | |
2150 | if (local_sctx.sifted_states == NULL) |
2151 | { |
2152 | local_sctx = *sctx; |
2153 | err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits); |
2154 | if (__glibc_unlikely (err != REG_NOERROR)) |
2155 | goto free_return; |
2156 | } |
2157 | local_sctx.last_node = node; |
2158 | local_sctx.last_str_idx = str_idx; |
2159 | ok = re_node_set_insert (&local_sctx.limits, enabled_idx); |
2160 | if (__glibc_unlikely (! ok)) |
2161 | { |
2162 | err = REG_ESPACE; |
2163 | goto free_return; |
2164 | } |
2165 | cur_state = local_sctx.sifted_states[str_idx]; |
2166 | err = sift_states_backward (mctx, &local_sctx); |
2167 | if (__glibc_unlikely (err != REG_NOERROR)) |
2168 | goto free_return; |
2169 | if (sctx->limited_states != NULL) |
2170 | { |
2171 | err = merge_state_array (dfa, sctx->limited_states, |
2172 | local_sctx.sifted_states, |
2173 | str_idx + 1); |
2174 | if (__glibc_unlikely (err != REG_NOERROR)) |
2175 | goto free_return; |
2176 | } |
2177 | local_sctx.sifted_states[str_idx] = cur_state; |
2178 | re_node_set_remove (&local_sctx.limits, enabled_idx); |
2179 | |
2180 | /* mctx->bkref_ents may have changed, reload the pointer. */ |
2181 | entry = mctx->bkref_ents + enabled_idx; |
2182 | } |
2183 | while (enabled_idx++, entry++->more); |
2184 | } |
2185 | err = REG_NOERROR; |
2186 | free_return: |
2187 | if (local_sctx.sifted_states != NULL) |
2188 | { |
2189 | re_node_set_free (&local_sctx.limits); |
2190 | } |
2191 | |
2192 | return err; |
2193 | } |
2194 | |
2195 | |
2196 | #ifdef RE_ENABLE_I18N |
2197 | static int |
2198 | sift_states_iter_mb (const re_match_context_t *mctx, re_sift_context_t *sctx, |
2199 | Idx node_idx, Idx str_idx, Idx max_str_idx) |
2200 | { |
2201 | const re_dfa_t *const dfa = mctx->dfa; |
2202 | int naccepted; |
2203 | /* Check the node can accept "multi byte". */ |
2204 | naccepted = check_node_accept_bytes (dfa, node_idx, &mctx->input, str_idx); |
2205 | if (naccepted > 0 && str_idx + naccepted <= max_str_idx && |
2206 | !STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + naccepted], |
2207 | dfa->nexts[node_idx])) |
2208 | /* The node can't accept the "multi byte", or the |
2209 | destination was already thrown away, then the node |
2210 | couldn't accept the current input "multi byte". */ |
2211 | naccepted = 0; |
2212 | /* Otherwise, it is sure that the node could accept |
2213 | 'naccepted' bytes input. */ |
2214 | return naccepted; |
2215 | } |
2216 | #endif /* RE_ENABLE_I18N */ |
2217 | |
2218 | |
2219 | /* Functions for state transition. */ |
2220 | |
2221 | /* Return the next state to which the current state STATE will transit by |
2222 | accepting the current input byte, and update STATE_LOG if necessary. |
2223 | If STATE can accept a multibyte char/collating element/back reference |
2224 | update the destination of STATE_LOG. */ |
2225 | |
2226 | static re_dfastate_t * |
2227 | __attribute_warn_unused_result__ |
2228 | transit_state (reg_errcode_t *err, re_match_context_t *mctx, |
2229 | re_dfastate_t *state) |
2230 | { |
2231 | re_dfastate_t **trtable; |
2232 | unsigned char ch; |
2233 | |
2234 | #ifdef RE_ENABLE_I18N |
2235 | /* If the current state can accept multibyte. */ |
2236 | if (__glibc_unlikely (state->accept_mb)) |
2237 | { |
2238 | *err = transit_state_mb (mctx, state); |
2239 | if (__glibc_unlikely (*err != REG_NOERROR)) |
2240 | return NULL; |
2241 | } |
2242 | #endif /* RE_ENABLE_I18N */ |
2243 | |
2244 | /* Then decide the next state with the single byte. */ |
2245 | #if 0 |
2246 | if (0) |
2247 | /* don't use transition table */ |
2248 | return transit_state_sb (err, mctx, state); |
2249 | #endif |
2250 | |
2251 | /* Use transition table */ |
2252 | ch = re_string_fetch_byte (&mctx->input); |
2253 | for (;;) |
2254 | { |
2255 | trtable = state->trtable; |
2256 | if (__glibc_likely (trtable != NULL)) |
2257 | return trtable[ch]; |
2258 | |
2259 | trtable = state->word_trtable; |
2260 | if (__glibc_likely (trtable != NULL)) |
2261 | { |
2262 | unsigned int context; |
2263 | context |
2264 | = re_string_context_at (&mctx->input, |
2265 | re_string_cur_idx (&mctx->input) - 1, |
2266 | mctx->eflags); |
2267 | if (IS_WORD_CONTEXT (context)) |
2268 | return trtable[ch + SBC_MAX]; |
2269 | else |
2270 | return trtable[ch]; |
2271 | } |
2272 | |
2273 | if (!build_trtable (mctx->dfa, state)) |
2274 | { |
2275 | *err = REG_ESPACE; |
2276 | return NULL; |
2277 | } |
2278 | |
2279 | /* Retry, we now have a transition table. */ |
2280 | } |
2281 | } |
2282 | |
2283 | /* Update the state_log if we need */ |
2284 | static re_dfastate_t * |
2285 | merge_state_with_log (reg_errcode_t *err, re_match_context_t *mctx, |
2286 | re_dfastate_t *next_state) |
2287 | { |
2288 | const re_dfa_t *const dfa = mctx->dfa; |
2289 | Idx cur_idx = re_string_cur_idx (&mctx->input); |
2290 | |
2291 | if (cur_idx > mctx->state_log_top) |
2292 | { |
2293 | mctx->state_log[cur_idx] = next_state; |
2294 | mctx->state_log_top = cur_idx; |
2295 | } |
2296 | else if (mctx->state_log[cur_idx] == 0) |
2297 | { |
2298 | mctx->state_log[cur_idx] = next_state; |
2299 | } |
2300 | else |
2301 | { |
2302 | re_dfastate_t *pstate; |
2303 | unsigned int context; |
2304 | re_node_set next_nodes, *log_nodes, *table_nodes = NULL; |
2305 | /* If (state_log[cur_idx] != 0), it implies that cur_idx is |
2306 | the destination of a multibyte char/collating element/ |
2307 | back reference. Then the next state is the union set of |
2308 | these destinations and the results of the transition table. */ |
2309 | pstate = mctx->state_log[cur_idx]; |
2310 | log_nodes = pstate->entrance_nodes; |
2311 | if (next_state != NULL) |
2312 | { |
2313 | table_nodes = next_state->entrance_nodes; |
2314 | *err = re_node_set_init_union (&next_nodes, table_nodes, |
2315 | log_nodes); |
2316 | if (__glibc_unlikely (*err != REG_NOERROR)) |
2317 | return NULL; |
2318 | } |
2319 | else |
2320 | next_nodes = *log_nodes; |
2321 | /* Note: We already add the nodes of the initial state, |
2322 | then we don't need to add them here. */ |
2323 | |
2324 | context = re_string_context_at (&mctx->input, |
2325 | re_string_cur_idx (&mctx->input) - 1, |
2326 | mctx->eflags); |
2327 | next_state = mctx->state_log[cur_idx] |
2328 | = re_acquire_state_context (err, dfa, &next_nodes, context); |
2329 | /* We don't need to check errors here, since the return value of |
2330 | this function is next_state and ERR is already set. */ |
2331 | |
2332 | if (table_nodes != NULL) |
2333 | re_node_set_free (&next_nodes); |
2334 | } |
2335 | |
2336 | if (__glibc_unlikely (dfa->nbackref) && next_state != NULL) |
2337 | { |
2338 | /* Check OP_OPEN_SUBEXP in the current state in case that we use them |
2339 | later. We must check them here, since the back references in the |
2340 | next state might use them. */ |
2341 | *err = check_subexp_matching_top (mctx, &next_state->nodes, |
2342 | cur_idx); |
2343 | if (__glibc_unlikely (*err != REG_NOERROR)) |
2344 | return NULL; |
2345 | |
2346 | /* If the next state has back references. */ |
2347 | if (next_state->has_backref) |
2348 | { |
2349 | *err = transit_state_bkref (mctx, &next_state->nodes); |
2350 | if (__glibc_unlikely (*err != REG_NOERROR)) |
2351 | return NULL; |
2352 | next_state = mctx->state_log[cur_idx]; |
2353 | } |
2354 | } |
2355 | |
2356 | return next_state; |
2357 | } |
2358 | |
2359 | /* Skip bytes in the input that correspond to part of a |
2360 | multi-byte match, then look in the log for a state |
2361 | from which to restart matching. */ |
2362 | static re_dfastate_t * |
2363 | find_recover_state (reg_errcode_t *err, re_match_context_t *mctx) |
2364 | { |
2365 | re_dfastate_t *cur_state; |
2366 | do |
2367 | { |
2368 | Idx max = mctx->state_log_top; |
2369 | Idx cur_str_idx = re_string_cur_idx (&mctx->input); |
2370 | |
2371 | do |
2372 | { |
2373 | if (++cur_str_idx > max) |
2374 | return NULL; |
2375 | re_string_skip_bytes (&mctx->input, 1); |
2376 | } |
2377 | while (mctx->state_log[cur_str_idx] == NULL); |
2378 | |
2379 | cur_state = merge_state_with_log (err, mctx, NULL); |
2380 | } |
2381 | while (*err == REG_NOERROR && cur_state == NULL); |
2382 | return cur_state; |
2383 | } |
2384 | |
2385 | /* Helper functions for transit_state. */ |
2386 | |
2387 | /* From the node set CUR_NODES, pick up the nodes whose types are |
2388 | OP_OPEN_SUBEXP and which have corresponding back references in the regular |
2389 | expression. And register them to use them later for evaluating the |
2390 | corresponding back references. */ |
2391 | |
2392 | static reg_errcode_t |
2393 | check_subexp_matching_top (re_match_context_t *mctx, re_node_set *cur_nodes, |
2394 | Idx str_idx) |
2395 | { |
2396 | const re_dfa_t *const dfa = mctx->dfa; |
2397 | Idx node_idx; |
2398 | reg_errcode_t err; |
2399 | |
2400 | /* TODO: This isn't efficient. |
2401 | Because there might be more than one nodes whose types are |
2402 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all |
2403 | nodes. |
2404 | E.g. RE: (a){2} */ |
2405 | for (node_idx = 0; node_idx < cur_nodes->nelem; ++node_idx) |
2406 | { |
2407 | Idx node = cur_nodes->elems[node_idx]; |
2408 | if (dfa->nodes[node].type == OP_OPEN_SUBEXP |
2409 | && dfa->nodes[node].opr.idx < BITSET_WORD_BITS |
2410 | && (dfa->used_bkref_map |
2411 | & ((bitset_word_t) 1 << dfa->nodes[node].opr.idx))) |
2412 | { |
2413 | err = match_ctx_add_subtop (mctx, node, str_idx); |
2414 | if (__glibc_unlikely (err != REG_NOERROR)) |
2415 | return err; |
2416 | } |
2417 | } |
2418 | return REG_NOERROR; |
2419 | } |
2420 | |
2421 | #if 0 |
2422 | /* Return the next state to which the current state STATE will transit by |
