1 | /* Single-precision pow function. |
2 | Copyright (C) 2017-2018 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <http://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <math.h> |
20 | #include <stdint.h> |
21 | #include <shlib-compat.h> |
22 | #include <libm-alias-float.h> |
23 | #include "math_config.h" |
24 | |
25 | /* |
26 | POWF_LOG2_POLY_ORDER = 5 |
27 | EXP2F_TABLE_BITS = 5 |
28 | |
29 | ULP error: 0.82 (~ 0.5 + relerr*2^24) |
30 | relerr: 1.27 * 2^-26 (Relative error ~= 128*Ln2*relerr_log2 + relerr_exp2) |
31 | relerr_log2: 1.83 * 2^-33 (Relative error of logx.) |
32 | relerr_exp2: 1.69 * 2^-34 (Relative error of exp2(ylogx).) |
33 | */ |
34 | |
35 | #define N (1 << POWF_LOG2_TABLE_BITS) |
36 | #define T __powf_log2_data.tab |
37 | #define A __powf_log2_data.poly |
38 | #define OFF 0x3f330000 |
39 | |
40 | /* Subnormal input is normalized so ix has negative biased exponent. |
41 | Output is multiplied by N (POWF_SCALE) if TOINT_INTRINICS is set. */ |
42 | static inline double_t |
43 | log2_inline (uint32_t ix) |
44 | { |
45 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ |
46 | double_t z, r, r2, r4, p, q, y, y0, invc, logc; |
47 | uint32_t iz, top, tmp; |
48 | int k, i; |
49 | |
50 | /* x = 2^k z; where z is in range [OFF,2*OFF] and exact. |
51 | The range is split into N subintervals. |
52 | The ith subinterval contains z and c is near its center. */ |
53 | tmp = ix - OFF; |
54 | i = (tmp >> (23 - POWF_LOG2_TABLE_BITS)) % N; |
55 | top = tmp & 0xff800000; |
56 | iz = ix - top; |
57 | k = (int32_t) top >> (23 - POWF_SCALE_BITS); /* arithmetic shift */ |
58 | invc = T[i].invc; |
59 | logc = T[i].logc; |
60 | z = (double_t) asfloat (iz); |
61 | |
62 | /* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */ |
63 | r = z * invc - 1; |
64 | y0 = logc + (double_t) k; |
65 | |
66 | /* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */ |
67 | r2 = r * r; |
68 | y = A[0] * r + A[1]; |
69 | p = A[2] * r + A[3]; |
70 | r4 = r2 * r2; |
71 | q = A[4] * r + y0; |
72 | q = p * r2 + q; |
73 | y = y * r4 + q; |
74 | return y; |
75 | } |
76 | |
77 | #undef N |
78 | #undef T |
79 | #define N (1 << EXP2F_TABLE_BITS) |
80 | #define T __exp2f_data.tab |
81 | #define SIGN_BIAS (1 << (EXP2F_TABLE_BITS + 11)) |
82 | |
83 | /* The output of log2 and thus the input of exp2 is either scaled by N |
84 | (in case of fast toint intrinsics) or not. The unscaled xd must be |
85 | in [-1021,1023], sign_bias sets the sign of the result. */ |
86