2423 | accepting the current input byte. */ |
2424 | |
2425 | static re_dfastate_t * |
2426 | transit_state_sb (reg_errcode_t *err, re_match_context_t *mctx, |
2427 | re_dfastate_t *state) |
2428 | { |
2429 | const re_dfa_t *const dfa = mctx->dfa; |
2430 | re_node_set next_nodes; |
2431 | re_dfastate_t *next_state; |
2432 | Idx node_cnt, cur_str_idx = re_string_cur_idx (&mctx->input); |
2433 | unsigned int context; |
2434 | |
2435 | *err = re_node_set_alloc (&next_nodes, state->nodes.nelem + 1); |
2436 | if (__glibc_unlikely (*err != REG_NOERROR)) |
2437 | return NULL; |
2438 | for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt) |
2439 | { |
2440 | Idx cur_node = state->nodes.elems[node_cnt]; |
2441 | if (check_node_accept (mctx, dfa->nodes + cur_node, cur_str_idx)) |
2442 | { |
2443 | *err = re_node_set_merge (&next_nodes, |
2444 | dfa->eclosures + dfa->nexts[cur_node]); |
2445 | if (__glibc_unlikely (*err != REG_NOERROR)) |
2446 | { |
2447 | re_node_set_free (&next_nodes); |
2448 | return NULL; |
2449 | } |
2450 | } |
2451 | } |
2452 | context = re_string_context_at (&mctx->input, cur_str_idx, mctx->eflags); |
2453 | next_state = re_acquire_state_context (err, dfa, &next_nodes, context); |
2454 | /* We don't need to check errors here, since the return value of |
2455 | this function is next_state and ERR is already set. */ |
2456 | |
2457 | re_node_set_free (&next_nodes); |
2458 | re_string_skip_bytes (&mctx->input, 1); |
2459 | return next_state; |
2460 | } |
2461 | #endif |
2462 | |
2463 | #ifdef RE_ENABLE_I18N |
2464 | static reg_errcode_t |
2465 | transit_state_mb (re_match_context_t *mctx, re_dfastate_t *pstate) |
2466 | { |
2467 | const re_dfa_t *const dfa = mctx->dfa; |
2468 | reg_errcode_t err; |
2469 | Idx i; |
2470 | |
2471 | for (i = 0; i < pstate->nodes.nelem; ++i) |
2472 | { |
2473 | re_node_set dest_nodes, *new_nodes; |
2474 | Idx cur_node_idx = pstate->nodes.elems[i]; |
2475 | int naccepted; |
2476 | Idx dest_idx; |
2477 | unsigned int context; |
2478 | re_dfastate_t *dest_state; |
2479 | |
2480 | if (!dfa->nodes[cur_node_idx].accept_mb) |
2481 | continue; |
2482 | |
2483 | if (dfa->nodes[cur_node_idx].constraint) |
2484 | { |
2485 | context = re_string_context_at (&mctx->input, |
2486 | re_string_cur_idx (&mctx->input), |
2487 | mctx->eflags); |
2488 | if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint, |
2489 | context)) |
2490 | continue; |
2491 | } |
2492 | |
2493 | /* How many bytes the node can accept? */ |
2494 | naccepted = check_node_accept_bytes (dfa, cur_node_idx, &mctx->input, |
2495 | re_string_cur_idx (&mctx->input)); |
2496 | if (naccepted == 0) |
2497 | continue; |
2498 | |
2499 | /* The node can accepts 'naccepted' bytes. */ |
2500 | dest_idx = re_string_cur_idx (&mctx->input) + naccepted; |
2501 | mctx->max_mb_elem_len = ((mctx->max_mb_elem_len < naccepted) ? naccepted |
2502 | : mctx->max_mb_elem_len); |
2503 | err = clean_state_log_if_needed (mctx, dest_idx); |
2504 | if (__glibc_unlikely (err != REG_NOERROR)) |
2505 | return err; |
2506 | #ifdef DEBUG |
2507 | assert (dfa->nexts[cur_node_idx] != -1); |
2508 | #endif |
2509 | new_nodes = dfa->eclosures + dfa->nexts[cur_node_idx]; |
2510 | |
2511 | dest_state = mctx->state_log[dest_idx]; |
2512 | if (dest_state == NULL) |
2513 | dest_nodes = *new_nodes; |
2514 | else |
2515 | { |
2516 | err = re_node_set_init_union (&dest_nodes, |
2517 | dest_state->entrance_nodes, new_nodes); |
2518 | if (__glibc_unlikely (err != REG_NOERROR)) |
2519 | return err; |
2520 | } |
2521 | context = re_string_context_at (&mctx->input, dest_idx - 1, |
2522 | mctx->eflags); |
2523 | mctx->state_log[dest_idx] |
2524 | = re_acquire_state_context (&err, dfa, &dest_nodes, context); |
2525 | if (dest_state != NULL) |
2526 | re_node_set_free (&dest_nodes); |
2527 | if (__glibc_unlikely (mctx->state_log[dest_idx] == NULL |
2528 | && err != REG_NOERROR)) |
2529 | return err; |
2530 | } |
2531 | return REG_NOERROR; |
2532 | } |
2533 | #endif /* RE_ENABLE_I18N */ |
2534 | |
2535 | static reg_errcode_t |
2536 | transit_state_bkref (re_match_context_t *mctx, const re_node_set *nodes) |
2537 | { |
2538 | const re_dfa_t *const dfa = mctx->dfa; |
2539 | reg_errcode_t err; |
2540 | Idx i; |
2541 | Idx cur_str_idx = re_string_cur_idx (&mctx->input); |
2542 | |
2543 | for (i = 0; i < nodes->nelem; ++i) |
2544 | { |
2545 | Idx dest_str_idx, prev_nelem, bkc_idx; |
2546 | Idx node_idx = nodes->elems[i]; |
2547 | unsigned int context; |
2548 | const re_token_t *node = dfa->nodes + node_idx; |
2549 | re_node_set *new_dest_nodes; |
2550 | |
2551 | /* Check whether 'node' is a backreference or not. */ |
2552 | if (node->type != OP_BACK_REF) |
2553 | continue; |
2554 | |
2555 | if (node->constraint) |
2556 | { |
2557 | context = re_string_context_at (&mctx->input, cur_str_idx, |
2558 | mctx->eflags); |
2559 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) |
2560 | continue; |
2561 | } |
2562 | |
2563 | /* 'node' is a backreference. |
2564 | Check the substring which the substring matched. */ |
2565 | bkc_idx = mctx->nbkref_ents; |
2566 | err = get_subexp (mctx, node_idx, cur_str_idx); |
2567 | if (__glibc_unlikely (err != REG_NOERROR)) |
2568 | goto free_return; |
2569 | |
2570 | /* And add the epsilon closures (which is 'new_dest_nodes') of |
2571 | the backreference to appropriate state_log. */ |
2572 | #ifdef DEBUG |
2573 | assert (dfa->nexts[node_idx] != -1); |
2574 | #endif |
2575 | for (; bkc_idx < mctx->nbkref_ents; ++bkc_idx) |
2576 | { |
2577 | Idx subexp_len; |
2578 | re_dfastate_t *dest_state; |
2579 | struct re_backref_cache_entry *bkref_ent; |
2580 | bkref_ent = mctx->bkref_ents + bkc_idx; |
2581 | if (bkref_ent->node != node_idx || bkref_ent->str_idx != cur_str_idx) |
2582 | continue; |
2583 | subexp_len = bkref_ent->subexp_to - bkref_ent->subexp_from; |
2584 | new_dest_nodes = (subexp_len == 0 |
2585 | ? dfa->eclosures + dfa->edests[node_idx].elems[0] |
2586 | : dfa->eclosures + dfa->nexts[node_idx]); |
2587 | dest_str_idx = (cur_str_idx + bkref_ent->subexp_to |
2588 | - bkref_ent->subexp_from); |
2589 | context = re_string_context_at (&mctx->input, dest_str_idx - 1, |
2590 | mctx->eflags); |
2591 | dest_state = mctx->state_log[dest_str_idx]; |
2592 | prev_nelem = ((mctx->state_log[cur_str_idx] == NULL) ? 0 |
2593 | : mctx->state_log[cur_str_idx]->nodes.nelem); |
2594 | /* Add 'new_dest_node' to state_log. */ |
2595 | if (dest_state == NULL) |
2596 | { |
2597 | mctx->state_log[dest_str_idx] |
2598 | = re_acquire_state_context (&err, dfa, new_dest_nodes, |
2599 | context); |
2600 | if (__glibc_unlikely (mctx->state_log[dest_str_idx] == NULL |
2601 | && err != REG_NOERROR)) |
2602 | goto free_return; |
2603 | } |
2604 | else |
2605 | { |
2606 | re_node_set dest_nodes; |
2607 | err = re_node_set_init_union (&dest_nodes, |
2608 | dest_state->entrance_nodes, |
2609 | new_dest_nodes); |
2610 | if (__glibc_unlikely (err != REG_NOERROR)) |
2611 | { |
2612 | re_node_set_free (&dest_nodes); |
2613 | goto free_return; |
2614 | } |
2615 | mctx->state_log[dest_str_idx] |
2616 | = re_acquire_state_context (&err, dfa, &dest_nodes, context); |
2617 | re_node_set_free (&dest_nodes); |
2618 | if (__glibc_unlikely (mctx->state_log[dest_str_idx] == NULL |
2619 | && err != REG_NOERROR)) |
2620 | goto free_return; |
2621 | } |
2622 | /* We need to check recursively if the backreference can epsilon |
2623 | transit. */ |
2624 | if (subexp_len == 0 |
2625 | && mctx->state_log[cur_str_idx]->nodes.nelem > prev_nelem) |
2626 | { |
2627 | err = check_subexp_matching_top (mctx, new_dest_nodes, |
2628 | cur_str_idx); |
2629 | if (__glibc_unlikely (err != REG_NOERROR)) |
2630 | goto free_return; |
2631 | err = transit_state_bkref (mctx, new_dest_nodes); |
2632 | if (__glibc_unlikely (err != REG_NOERROR)) |
2633 | goto free_return; |
2634 | } |
2635 | } |
2636 | } |
2637 | err = REG_NOERROR; |
2638 | free_return: |
2639 | return err; |
2640 | } |
2641 | |
2642 | /* Enumerate all the candidates which the backreference BKREF_NODE can match |
2643 | at BKREF_STR_IDX, and register them by match_ctx_add_entry(). |
2644 | Note that we might collect inappropriate candidates here. |
2645 | However, the cost of checking them strictly here is too high, then we |
2646 | delay these checking for prune_impossible_nodes(). */ |
2647 | |
2648 | static reg_errcode_t |
2649 | __attribute_warn_unused_result__ |
2650 | get_subexp (re_match_context_t *mctx, Idx bkref_node, Idx bkref_str_idx) |
2651 | { |
2652 | const re_dfa_t *const dfa = mctx->dfa; |
2653 | Idx subexp_num, sub_top_idx; |
2654 | const char *buf = (const char *) re_string_get_buffer (&mctx->input); |
2655 | /* Return if we have already checked BKREF_NODE at BKREF_STR_IDX. */ |
2656 | Idx cache_idx = search_cur_bkref_entry (mctx, bkref_str_idx); |
2657 | if (cache_idx != -1) |
2658 | { |
2659 | const struct re_backref_cache_entry *entry |
2660 | = mctx->bkref_ents + cache_idx; |
2661 | do |
2662 | if (entry->node == bkref_node) |
2663 | return REG_NOERROR; /* We already checked it. */ |
2664 | while (entry++->more); |
2665 | } |
2666 | |
2667 | subexp_num = dfa->nodes[bkref_node].opr.idx; |
2668 | |
2669 | /* For each sub expression */ |
2670 | for (sub_top_idx = 0; sub_top_idx < mctx->nsub_tops; ++sub_top_idx) |
2671 | { |
2672 | reg_errcode_t err; |
2673 | re_sub_match_top_t *sub_top = mctx->sub_tops[sub_top_idx]; |
2674 | re_sub_match_last_t *sub_last; |
2675 | Idx sub_last_idx, sl_str, bkref_str_off; |
2676 | |
2677 | if (dfa->nodes[sub_top->node].opr.idx != subexp_num) |
2678 | continue; /* It isn't related. */ |
2679 | |
2680 | sl_str = sub_top->str_idx; |
2681 | bkref_str_off = bkref_str_idx; |
2682 | /* At first, check the last node of sub expressions we already |
2683 | evaluated. */ |
2684 | for (sub_last_idx = 0; sub_last_idx < sub_top->nlasts; ++sub_last_idx) |
2685 | { |
2686 | regoff_t sl_str_diff; |
2687 | sub_last = sub_top->lasts[sub_last_idx]; |
2688 | sl_str_diff = sub_last->str_idx - sl_str; |
2689 | /* The matched string by the sub expression match with the substring |
2690 | at the back reference? */ |
2691 | if (sl_str_diff > 0) |
2692 | { |
2693 | if (__glibc_unlikely (bkref_str_off + sl_str_diff |
2694 | > mctx->input.valid_len)) |
2695 | { |
2696 | /* Not enough chars for a successful match. */ |
2697 | if (bkref_str_off + sl_str_diff > mctx->input.len) |
2698 | break; |
2699 | |
2700 | err = clean_state_log_if_needed (mctx, |
2701 | bkref_str_off |
2702 | + sl_str_diff); |
2703 | if (__glibc_unlikely (err != REG_NOERROR)) |
2704 | return err; |
2705 | buf = (const char *) re_string_get_buffer (&mctx->input); |
2706 | } |
2707 | if (memcmp (buf + bkref_str_off, buf + sl_str, sl_str_diff) != 0) |
2708 | /* We don't need to search this sub expression any more. */ |
2709 | break; |
2710 | } |
2711 | bkref_str_off += sl_str_diff; |
2712 | sl_str += sl_str_diff; |
2713 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, |
2714 | bkref_str_idx); |
2715 | |
2716 | /* Reload buf, since the preceding call might have reallocated |
2717 | the buffer. */ |
2718 | buf = (const char *) re_string_get_buffer (&mctx->input); |
2719 | |
2720 | if (err == REG_NOMATCH) |
2721 | continue; |
2722 | if (__glibc_unlikely (err != REG_NOERROR)) |
2723 | return err; |
2724 | } |
2725 | |
2726 | if (sub_last_idx < sub_top->nlasts) |
2727 | continue; |
2728 | if (sub_last_idx > 0) |
2729 | ++sl_str; |
2730 | /* Then, search for the other last nodes of the sub expression. */ |
2731 | for (; sl_str <= bkref_str_idx; ++sl_str) |
2732 | { |
2733 | Idx cls_node; |
2734 | regoff_t sl_str_off; |
2735 | const re_node_set *nodes; |
2736 | sl_str_off = sl_str - sub_top->str_idx; |
2737 | /* The matched string by the sub expression match with the substring |
2738 | at the back reference? */ |
2739 | if (sl_str_off > 0) |
2740 | { |
2741 | if (__glibc_unlikely (bkref_str_off >= mctx->input.valid_len)) |
2742 | { |
2743 | /* If we are at the end of the input, we cannot match. */ |
2744 | if (bkref_str_off >= mctx->input.len) |
2745 | break; |
2746 | |
2747 | err = extend_buffers (mctx, bkref_str_off + 1); |
2748 | if (__glibc_unlikely (err != REG_NOERROR)) |
2749 | return err; |
2750 | |
2751 | buf = (const char *) re_string_get_buffer (&mctx->input); |
2752 | } |
2753 | if (buf [bkref_str_off++] != buf[sl_str - 1]) |
2754 | break; /* We don't need to search this sub expression |
2755 | any more. */ |
2756 | } |
2757 | if (mctx->state_log[sl_str] == NULL) |
2758 | continue; |
2759 | /* Does this state have a ')' of the sub expression? */ |
2760 | nodes = &mctx->state_log[sl_str]->nodes; |
2761 | cls_node = find_subexp_node (dfa, nodes, subexp_num, |
2762 | OP_CLOSE_SUBEXP); |
2763 | if (cls_node == -1) |
2764 | continue; /* No. */ |
2765 | if (sub_top->path == NULL) |
2766 | { |
2767 | sub_top->path = calloc (sizeof (state_array_t), |
2768 | sl_str - sub_top->str_idx + 1); |
2769 | if (sub_top->path == NULL) |
2770 | return REG_ESPACE; |
2771 | } |
2772 | /* Can the OP_OPEN_SUBEXP node arrive the OP_CLOSE_SUBEXP node |
2773 | in the current context? */ |
2774 | err = check_arrival (mctx, sub_top->path, sub_top->node, |
2775 | sub_top->str_idx, cls_node, sl_str, |
2776 | OP_CLOSE_SUBEXP); |
2777 | if (err == REG_NOMATCH) |
2778 | continue; |
2779 | if (__glibc_unlikely (err != REG_NOERROR)) |
2780 | return err; |
2781 | sub_last = match_ctx_add_sublast (sub_top, cls_node, sl_str); |
2782 | if (__glibc_unlikely (sub_last == NULL)) |
2783 | return REG_ESPACE; |
2784 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, |
2785 | bkref_str_idx); |
2786 | buf = (const char *) re_string_get_buffer (&mctx->input); |
2787 | if (err == REG_NOMATCH) |
2788 | continue; |
2789 | if (__glibc_unlikely (err != REG_NOERROR)) |
2790 | return err; |
2791 | } |
2792 | } |
2793 | return REG_NOERROR; |
2794 | } |
2795 | |
2796 | /* Helper functions for get_subexp(). */ |
2797 | |
2798 | /* Check SUB_LAST can arrive to the back reference BKREF_NODE at BKREF_STR. |
2799 | If it can arrive, register the sub expression expressed with SUB_TOP |
2800 | and SUB_LAST. */ |
2801 | |
2802 | static reg_errcode_t |
2803 | get_subexp_sub (re_match_context_t *mctx, const re_sub_match_top_t *sub_top, |
2804 | re_sub_match_last_t *sub_last, Idx bkref_node, Idx bkref_str) |
2805 | { |
2806 | reg_errcode_t err; |
2807 | Idx to_idx; |
2808 | /* Can the subexpression arrive the back reference? */ |
2809 | err = check_arrival (mctx, &sub_last->path, sub_last->node, |
2810 | sub_last->str_idx, bkref_node, bkref_str, |
2811 | OP_OPEN_SUBEXP); |
2812 | if (err != REG_NOERROR) |
2813 | return err; |
2814 | err = match_ctx_add_entry (mctx, bkref_node, bkref_str, sub_top->str_idx, |
2815 | sub_last->str_idx); |
2816 | if (__glibc_unlikely (err != REG_NOERROR)) |
2817 | return err; |
2818 | to_idx = bkref_str + sub_last->str_idx - sub_top->str_idx; |
2819 | return clean_state_log_if_needed (mctx, to_idx); |
2820 | } |
2821 | |
2822 | /* Find the first node which is '(' or ')' and whose index is SUBEXP_IDX. |
2823 | Search '(' if FL_OPEN, or search ')' otherwise. |
2824 | TODO: This function isn't efficient... |
2825 | Because there might be more than one nodes whose types are |
2826 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all |
2827 | nodes. |
2828 | E.g. RE: (a){2} */ |
2829 | |
2830 | static Idx |
2831 | find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, |
2832 | Idx subexp_idx, int type) |
2833 | { |
2834 | Idx cls_idx; |
2835 | for (cls_idx = 0; cls_idx < nodes->nelem; ++cls_idx) |
2836 | { |
2837 | Idx cls_node = nodes->elems[cls_idx]; |
2838 | const re_token_t *node = dfa->nodes + cls_node; |
2839 | if (node->type == type |
2840 | && node->opr.idx == subexp_idx) |
2841 | return cls_node; |
2842 | } |
2843 | return -1; |
2844 | } |
2845 | |
2846 | /* Check whether the node TOP_NODE at TOP_STR can arrive to the node |
2847 | LAST_NODE at LAST_STR. We record the path onto PATH since it will be |
2848 | heavily reused. |
2849 | Return REG_NOERROR if it can arrive, or REG_NOMATCH otherwise. */ |
2850 | |
2851 | static reg_errcode_t |
2852 | __attribute_warn_unused_result__ |
2853 | check_arrival (re_match_context_t *mctx, state_array_t *path, Idx top_node, |
2854 | Idx top_str, Idx last_node, Idx last_str, int type) |
2855 | { |
2856 | const re_dfa_t *const dfa = mctx->dfa; |
2857 | reg_errcode_t err = REG_NOERROR; |
2858 | Idx subexp_num, backup_cur_idx, str_idx, null_cnt; |
2859 | re_dfastate_t *cur_state = NULL; |
2860 | re_node_set *cur_nodes, next_nodes; |
2861 | re_dfastate_t **backup_state_log; |
2862 | unsigned int context; |
2863 | |
2864 | subexp_num = dfa->nodes[top_node].opr.idx; |
2865 | /* Extend the buffer if we need. */ |
2866 | if (__glibc_unlikely (path->alloc < last_str + mctx->max_mb_elem_len + 1)) |
2867 | { |
2868 | re_dfastate_t **new_array; |
2869 | Idx old_alloc = path->alloc; |
2870 | Idx incr_alloc = last_str + mctx->max_mb_elem_len + 1; |
2871 | Idx new_alloc; |
2872 | if (__glibc_unlikely (IDX_MAX - old_alloc < incr_alloc)) |
2873 | return REG_ESPACE; |
2874 | new_alloc = old_alloc + incr_alloc; |
2875 | if (__glibc_unlikely (SIZE_MAX / sizeof (re_dfastate_t *) < new_alloc)) |
2876 | return REG_ESPACE; |
2877 | new_array = re_realloc (path->array, re_dfastate_t *, new_alloc); |
2878 | if (__glibc_unlikely (new_array == NULL)) |
2879 | return REG_ESPACE; |
2880 | path->array = new_array; |
2881 | path->alloc = new_alloc; |
2882 | memset (new_array + old_alloc, '\0', |
2883 | sizeof (re_dfastate_t *) * (path->alloc - old_alloc)); |
2884 | } |
2885 | |
2886 | str_idx = path->next_idx ? path->next_idx : top_str; |
2887 | |
2888 | /* Temporary modify MCTX. */ |
2889 | backup_state_log = mctx->state_log; |
2890 | backup_cur_idx = mctx->input.cur_idx; |
2891 | mctx->state_log = path->array; |
2892 | mctx->input.cur_idx = str_idx; |
2893 | |
2894 | /* Setup initial node set. */ |
2895 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); |
2896 | if (str_idx == top_str) |
2897 | { |
2898 | err = re_node_set_init_1 (&next_nodes, top_node); |
2899 | if (__glibc_unlikely (err != REG_NOERROR)) |
2900 | return err; |
2901 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); |
2902 | if (__glibc_unlikely (err != REG_NOERROR)) |
2903 | { |
2904 | re_node_set_free (&next_nodes); |
2905 | return err; |
2906 | } |
2907 | } |
2908 | else |
2909 | { |
2910 | cur_state = mctx->state_log[str_idx]; |
2911 | if (cur_state && cur_state->has_backref) |
2912 | { |
2913 | err = re_node_set_init_copy (&next_nodes, &cur_state->nodes); |
2914 | if (__glibc_unlikely (err != REG_NOERROR)) |
2915 | return err; |
2916 | } |
2917 | else |
2918 | re_node_set_init_empty (&next_nodes); |
2919 | } |
2920 | if (str_idx == top_str || (cur_state && cur_state->has_backref)) |
2921 | { |
2922 | if (next_nodes.nelem) |
2923 | { |
2924 | err = expand_bkref_cache (mctx, &next_nodes, str_idx, |
2925 | subexp_num, type); |
2926 | if (__glibc_unlikely (err != REG_NOERROR)) |
2927 | { |
2928 | re_node_set_free (&next_nodes); |
2929 | return err; |
2930 | } |
2931 | } |
2932 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); |
2933 | if (__glibc_unlikely (cur_state == NULL && err != REG_NOERROR)) |
2934 | { |
2935 | re_node_set_free (&next_nodes); |
2936 | return err; |
2937 | } |
2938 | mctx->state_log[str_idx] = cur_state; |
2939 | } |
2940 | |
2941 | for (null_cnt = 0; str_idx < last_str && null_cnt <= mctx->max_mb_elem_len;) |
2942 | { |
2943 | re_node_set_empty (&next_nodes); |
2944 | if (mctx->state_log[str_idx + 1]) |
2945 | { |
2946 | err = re_node_set_merge (&next_nodes, |
2947 | &mctx->state_log[str_idx + 1]->nodes); |
2948 | if (__glibc_unlikely (err != REG_NOERROR)) |
2949 | { |
2950 | re_node_set_free (&next_nodes); |
2951 | return err; |
2952 | } |
2953 | } |
2954 | if (cur_state) |
2955 | { |
2956 | err = check_arrival_add_next_nodes (mctx, str_idx, |
2957 | &cur_state->non_eps_nodes, |
2958 | &next_nodes); |
2959 | if (__glibc_unlikely (err != REG_NOERROR)) |
2960 | { |
2961 | re_node_set_free (&next_nodes); |
2962 | return err; |
2963 | } |
2964 | } |
2965 | ++str_idx; |
2966 | if (next_nodes.nelem) |
2967 | { |
2968 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); |
2969 | if (__glibc_unlikely (err != REG_NOERROR)) |
2970 | { |
2971 | re_node_set_free (&next_nodes); |
2972 | return err; |
2973 | } |
2974 | err = expand_bkref_cache (mctx, &next_nodes, str_idx, |
2975 | subexp_num, type); |
2976 | if (__glibc_unlikely (err != REG_NOERROR)) |
2977 | { |
2978 | re_node_set_free (&next_nodes); |
2979 | return err; |
2980 | } |
2981 | } |
2982 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); |
2983 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); |
2984 | if (__glibc_unlikely (cur_state == NULL && err != REG_NOERROR)) |
2985 | { |
2986 | re_node_set_free (&next_nodes); |
2987 | return err; |
2988 | } |
2989 | mctx->state_log[str_idx] = cur_state; |
2990 | null_cnt = cur_state == NULL ? null_cnt + 1 : 0; |
2991 | } |
2992 | re_node_set_free (&next_nodes); |
2993 | cur_nodes = (mctx->state_log[last_str] == NULL ? NULL |
2994 | : &mctx->state_log[last_str]->nodes); |
2995 | path->next_idx = str_idx; |
2996 | |
2997 | /* Fix MCTX. */ |
2998 | mctx->state_log = backup_state_log; |
2999 | mctx->input.cur_idx = backup_cur_idx; |
3000 | |
3001 | /* Then check the current node set has the node LAST_NODE. */ |
3002 | if (cur_nodes != NULL && re_node_set_contains (cur_nodes, last_node)) |
3003 | return REG_NOERROR; |
3004 | |
3005 | return REG_NOMATCH; |
3006 | } |
3007 | |
3008 | /* Helper functions for check_arrival. */ |
3009 | |
3010 | /* Calculate the destination nodes of CUR_NODES at STR_IDX, and append them |
3011 | to NEXT_NODES. |
3012 | TODO: This function is similar to the functions transit_state*(), |
3013 | however this function has many additional works. |
3014 | Can't we unify them? */ |
3015 | |
3016 | static reg_errcode_t |
3017 | __attribute_warn_unused_result__ |
3018 | check_arrival_add_next_nodes (re_match_context_t *mctx, Idx str_idx, |
3019 | re_node_set *cur_nodes, re_node_set *next_nodes) |
3020 | { |
3021 | const re_dfa_t *const dfa = mctx->dfa; |
3022 | bool ok; |
3023 | Idx cur_idx; |
3024 | #ifdef RE_ENABLE_I18N |
3025 | reg_errcode_t err = REG_NOERROR; |
3026 | #endif |
3027 | re_node_set union_set; |
3028 | re_node_set_init_empty (&union_set); |
3029 | for (cur_idx = 0; cur_idx < cur_nodes->nelem; ++cur_idx) |
3030 | { |
3031 | int naccepted = 0; |
3032 | Idx cur_node = cur_nodes->elems[cur_idx]; |
3033 | #ifdef DEBUG |
3034 | re_token_type_t type = dfa->nodes[cur_node].type; |
3035 | assert (!IS_EPSILON_NODE (type)); |
3036 | #endif |
3037 | #ifdef RE_ENABLE_I18N |
3038 | /* If the node may accept "multi byte". */ |
3039 | if (dfa->nodes[cur_node].accept_mb) |
3040 | { |
3041 | naccepted = check_node_accept_bytes (dfa, cur_node, &mctx->input, |
3042 | str_idx); |
3043 | if (naccepted > 1) |
3044 | { |
3045 | re_dfastate_t *dest_state; |
3046 | Idx next_node = dfa->nexts[cur_node]; |
3047 | Idx next_idx = str_idx + naccepted; |
3048 | dest_state = mctx->state_log[next_idx]; |
3049 | re_node_set_empty (&union_set); |
3050 | if (dest_state) |
3051 | { |
3052 | err = re_node_set_merge (&union_set, &dest_state->nodes); |
3053 | if (__glibc_unlikely (err != REG_NOERROR)) |
3054 | { |
3055 | re_node_set_free (&union_set); |
3056 | return err; |
3057 | } |
3058 | } |
3059 | ok = re_node_set_insert (&union_set, next_node); |
3060 | if (__glibc_unlikely (! ok)) |
3061 | { |
3062 | re_node_set_free (&union_set); |
3063 | return REG_ESPACE; |
3064 | } |
3065 | mctx->state_log[next_idx] = re_acquire_state (&err, dfa, |
3066 | &union_set); |
3067 | if (__glibc_unlikely (mctx->state_log[next_idx] == NULL |
3068 | && err != REG_NOERROR)) |
3069 | { |
3070 | re_node_set_free (&union_set); |
3071 | return err; |
3072 | } |
3073 | } |
3074 | } |
3075 | #endif /* RE_ENABLE_I18N */ |
3076 | if (naccepted |
3077 | || check_node_accept (mctx, dfa->nodes + cur_node, str_idx)) |
3078 | { |
3079 | ok = re_node_set_insert (next_nodes, dfa->nexts[cur_node]); |
3080 | if (__glibc_unlikely (! ok)) |
3081 | { |
3082 | re_node_set_free (&union_set); |
3083 | return REG_ESPACE; |
3084 | } |
3085 | } |
3086 | } |
3087 | re_node_set_free (&union_set); |
3088 | return REG_NOERROR; |
3089 | } |
3090 | |
3091 | /* For all the nodes in CUR_NODES, add the epsilon closures of them to |
3092 | CUR_NODES, however exclude the nodes which are: |
3093 | - inside the sub expression whose number is EX_SUBEXP, if FL_OPEN. |
3094 | - out of the sub expression whose number is EX_SUBEXP, if !FL_OPEN. |
3095 | */ |
3096 | |
3097 | static reg_errcode_t |
3098 | check_arrival_expand_ecl (const re_dfa_t *dfa, re_node_set *cur_nodes, |
3099 | Idx ex_subexp, int type) |
3100 | { |
3101 | reg_errcode_t err; |
3102 | Idx idx, outside_node; |
3103 | re_node_set new_nodes; |
3104 | #ifdef DEBUG |
3105 | assert (cur_nodes->nelem); |
3106 | #endif |
3107 | err = re_node_set_alloc (&new_nodes, cur_nodes->nelem); |
3108 | if (__glibc_unlikely (err != REG_NOERROR)) |
3109 | return err; |
3110 | /* Create a new node set NEW_NODES with the nodes which are epsilon |
3111 | closures of the node in CUR_NODES. */ |
3112 | |
3113 | for (idx = 0; idx < cur_nodes->nelem; ++idx) |
3114 | { |
3115 | Idx cur_node = cur_nodes->elems[idx]; |
3116 | const re_node_set *eclosure = dfa->eclosures + cur_node; |
3117 | outside_node = find_subexp_node (dfa, eclosure, ex_subexp, type); |
3118 | if (outside_node == -1) |
3119 | { |
3120 | /* There are no problematic nodes, just merge them. */ |
3121 | err = re_node_set_merge (&new_nodes, eclosure); |
3122 | if (__glibc_unlikely (err != REG_NOERROR)) |
3123 | { |
3124 | re_node_set_free (&new_nodes); |
3125 | return err; |
3126 | } |
3127 | } |
3128 | else |
3129 | { |
3130 | /* There are problematic nodes, re-calculate incrementally. */ |
3131 | err = check_arrival_expand_ecl_sub (dfa, &new_nodes, cur_node, |
3132 | ex_subexp, type); |
3133 | if (__glibc_unlikely (err != REG_NOERROR)) |
3134 | { |
3135 | re_node_set_free (&new_nodes); |
3136 | return err; |
3137 | } |
3138 | } |
3139 | } |
3140 | re_node_set_free (cur_nodes); |
3141 | *cur_nodes = new_nodes; |
3142 | return REG_NOERROR; |
3143 | } |
3144 | |
3145 | /* Helper function for check_arrival_expand_ecl. |
3146 | Check incrementally the epsilon closure of TARGET, and if it isn't |
3147 | problematic append it to DST_NODES. */ |
3148 | |
3149 | static reg_errcode_t |
3150 | __attribute_warn_unused_result__ |
3151 | check_arrival_expand_ecl_sub (const re_dfa_t *dfa, re_node_set *dst_nodes, |
3152 | Idx target, Idx ex_subexp, int type) |
3153 | { |
3154 | Idx cur_node; |
3155 | for (cur_node = target; !re_node_set_contains (dst_nodes, cur_node);) |
3156 | { |
3157 | bool ok; |
3158 | |
3159 | if (dfa->nodes[cur_node].type == type |
3160 | && dfa->nodes[cur_node].opr.idx == ex_subexp) |
3161 | { |
3162 | if (type == OP_CLOSE_SUBEXP) |
3163 | { |
3164 | ok = re_node_set_insert (dst_nodes, cur_node); |
3165 | if (__glibc_unlikely (! ok)) |
3166 | return REG_ESPACE; |
3167 | } |
3168 | break; |
3169 | } |
3170 | ok = re_node_set_insert (dst_nodes, cur_node); |
3171 | if (__glibc_unlikely (! ok)) |
3172 | return REG_ESPACE; |
3173 | if (dfa->edests[cur_node].nelem == 0) |
3174 | break; |
3175 | if (dfa->edests[cur_node].nelem == 2) |
3176 | { |
3177 | reg_errcode_t err; |
3178 | err = check_arrival_expand_ecl_sub (dfa, dst_nodes, |
3179 | dfa->edests[cur_node].elems[1], |
3180 | ex_subexp, type); |
3181 | if (__glibc_unlikely (err != REG_NOERROR)) |
3182 | return err; |
3183 | } |
3184 | cur_node = dfa->edests[cur_node].elems[0]; |
3185 | } |
3186 | return REG_NOERROR; |
3187 | } |
3188 | |
3189 | |
3190 | /* For all the back references in the current state, calculate the |
3191 | destination of the back references by the appropriate entry |
3192 | in MCTX->BKREF_ENTS. */ |
3193 | |
3194 | static reg_errcode_t |
3195 | __attribute_warn_unused_result__ |
3196 | expand_bkref_cache (re_match_context_t *mctx, re_node_set *cur_nodes, |
3197 | Idx cur_str, Idx subexp_num, int type) |
3198 | { |
3199 | const re_dfa_t *const dfa = mctx->dfa; |
3200 | reg_errcode_t err; |
3201 | Idx cache_idx_start = search_cur_bkref_entry (mctx, cur_str); |
3202 | struct re_backref_cache_entry *ent; |
3203 | |
3204 | if (cache_idx_start == -1) |
3205 | return REG_NOERROR; |
3206 | |
3207 | restart: |
3208 | ent = mctx->bkref_ents + cache_idx_start; |
3209 | do |
3210 | { |
3211 | Idx to_idx, next_node; |
3212 | |
3213 | /* Is this entry ENT is appropriate? */ |
3214 | if (!re_node_set_contains (cur_nodes, ent->node)) |
3215 | continue; /* No. */ |
3216 | |
3217 | to_idx = cur_str + ent->subexp_to - ent->subexp_from; |
3218 | /* Calculate the destination of the back reference, and append it |
3219 | to MCTX->STATE_LOG. */ |
3220 | if (to_idx == cur_str) |
3221 | { |
3222 | /* The backreference did epsilon transit, we must re-check all the |
3223 | node in the current state. */ |
3224 | re_node_set new_dests; |
3225 | reg_errcode_t err2, err3; |
3226 | next_node = dfa->edests[ent->node].elems[0]; |
3227 | if (re_node_set_contains (cur_nodes, next_node)) |
3228 | continue; |
3229 | err = re_node_set_init_1 (&new_dests, next_node); |
3230 | err2 = check_arrival_expand_ecl (dfa, &new_dests, subexp_num, type); |
3231 | err3 = re_node_set_merge (cur_nodes, &new_dests); |
3232 | re_node_set_free (&new_dests); |
3233 | if (__glibc_unlikely (err != REG_NOERROR || err2 != REG_NOERROR |
3234 | || err3 != REG_NOERROR)) |
3235 | { |
3236 | err = (err != REG_NOERROR ? err |
3237 | : (err2 != REG_NOERROR ? err2 : err3)); |
3238 | return err; |
3239 | } |
3240 | /* TODO: It is still inefficient... */ |
3241 | goto restart; |
3242 | } |
3243 | else |
3244 | { |
3245 | re_node_set union_set; |
3246 | next_node = dfa->nexts[ent->node]; |
3247 | if (mctx->state_log[to_idx]) |
3248 | { |
3249 | bool ok; |
3250 | if (re_node_set_contains (&mctx->state_log[to_idx]->nodes, |
3251 | next_node)) |
3252 | continue; |
3253 | err = re_node_set_init_copy (&union_set, |
3254 | &mctx->state_log[to_idx]->nodes); |
3255 | ok = re_node_set_insert (&union_set, next_node); |
3256 | if (__glibc_unlikely (err != REG_NOERROR || ! ok)) |
3257 | { |
3258 | re_node_set_free (&union_set); |
3259 | err = err != REG_NOERROR ? err : REG_ESPACE; |
3260 | return err; |
3261 | } |
3262 | } |
3263 | else |
3264 | { |
3265 | err = re_node_set_init_1 (&union_set, next_node); |
3266 | if (__glibc_unlikely (err != REG_NOERROR)) |
3267 | return err; |
3268 | } |
3269 | mctx->state_log[to_idx] = re_acquire_state (&err, dfa, &union_set); |
3270 | re_node_set_free (&union_set); |
3271 | if (__glibc_unlikely (mctx->state_log[to_idx] == NULL |
3272 | && err != REG_NOERROR)) |
3273 | return err; |
3274 | } |
3275 | } |
3276 | while (ent++->more); |
3277 | return REG_NOERROR; |
3278 | } |
3279 | |
3280 | /* Build transition table for the state. |
3281 | Return true if successful. */ |
3282 | |
3283 | static bool |
3284 | build_trtable (const re_dfa_t *dfa, re_dfastate_t *state) |
3285 | { |
3286 | reg_errcode_t err; |
3287 | Idx i, j; |
3288 | int ch; |
3289 | bool need_word_trtable = false; |
3290 | bitset_word_t elem, mask; |
3291 | bool dests_node_malloced = false; |
3292 | bool dest_states_malloced = false; |
3293 | Idx ndests; /* Number of the destination states from 'state'. */ |
3294 | re_dfastate_t **trtable; |
3295 | re_dfastate_t **dest_states = NULL, **dest_states_word, **dest_states_nl; |
3296 | re_node_set follows, *dests_node; |
3297 | bitset_t *dests_ch; |
3298 | bitset_t acceptable; |
3299 | |
3300 | struct dests_alloc |
3301 | { |
3302 | re_node_set dests_node[SBC_MAX]; |
3303 | bitset_t dests_ch[SBC_MAX]; |
3304 | } *dests_alloc; |
3305 | |
3306 | /* We build DFA states which corresponds to the destination nodes |
3307 | from 'state'. 'dests_node[i]' represents the nodes which i-th |
3308 | destination state contains, and 'dests_ch[i]' represents the |
3309 | characters which i-th destination state accepts. */ |
3310 | if (__libc_use_alloca (sizeof (struct dests_alloc))) |
3311 | dests_alloc = (struct dests_alloc *) alloca (sizeof (struct dests_alloc)); |
3312 | else |
3313 | { |
3314 | dests_alloc = re_malloc (struct dests_alloc, 1); |
3315 | if (__glibc_unlikely (dests_alloc == NULL)) |
3316 | return false; |
3317 | dests_node_malloced = true; |
3318 | } |
3319 | dests_node = dests_alloc->dests_node; |
3320 | dests_ch = dests_alloc->dests_ch; |
3321 | |
3322 | /* Initialize transition table. */ |
3323 | state->word_trtable = state->trtable = NULL; |
3324 | |
3325 | /* At first, group all nodes belonging to 'state' into several |
3326 | destinations. */ |
3327 | ndests = group_nodes_into_DFAstates (dfa, state, dests_node, dests_ch); |
3328 | if (__glibc_unlikely (ndests <= 0)) |
3329 | { |
3330 | if (dests_node_malloced) |
3331 | re_free (dests_alloc); |
3332 | /* Return false in case of an error, true otherwise. */ |
3333 | if (ndests == 0) |
3334 | { |
3335 | state->trtable = (re_dfastate_t **) |
3336 | calloc (sizeof (re_dfastate_t *), SBC_MAX); |
3337 | if (__glibc_unlikely (state->trtable == NULL)) |
3338 | return false; |
3339 | return true; |
3340 | } |
3341 | return false; |
3342 | } |
3343 | |
3344 | err = re_node_set_alloc (&follows, ndests + 1); |
3345 | if (__glibc_unlikely (err != REG_NOERROR)) |
3346 | goto out_free; |
3347 | |
3348 | /* Avoid arithmetic overflow in size calculation. */ |
3349 | size_t ndests_max |
3350 | = ((SIZE_MAX - (sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX) |
3351 | / (3 * sizeof (re_dfastate_t *))); |
3352 | if (__glibc_unlikely (ndests_max < ndests)) |
3353 | goto out_free; |
3354 | |
3355 | if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX |
3356 | + ndests * 3 * sizeof (re_dfastate_t *))) |
3357 | dest_states = (re_dfastate_t **) |
3358 | alloca (ndests * 3 * sizeof (re_dfastate_t *)); |
3359 | else |
3360 | { |
3361 | dest_states = re_malloc (re_dfastate_t *, ndests * 3); |
3362 | if (__glibc_unlikely (dest_states == NULL)) |
3363 | { |
3364 | out_free: |
3365 | if (dest_states_malloced) |
3366 | re_free (dest_states); |
3367 | re_node_set_free (&follows); |
3368 | for (i = 0; i < ndests; ++i) |
3369 | re_node_set_free (dests_node + i); |
3370 | if (dests_node_malloced) |
3371 | re_free (dests_alloc); |
3372 | return false; |
3373 | } |
3374 | dest_states_malloced = true; |
3375 | } |
3376 | dest_states_word = dest_states + ndests; |
3377 | dest_states_nl = dest_states_word + ndests; |
3378 | bitset_empty (acceptable); |
3379 | |
3380 | /* Then build the states for all destinations. */ |
3381 | for (i = 0; i < ndests; ++i) |
3382 | { |
3383 | Idx next_node; |
3384 | re_node_set_empty (&follows); |
3385 | /* Merge the follows of this destination states. */ |
3386 | for (j = 0; j < dests_node[i].nelem; ++j) |
3387 | { |
3388 | next_node = dfa->nexts[dests_node[i].elems[j]]; |
3389 | if (next_node != -1) |
3390 | { |
3391 | err = re_node_set_merge (&follows, dfa->eclosures + next_node); |
3392 | if (__glibc_unlikely (err != REG_NOERROR)) |
3393 | goto out_free; |
3394 | } |
3395 | } |
3396 | dest_states[i] = re_acquire_state_context (&err, dfa, &follows, 0); |
3397 | if (__glibc_unlikely (dest_states[i] == NULL && err != REG_NOERROR)) |
3398 | goto out_free; |
3399 | /* If the new state has context constraint, |
3400 | build appropriate states for these contexts. */ |
3401 | if (dest_states[i]->has_constraint) |
3402 | { |
3403 | dest_states_word[i] = re_acquire_state_context (&err, dfa, &follows, |
3404 | CONTEXT_WORD); |
3405 | if (__glibc_unlikely (dest_states_word[i] == NULL |
3406 | && err != REG_NOERROR)) |
3407 | goto out_free; |
3408 | |
3409 | if (dest_states[i] != dest_states_word[i] && dfa->mb_cur_max > 1) |
3410 | need_word_trtable = true; |
3411 | |
3412 | dest_states_nl[i] = re_acquire_state_context (&err, dfa, &follows, |
3413 | CONTEXT_NEWLINE); |
3414 | if (__glibc_unlikely (dest_states_nl[i] == NULL && err != REG_NOERROR)) |
3415 | goto out_free; |
3416 | } |
3417 | else |
3418 | { |
3419 | dest_states_word[i] = dest_states[i]; |
3420 | dest_states_nl[i] = dest_states[i]; |
3421 | } |
3422 | bitset_merge (acceptable, dests_ch[i]); |
3423 | } |
3424 | |
3425 | if (!__glibc_unlikely (need_word_trtable)) |
3426 | { |
3427 | /* We don't care about whether the following character is a word |
3428 | character, or we are in a single-byte character set so we can |
3429 | discern by looking at the character code: allocate a |
3430 | 256-entry transition table. */ |
3431 | trtable = state->trtable = |
3432 | (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), SBC_MAX); |
3433 | if (__glibc_unlikely (trtable == NULL)) |
3434 | goto out_free; |
3435 | |
3436 | /* For all characters ch...: */ |
3437 | for (i = 0; i < BITSET_WORDS; ++i) |
3438 | for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; |
3439 | elem; |
3440 | mask <<= 1, elem >>= 1, ++ch) |
3441 | if (__glibc_unlikely (elem & 1)) |
3442 | { |
3443 | /* There must be exactly one destination which accepts |
3444 | character ch. See group_nodes_into_DFAstates. */ |
3445 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) |
3446 | ; |
3447 | |
3448 | /* j-th destination accepts the word character ch. */ |
3449 | if (dfa->word_char[i] & mask) |
3450 | trtable[ch] = dest_states_word[j]; |
3451 | else |
3452 | trtable[ch] = dest_states[j]; |
3453 | } |
3454 | } |
3455 | else |
3456 | { |
3457 | /* We care about whether the following character is a word |
3458 | character, and we are in a multi-byte character set: discern |
3459 | by looking at the character code: build two 256-entry |
3460 | transition tables, one starting at trtable[0] and one |
3461 | starting at trtable[SBC_MAX]. */ |
3462 | trtable = state->word_trtable = |
3463 | (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), 2 * SBC_MAX); |
3464 | if (__glibc_unlikely (trtable == NULL)) |
3465 | goto out_free; |
3466 | |
3467 | /* For all characters ch...: */ |
3468 | for (i = 0; i < BITSET_WORDS; ++i) |
3469 | for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; |
3470 | elem; |
3471 | mask <<= 1, elem >>= 1, ++ch) |
3472 | if (__glibc_unlikely (elem & 1)) |
3473 | { |
3474 | /* There must be exactly one destination which accepts |
3475 | character ch. See group_nodes_into_DFAstates. */ |
3476 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) |
3477 | ; |
3478 | |
3479 | /* j-th destination accepts the word character ch. */ |
3480 | trtable[ch] = dest_states[j]; |
3481 | trtable[ch + SBC_MAX] = dest_states_word[j]; |
3482 | } |
3483 | } |
3484 | |
3485 | /* new line */ |
3486 | if (bitset_contain (acceptable, NEWLINE_CHAR)) |
3487 | { |
3488 | /* The current state accepts newline character. */ |
3489 | for (j = 0; j < ndests; ++j) |
3490 | if (bitset_contain (dests_ch[j], NEWLINE_CHAR)) |
3491 | { |
3492 | /* k-th destination accepts newline character. */ |
3493 | trtable[NEWLINE_CHAR] = dest_states_nl[j]; |
3494 | if (need_word_trtable) |
3495 | trtable[NEWLINE_CHAR + SBC_MAX] = dest_states_nl[j]; |
3496 | /* There must be only one destination which accepts |
3497 | newline. See group_nodes_into_DFAstates. */ |
3498 | break; |
3499 | } |
3500 | } |
3501 | |
3502 | if (dest_states_malloced) |
3503 | re_free (dest_states); |
3504 | |
3505 | re_node_set_free (&follows); |
3506 | for (i = 0; i < ndests; ++i) |
3507 | re_node_set_free (dests_node + i); |
3508 | |
3509 | if (dests_node_malloced) |
3510 | re_free (dests_alloc); |
3511 | |
3512 | return true; |
3513 | } |
3514 | |
3515 | /* Group all nodes belonging to STATE into several destinations. |
3516 | Then for all destinations, set the nodes belonging to the destination |
3517 | to DESTS_NODE[i] and set the characters accepted by the destination |
3518 | to DEST_CH[i]. This function return the number of destinations. */ |
3519 | |
3520 | static Idx |
3521 | group_nodes_into_DFAstates (const re_dfa_t *dfa, const re_dfastate_t *state, |
3522 | re_node_set *dests_node, bitset_t *dests_ch) |
3523 | { |
3524 | reg_errcode_t err; |
3525 | bool ok; |
3526 | Idx i, j, k; |
3527 | Idx ndests; /* Number of the destinations from 'state'. */ |
3528 | bitset_t accepts; /* Characters a node can accept. */ |
3529 | const re_node_set *cur_nodes = &state->nodes; |
3530 | bitset_empty (accepts); |
3531 | ndests = 0; |
3532 | |
3533 | /* For all the nodes belonging to 'state', */ |
3534 | for (i = 0; i < cur_nodes->nelem; ++i) |
3535 | { |
3536 | re_token_t *node = &dfa->nodes[cur_nodes->elems[i]]; |
3537 | re_token_type_t type = node->type; |
3538 | unsigned int constraint = node->constraint; |
3539 | |
3540 | /* Enumerate all single byte character this node can accept. */ |
3541 | if (type == CHARACTER) |
3542 | bitset_set (accepts, node->opr.c); |
3543 | else if (type == SIMPLE_BRACKET) |
3544 | { |
3545 | bitset_merge (accepts, node->opr.sbcset); |
3546 | } |
3547 | else if (type == OP_PERIOD) |
3548 | { |
3549 | #ifdef RE_ENABLE_I18N |
3550 | if (dfa->mb_cur_max > 1) |
3551 | bitset_merge (accepts, dfa->sb_char); |
3552 | else |
3553 | #endif |
3554 | bitset_set_all (accepts); |
3555 | if (!(dfa->syntax & RE_DOT_NEWLINE)) |
3556 | bitset_clear (accepts, '\n'); |
3557 | if (dfa->syntax & RE_DOT_NOT_NULL) |
3558 | bitset_clear (accepts, '\0'); |
3559 | } |
3560 | #ifdef RE_ENABLE_I18N |
3561 | else if (type == OP_UTF8_PERIOD) |
3562 | { |
3563 | if (ASCII_CHARS % BITSET_WORD_BITS == 0) |
3564 | memset (accepts, -1, ASCII_CHARS / CHAR_BIT); |
3565 | else |
3566 | bitset_merge (accepts, utf8_sb_map); |
3567 | if (!(dfa->syntax & RE_DOT_NEWLINE)) |
3568 | bitset_clear (accepts, '\n'); |
3569 | if (dfa->syntax & RE_DOT_NOT_NULL) |
3570 | bitset_clear (accepts, '\0'); |
3571 | } |
3572 | #endif |
3573 | else |
3574 | continue; |
3575 | |
3576 | /* Check the 'accepts' and sift the characters which are not |
3577 | match it the context. */ |
3578 | if (constraint) |
3579 | { |
3580 | if (constraint & NEXT_NEWLINE_CONSTRAINT) |
3581 | { |
3582 | bool accepts_newline = bitset_contain (accepts, NEWLINE_CHAR); |
3583 | bitset_empty (accepts); |
3584 | if (accepts_newline) |
3585 | bitset_set (accepts, NEWLINE_CHAR); |
3586 | else |
3587 | continue; |
3588 | } |
3589 | if (constraint & NEXT_ENDBUF_CONSTRAINT) |
3590 | { |
3591 | bitset_empty (accepts); |
3592 | continue; |
3593 | } |
3594 | |
3595 | if (constraint & NEXT_WORD_CONSTRAINT) |
3596 | { |
3597 | bitset_word_t any_set = 0; |
3598 | if (type == CHARACTER && !node->word_char) |
3599 | { |
3600 | bitset_empty (accepts); |
3601 | continue; |
3602 | } |
3603 | #ifdef RE_ENABLE_I18N |
3604 | if (dfa->mb_cur_max > 1) |
3605 | for (j = 0; j < BITSET_WORDS; ++j) |
3606 | any_set |= (accepts[j] &= (dfa->word_char[j] | ~dfa->sb_char[j])); |
3607 | else |
3608 | #endif |
3609 | for (j = 0; j < BITSET_WORDS; ++j) |
3610 | any_set |= (accepts[j] &= dfa->word_char[j]); |
3611 | if (!any_set) |
3612 | continue; |
3613 | } |
3614 | if (constraint & NEXT_NOTWORD_CONSTRAINT) |
3615 | { |
3616 | bitset_word_t any_set = 0; |
3617 | if (type == CHARACTER && node->word_char) |
3618 | { |
3619 | bitset_empty (accepts); |
3620 | continue; |
3621 | } |
3622 | #ifdef RE_ENABLE_I18N |
3623 | if (dfa->mb_cur_max > 1) |
3624 | for (j = 0; j < BITSET_WORDS; ++j) |
3625 | any_set |= (accepts[j] &= ~(dfa->word_char[j] & dfa->sb_char[j])); |
3626 | else |
3627 | #endif |
3628 | for (j = 0; j < BITSET_WORDS; ++j) |
3629 | any_set |= (accepts[j] &= ~dfa->word_char[j]); |
3630 | if (!any_set) |
3631 | continue; |
3632 | } |
3633 | } |
3634 | |
3635 | /* Then divide 'accepts' into DFA states, or create a new |
3636 | state. Above, we make sure that accepts is not empty. */ |
3637 | for (j = 0; j < ndests; ++j) |
3638 | { |
3639 | bitset_t intersec; /* Intersection sets, see below. */ |
3640 | bitset_t remains; |
3641 | /* Flags, see below. */ |
3642 | bitset_word_t has_intersec, not_subset, not_consumed; |
3643 | |
3644 | /* Optimization, skip if this state doesn't accept the character. */ |
3645 | if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c)) |
3646 | continue; |
3647 | |
3648 | /* Enumerate the intersection set of this state and 'accepts'. */ |
3649 | has_intersec = 0; |
3650 | for (k = 0; k < BITSET_WORDS; ++k) |
3651 | has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k]; |
3652 | /* And skip if the intersection set is empty. */ |
3653 | if (!has_intersec) |
3654 | continue; |
3655 | |
3656 | /* Then check if this state is a subset of 'accepts'. */ |
3657 | not_subset = not_consumed = 0; |
3658 | for (k = 0; k < BITSET_WORDS; ++k) |
3659 | { |
3660 | not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k]; |
3661 | not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k]; |
3662 | } |
3663 | |
3664 | /* If this state isn't a subset of 'accepts', create a |
3665 | new group state, which has the 'remains'. */ |
3666 | if (not_subset) |
3667 | { |
3668 | bitset_copy (dests_ch[ndests], remains); |
3669 | bitset_copy (dests_ch[j], intersec); |
3670 | err = re_node_set_init_copy (dests_node + ndests, &dests_node[j]); |
3671 | if (__glibc_unlikely (err != REG_NOERROR)) |
3672 | goto error_return; |
3673 | ++ndests; |
3674 | } |
3675 | |
3676 | /* Put the position in the current group. */ |
3677 | ok = re_node_set_insert (&dests_node[j], cur_nodes->elems[i]); |
3678 | if (__glibc_unlikely (! ok)) |
3679 | goto error_return; |
3680 | |
3681 | /* If all characters are consumed, go to next node. */ |
3682 | if (!not_consumed) |
3683 | break; |
3684 | } |
3685 | /* Some characters remain, create a new group. */ |
3686 | if (j == ndests) |
3687 | { |
3688 | bitset_copy (dests_ch[ndests], accepts); |
3689 | err = re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]); |
3690 | if (__glibc_unlikely (err != REG_NOERROR)) |
3691 | goto error_return; |
3692 | ++ndests; |
3693 | bitset_empty (accepts); |
3694 | } |
3695 | } |
3696 | return ndests; |
3697 | error_return: |
3698 | for (j = 0; j < ndests; ++j) |
3699 | re_node_set_free (dests_node + j); |
3700 | return -1; |
3701 | } |
3702 | |
3703 | #ifdef RE_ENABLE_I18N |
3704 | /* Check how many bytes the node 'dfa->nodes[node_idx]' accepts. |
3705 | Return the number of the bytes the node accepts. |
3706 | STR_IDX is the current index of the input string. |
3707 | |
3708 | This function handles the nodes which can accept one character, or |
3709 | one collating element like '.', '[a-z]', opposite to the other nodes |
3710 | can only accept one byte. */ |
3711 | |
3712 | # ifdef _LIBC |
3713 | # include <locale/weight.h> |
3714 | # endif |
3715 | |
3716 | static int |
3717 | check_node_accept_bytes (const re_dfa_t *dfa, Idx node_idx, |
3718 | const re_string_t *input, Idx str_idx) |
3719 | { |
3720 | const re_token_t *node = dfa->nodes + node_idx; |
3721 | int char_len, elem_len; |
3722 | Idx i; |
3723 | |
3724 | if (__glibc_unlikely (node->type == OP_UTF8_PERIOD)) |
3725 | { |
3726 | unsigned char c = re_string_byte_at (input, str_idx), d; |
3727 | if (__glibc_likely (c < 0xc2)) |
3728 | return 0; |
3729 | |
3730 | if (str_idx + 2 > input->len) |
3731 | return 0; |
3732 | |
3733 | d = re_string_byte_at (input, str_idx + 1); |
3734 | if (c < 0xe0) |
3735 | return (d < 0x80 || d > 0xbf) ? 0 : 2; |
3736 | else if (c < 0xf0) |
3737 | { |
3738 | char_len = 3; |
3739 | if (c == 0xe0 && d < 0xa0) |
3740 | return 0; |
3741 | } |
3742 | else if (c < 0xf8) |
3743 | { |
3744 | char_len = 4; |
3745 | if (c == 0xf0 && d < 0x90) |
3746 | return 0; |
3747 | } |
3748 | else if (c < 0xfc) |
3749 | { |
3750 | char_len = 5; |
3751 | if (c == 0xf8 && d < 0x88) |
3752 | return 0; |
3753 | } |
3754 | else if (c < 0xfe) |
3755 | { |
3756 | char_len = 6; |
3757 | if (c == 0xfc && d < 0x84) |
3758 | return 0; |
3759 | } |
3760 | else |
3761 | return 0; |
3762 | |
3763 | if (str_idx + char_len > input->len) |
3764 | return 0; |
3765 | |
3766 | for (i = 1; i < char_len; ++i) |
3767 | { |
3768 | d = re_string_byte_at (input, str_idx + i); |
3769 | if (d < 0x80 || d > 0xbf) |
3770 | return 0; |
3771 | } |
3772 | return char_len; |
3773 | } |
3774 | |
3775 | char_len = re_string_char_size_at (input, str_idx); |
3776 | if (node->type == OP_PERIOD) |
3777 | { |
3778 | if (char_len <= 1) |
3779 | return 0; |
3780 | /* FIXME: I don't think this if is needed, as both '\n' |
3781 | and '\0' are char_len == 1. */ |
3782 | /* '.' accepts any one character except the following two cases. */ |
3783 | if ((!(dfa->syntax & RE_DOT_NEWLINE) && |
3784 | re_string_byte_at (input, str_idx) == '\n') || |
3785 | ((dfa->syntax & RE_DOT_NOT_NULL) && |
3786 | re_string_byte_at (input, str_idx) == '\0')) |
3787 | return 0; |
3788 | return char_len; |
3789 | } |
3790 | |
3791 | elem_len = re_string_elem_size_at (input, str_idx); |
3792 | if ((elem_len <= 1 && char_len <= 1) || char_len == 0) |
3793 | return 0; |
3794 | |
3795 | if (node->type == COMPLEX_BRACKET) |
3796 | { |
3797 | const re_charset_t *cset = node->opr.mbcset; |
3798 | # ifdef _LIBC |
3799 | const unsigned char *pin |
3800 | = ((const unsigned char *) re_string_get_buffer (input) + str_idx); |
3801 | Idx j; |
3802 | uint32_t nrules; |
3803 | # endif /* _LIBC */ |
3804 | int match_len = 0; |
3805 | wchar_t wc = ((cset->nranges || cset->nchar_classes || cset->nmbchars) |
3806 | ? re_string_wchar_at (input, str_idx) : 0); |
3807 | |
3808 | /* match with multibyte character? */ |
3809 | for (i = 0; i < cset->nmbchars; ++i) |
3810 | if (wc == cset->mbchars[i]) |
3811 | { |
3812 | match_len = char_len; |
3813 | goto check_node_accept_bytes_match; |
3814 | } |
3815 | /* match with character_class? */ |
3816 | for (i = 0; i < cset->nchar_classes; ++i) |
3817 | { |
3818 | wctype_t wt = cset->char_classes[i]; |
3819 | if (__iswctype (wc, wt)) |
3820 | { |
3821 | match_len = char_len; |
3822 | goto check_node_accept_bytes_match; |
3823 | } |
3824 | } |
3825 | |
3826 | # ifdef _LIBC |
3827 | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
3828 | if (nrules != 0) |
3829 | { |
3830 | unsigned int in_collseq = 0; |
3831 | const int32_t *table, *indirect; |
3832 | const unsigned char *weights, *; |
3833 | const char *collseqwc; |
3834 | |
3835 | /* match with collating_symbol? */ |
3836 | if (cset->ncoll_syms) |
3837 | extra = (const unsigned char *) |
3838 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); |
3839 | for (i = 0; i < cset->ncoll_syms; ++i) |
3840 | { |
3841 | const unsigned char *coll_sym = extra + cset->coll_syms[i]; |
3842 | /* Compare the length of input collating element and |
3843 | the length of current collating element. */ |
3844 | if (*coll_sym != elem_len) |
3845 | continue; |
3846 | /* Compare each bytes. */ |
3847 | for (j = 0; j < *coll_sym; j++) |
3848 | if (pin[j] != coll_sym[1 + j]) |
3849 | break; |
3850 | if (j == *coll_sym) |
3851 | { |
3852 | /* Match if every bytes is equal. */ |
3853 | match_len = j; |
3854 | goto check_node_accept_bytes_match; |
3855 | } |
3856 | } |
3857 | |
3858 | if (cset->nranges) |
3859 | { |
3860 | if (elem_len <= char_len) |
3861 | { |
3862 | collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); |
3863 | in_collseq = __collseq_table_lookup (collseqwc, wc); |
3864 | } |
3865 | else |
3866 | in_collseq = find_collation_sequence_value (pin, elem_len); |
3867 | } |
3868 | /* match with range expression? */ |
3869 | /* FIXME: Implement rational ranges here, too. */ |
3870 | for (i = 0; i < cset->nranges; ++i) |
3871 | if (cset->range_starts[i] <= in_collseq |
3872 | && in_collseq <= cset->range_ends[i]) |
3873 | { |
3874 | match_len = elem_len; |
3875 | goto check_node_accept_bytes_match; |
3876 | } |
3877 | |
3878 | /* match with equivalence_class? */ |
3879 | if (cset->nequiv_classes) |
3880 | { |
3881 | const unsigned char *cp = pin; |
3882 | table = (const int32_t *) |
3883 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); |
3884 | weights = (const unsigned char *) |
3885 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB); |
3886 | extra = (const unsigned char *) |
3887 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB); |
3888 | indirect = (const int32_t *) |
3889 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB); |
3890 | int32_t idx = findidx (table, indirect, extra, &cp, elem_len); |
3891 | int32_t rule = idx >> 24; |
3892 | idx &= 0xffffff; |
3893 | if (idx > 0) |
3894 | { |
3895 | size_t weight_len = weights[idx]; |
3896 | for (i = 0; i < cset->nequiv_classes; ++i) |
3897 | { |
3898 | int32_t equiv_class_idx = cset->equiv_classes[i]; |
3899 | int32_t equiv_class_rule = equiv_class_idx >> 24; |
3900 | equiv_class_idx &= 0xffffff; |
3901 | if (weights[equiv_class_idx] == weight_len |
3902 | && equiv_class_rule == rule |
3903 | && memcmp (weights + idx + 1, |
3904 | weights + equiv_class_idx + 1, |
3905 | weight_len) == 0) |
3906 | { |
3907 | match_len = elem_len; |
3908 | goto check_node_accept_bytes_match; |
3909 | } |
3910 | } |
3911 | } |
3912 | } |
3913 | } |
3914 | else |
3915 | # endif /* _LIBC */ |
3916 | { |
3917 | /* match with range expression? */ |
3918 | for (i = 0; i < cset->nranges; ++i) |
3919 | { |
3920 | if (cset->range_starts[i] <= wc && wc <= cset->range_ends[i]) |
3921 | { |
3922 | match_len = char_len; |
3923 | goto check_node_accept_bytes_match; |
3924 | } |
3925 | } |
3926 | } |
3927 | check_node_accept_bytes_match: |
3928 | if (!cset->non_match) |
3929 | return match_len; |
3930 | else |
3931 | { |
3932 | if (match_len > 0) |
3933 | return 0; |
3934 | else |
3935 | return (elem_len > char_len) ? elem_len : char_len; |
3936 | } |
3937 | } |
3938 | return 0; |
3939 | } |
3940 | |
3941 | # ifdef _LIBC |
3942 | static unsigned int |
3943 | find_collation_sequence_value (const unsigned char *mbs, size_t mbs_len) |
3944 | { |
3945 | uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
3946 | if (nrules == 0) |
3947 | { |
3948 | if (mbs_len == 1) |
3949 | { |
3950 | /* No valid character. Match it as a single byte character. */ |
3951 | const unsigned char *collseq = (const unsigned char *) |
3952 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); |
3953 | return collseq[mbs[0]]; |
3954 | } |
3955 | return UINT_MAX; |
3956 | } |
3957 | else |
3958 | { |
3959 | int32_t idx; |
3960 | const unsigned char * = (const unsigned char *) |
3961 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); |
3962 | int32_t = (const unsigned char *) |
3963 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB + 1) - extra; |
3964 | |
3965 | for (idx = 0; idx < extrasize;) |
3966 | { |
3967 | int mbs_cnt; |
3968 | bool found = false; |
3969 | int32_t elem_mbs_len; |
3970 | /* Skip the name of collating element name. */ |
3971 | idx = idx + extra[idx] + 1; |
3972 | elem_mbs_len = extra[idx++]; |
3973 | if (mbs_len == elem_mbs_len) |
3974 | { |
3975 | for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt) |
3976 | if (extra[idx + mbs_cnt] != mbs[mbs_cnt]) |
3977 | break; |
3978 | if (mbs_cnt == elem_mbs_len) |
3979 | /* Found the entry. */ |
3980 | found = true; |
3981 | } |
3982 | /* Skip the byte sequence of the collating element. */ |
3983 | idx += elem_mbs_len; |
3984 | /* Adjust for the alignment. */ |
3985 | idx = (idx + 3) & ~3; |
3986 | /* Skip the collation sequence value. */ |
3987 | idx += sizeof (uint32_t); |
3988 | /* Skip the wide char sequence of the collating element. */ |
3989 | idx = idx + sizeof (uint32_t) * (*(int32_t *) (extra + idx) + 1); |
3990 | /* If we found the entry, return the sequence value. */ |
3991 | if (found) |
3992 | return *(uint32_t *) (extra + idx); |
3993 | /* Skip the collation sequence value. */ |
3994 | idx += sizeof (uint32_t); |
3995 | } |
3996 | return UINT_MAX; |
3997 | } |
3998 | } |
3999 | # endif /* _LIBC */ |
4000 | #endif /* RE_ENABLE_I18N */ |
4001 | |
4002 | /* Check whether the node accepts the byte which is IDX-th |
4003 | byte of the INPUT. */ |
4004 | |
4005 | static bool |
4006 | check_node_accept (const re_match_context_t *mctx, const re_token_t *node, |
4007 | Idx idx) |
4008 | { |
4009 | unsigned char ch; |
4010 | ch = re_string_byte_at (&mctx->input, idx); |
4011 | switch (node->type) |
4012 | { |
4013 | case CHARACTER: |
4014 | if (node->opr.c != ch) |
4015 | return false; |
4016 | break; |
4017 | |
4018 | case SIMPLE_BRACKET: |
4019 | if (!bitset_contain (node->opr.sbcset, ch)) |
4020 | return false; |
4021 | break; |
4022 | |
4023 | #ifdef RE_ENABLE_I18N |
4024 | case OP_UTF8_PERIOD: |
4025 | if (ch >= ASCII_CHARS) |
4026 | return false; |
4027 | FALLTHROUGH; |
4028 | #endif |
4029 | case OP_PERIOD: |
4030 | if ((ch == '\n' && !(mctx->dfa->syntax & RE_DOT_NEWLINE)) |
4031 | || (ch == '\0' && (mctx->dfa->syntax & RE_DOT_NOT_NULL))) |
4032 | return false; |
4033 | break; |
4034 | |
4035 | default: |
4036 | return false; |
4037 | } |
4038 | |
4039 | if (node->constraint) |
4040 | { |
4041 | /* The node has constraints. Check whether the current context |
4042 | satisfies the constraints. */ |
4043 | unsigned int context = re_string_context_at (&mctx->input, idx, |
4044 | mctx->eflags); |
4045 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) |
4046 | return false; |
4047 | } |
4048 | |
4049 | return true; |
4050 | } |
4051 | |
4052 | /* Extend the buffers, if the buffers have run out. */ |
4053 | |
4054 | static reg_errcode_t |
4055 | __attribute_warn_unused_result__ |
4056 | extend_buffers (re_match_context_t *mctx, int min_len) |
4057 | { |
4058 | reg_errcode_t ret; |
4059 | re_string_t *pstr = &mctx->input; |
4060 | |
4061 | /* Avoid overflow. */ |
4062 | if (__glibc_unlikely (MIN (IDX_MAX, SIZE_MAX / sizeof (re_dfastate_t *)) / 2 |
4063 | <= pstr->bufs_len)) |
4064 | return REG_ESPACE; |
4065 | |
4066 | /* Double the lengths of the buffers, but allocate at least MIN_LEN. */ |
4067 | ret = re_string_realloc_buffers (pstr, |
4068 | MAX (min_len, |
4069 | MIN (pstr->len, pstr->bufs_len * 2))); |
4070 | if (__glibc_unlikely (ret != REG_NOERROR)) |
4071 | return ret; |
4072 | |
4073 | if (mctx->state_log != NULL) |
4074 | { |
4075 | /* And double the length of state_log. */ |
4076 | /* XXX We have no indication of the size of this buffer. If this |
4077 | allocation fail we have no indication that the state_log array |
4078 | does not have the right size. */ |
4079 | re_dfastate_t **new_array = re_realloc (mctx->state_log, re_dfastate_t *, |
4080 | pstr->bufs_len + 1); |
4081 | if (__glibc_unlikely (new_array == NULL)) |
4082 | return REG_ESPACE; |
4083 | mctx->state_log = new_array; |
4084 | } |
4085 | |
4086 | /* Then reconstruct the buffers. */ |
4087 | if (pstr->icase) |
4088 | { |
4089 | #ifdef RE_ENABLE_I18N |
4090 | if (pstr->mb_cur_max > 1) |
4091 | { |
4092 | ret = build_wcs_upper_buffer (pstr); |
4093 | if (__glibc_unlikely (ret != REG_NOERROR)) |
4094 | return ret; |
4095 | } |
4096 | else |
4097 | #endif /* RE_ENABLE_I18N */ |
4098 | build_upper_buffer (pstr); |
4099 | } |
4100 | else |
4101 | { |
4102 | #ifdef RE_ENABLE_I18N |
4103 | if (pstr->mb_cur_max > 1) |
4104 | build_wcs_buffer (pstr); |
4105 | else |
4106 | #endif /* RE_ENABLE_I18N */ |
4107 | { |
4108 | if (pstr->trans != NULL) |
4109 | re_string_translate_buffer (pstr); |
4110 | } |
4111 | } |
4112 | return REG_NOERROR; |
4113 | } |
4114 | |
4115 | |
4116 | /* Functions for matching context. */ |
4117 | |
4118 | /* Initialize MCTX. */ |
4119 | |
4120 | static reg_errcode_t |
4121 | __attribute_warn_unused_result__ |
4122 | match_ctx_init (re_match_context_t *mctx, int eflags, Idx n) |
4123 | { |
4124 | mctx->eflags = eflags; |
4125 | mctx->match_last = -1; |
4126 | if (n > 0) |
4127 | { |
4128 | /* Avoid overflow. */ |
4129 | size_t max_object_size = |
4130 | MAX (sizeof (struct re_backref_cache_entry), |
4131 | sizeof (re_sub_match_top_t *)); |
4132 | if (__glibc_unlikely (MIN (IDX_MAX, SIZE_MAX / max_object_size) < n)) |
4133 | return REG_ESPACE; |
4134 | |
4135 | mctx->bkref_ents = re_malloc (struct re_backref_cache_entry, n); |
4136 | mctx->sub_tops = re_malloc (re_sub_match_top_t *, n); |
4137 | if (__glibc_unlikely (mctx->bkref_ents == NULL || mctx->sub_tops == NULL)) |
4138 | return REG_ESPACE; |
4139 | } |
4140 | /* Already zero-ed by the caller. |
4141 | else |
4142 | mctx->bkref_ents = NULL; |
4143 | mctx->nbkref_ents = 0; |
4144 | mctx->nsub_tops = 0; */ |
4145 | mctx->abkref_ents = n; |
4146 | mctx->max_mb_elem_len = 1; |
4147 | mctx->asub_tops = n; |
4148 | return REG_NOERROR; |
4149 | } |
4150 | |
4151 | /* Clean the entries which depend on the current input in MCTX. |
4152 | This function must be invoked when the matcher changes the start index |
4153 | of the input, or changes the input string. */ |
4154 | |
4155 | static void |
4156 | match_ctx_clean (re_match_context_t *mctx) |
4157 | { |
4158 | Idx st_idx; |
4159 | for (st_idx = 0; st_idx < mctx->nsub_tops; ++st_idx) |
4160 | { |
4161 | Idx sl_idx; |
4162 | re_sub_match_top_t *top = mctx->sub_tops[st_idx]; |
4163 | for (sl_idx = 0; sl_idx < top->nlasts; ++sl_idx) |
4164 | { |
4165 | re_sub_match_last_t *last = top->lasts[sl_idx]; |
4166 | re_free (last->path.array); |
4167 | re_free (last); |
4168 | } |
4169 | re_free (top->lasts); |
4170 | if (top->path) |
4171 | { |
4172 | re_free (top->path->array); |
4173 | re_free (top->path); |
4174 | } |
4175 | re_free (top); |
4176 | } |
4177 | |
4178 | mctx->nsub_tops = 0; |
4179 | mctx->nbkref_ents = 0; |
4180 | } |
4181 | |
4182 | /* Free all the memory associated with MCTX. */ |
4183 | |
4184 | static void |
4185 | match_ctx_free (re_match_context_t *mctx) |
4186 | { |
4187 | /* First, free all the memory associated with MCTX->SUB_TOPS. */ |
4188 | match_ctx_clean (mctx); |
4189 | re_free (mctx->sub_tops); |
4190 | re_free (mctx->bkref_ents); |
4191 | } |
4192 | |
4193 | /* Add a new backreference entry to MCTX. |
4194 | Note that we assume that caller never call this function with duplicate |
4195 | entry, and call with STR_IDX which isn't smaller than any existing entry. |
4196 | */ |
4197 | |
4198 | static reg_errcode_t |
4199 | __attribute_warn_unused_result__ |
4200 | match_ctx_add_entry (re_match_context_t *mctx, Idx node, Idx str_idx, Idx from, |
4201 | Idx to) |
4202 | { |
4203 | if (mctx->nbkref_ents >= mctx->abkref_ents) |
4204 | { |
4205 | struct re_backref_cache_entry* new_entry; |
4206 | new_entry = re_realloc (mctx->bkref_ents, struct re_backref_cache_entry, |
4207 | mctx->abkref_ents * 2); |
4208 | if (__glibc_unlikely (new_entry == NULL)) |
4209 | { |
4210 | re_free (mctx->bkref_ents); |
4211 | return REG_ESPACE; |
4212 | } |
4213 | mctx->bkref_ents = new_entry; |
4214 | memset (mctx->bkref_ents + mctx->nbkref_ents, '\0', |
4215 | sizeof (struct re_backref_cache_entry) * mctx->abkref_ents); |
4216 | mctx->abkref_ents *= 2; |
4217 | } |
4218 | if (mctx->nbkref_ents > 0 |
4219 | && mctx->bkref_ents[mctx->nbkref_ents - 1].str_idx == str_idx) |
4220 | mctx->bkref_ents[mctx->nbkref_ents - 1].more = 1; |
4221 | |
4222 | mctx->bkref_ents[mctx->nbkref_ents].node = node; |
4223 | mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx; |
4224 | mctx->bkref_ents[mctx->nbkref_ents].subexp_from = from; |
4225 | mctx->bkref_ents[mctx->nbkref_ents].subexp_to = to; |
4226 | |
4227 | /* This is a cache that saves negative results of check_dst_limits_calc_pos. |
4228 | If bit N is clear, means that this entry won't epsilon-transition to |
4229 | an OP_OPEN_SUBEXP or OP_CLOSE_SUBEXP for the N+1-th subexpression. If |
4230 | it is set, check_dst_limits_calc_pos_1 will recurse and try to find one |
4231 | such node. |
4232 | |
4233 | A backreference does not epsilon-transition unless it is empty, so set |
4234 | to all zeros if FROM != TO. */ |
4235 | mctx->bkref_ents[mctx->nbkref_ents].eps_reachable_subexps_map |
4236 | = (from == to ? -1 : 0); |
4237 | |
4238 | mctx->bkref_ents[mctx->nbkref_ents++].more = 0; |
4239 | if (mctx->max_mb_elem_len < to - from) |
4240 | mctx->max_mb_elem_len = to - from; |
4241 | return REG_NOERROR; |
4242 | } |
4243 | |
4244 | /* Return the first entry with the same str_idx, or -1 if none is |
4245 | found. Note that MCTX->BKREF_ENTS is already sorted by MCTX->STR_IDX. */ |
4246 | |
4247 | static Idx |
4248 | search_cur_bkref_entry (const re_match_context_t *mctx, Idx str_idx) |
4249 | { |
4250 | Idx left, right, mid, last; |
4251 | last = right = mctx->nbkref_ents; |
4252 | for (left = 0; left < right;) |
4253 | { |
4254 | mid = (left + right) / 2; |
4255 | if (mctx->bkref_ents[mid].str_idx < str_idx) |
4256 | left = mid + 1; |
4257 | else |
4258 | right = mid; |
4259 | } |
4260 | if (left < last && mctx->bkref_ents[left].str_idx == str_idx) |
4261 | return left; |
4262 | else |
4263 | return -1; |
4264 | } |
4265 | |
4266 | /* Register the node NODE, whose type is OP_OPEN_SUBEXP, and which matches |
4267 | at STR_IDX. */ |
4268 | |
4269 | static reg_errcode_t |
4270 | __attribute_warn_unused_result__ |
4271 | match_ctx_add_subtop (re_match_context_t *mctx, Idx node, Idx str_idx) |
4272 | { |
4273 | #ifdef DEBUG |
4274 | assert (mctx->sub_tops != NULL); |
4275 | assert (mctx->asub_tops > 0); |
4276 | #endif |
4277 | if (__glibc_unlikely (mctx->nsub_tops == mctx->asub_tops)) |
4278 | { |
4279 | Idx new_asub_tops = mctx->asub_tops * 2; |
4280 | re_sub_match_top_t **new_array = re_realloc (mctx->sub_tops, |
4281 | re_sub_match_top_t *, |
4282 | new_asub_tops); |
4283 | if (__glibc_unlikely (new_array == NULL)) |
4284 | return REG_ESPACE; |
4285 | mctx->sub_tops = new_array; |
4286 | mctx->asub_tops = new_asub_tops; |
4287 | } |
4288 | mctx->sub_tops[mctx->nsub_tops] = calloc (1, sizeof (re_sub_match_top_t)); |
4289 | if (__glibc_unlikely (mctx->sub_tops[mctx->nsub_tops] == NULL)) |
4290 | return REG_ESPACE; |
4291 | mctx->sub_tops[mctx->nsub_tops]->node = node; |
4292 | mctx->sub_tops[mctx->nsub_tops++]->str_idx = str_idx; |
4293 | return REG_NOERROR; |
4294 | } |
4295 | |
4296 | /* Register the node NODE, whose type is OP_CLOSE_SUBEXP, and which matches |
4297 | at STR_IDX, whose corresponding OP_OPEN_SUBEXP is SUB_TOP. */ |
4298 | |
4299 | static re_sub_match_last_t * |
4300 | match_ctx_add_sublast (re_sub_match_top_t *subtop, Idx node, Idx str_idx) |
4301 | { |
4302 | re_sub_match_last_t *new_entry; |
4303 | if (__glibc_unlikely (subtop->nlasts == subtop->alasts)) |
4304 | { |
4305 | Idx new_alasts = 2 * subtop->alasts + 1; |
4306 | re_sub_match_last_t **new_array = re_realloc (subtop->lasts, |
4307 | re_sub_match_last_t *, |
4308 | new_alasts); |
4309 | if (__glibc_unlikely (new_array == NULL)) |
4310 | return NULL; |
4311 | subtop->lasts = new_array; |
4312 | subtop->alasts = new_alasts; |
4313 | } |
4314 | new_entry = calloc (1, sizeof (re_sub_match_last_t)); |
4315 | if (__glibc_likely (new_entry != NULL)) |
4316 | { |
4317 | subtop->lasts[subtop->nlasts] = new_entry; |
4318 | new_entry->node = node; |
4319 | new_entry->str_idx = str_idx; |
4320 | ++subtop->nlasts; |
4321 | } |
4322 | return new_entry; |
4323 | } |
4324 | |
4325 | static void |
4326 | sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, |
4327 | re_dfastate_t **limited_sts, Idx last_node, Idx last_str_idx) |
4328 | { |
4329 | sctx->sifted_states = sifted_sts; |
4330 | sctx->limited_states = limited_sts; |
4331 | sctx->last_node = last_node; |
4332 | sctx->last_str_idx = last_str_idx; |
4333 | re_node_set_init_empty (&sctx->limits); |
4334 | } |
4335 | |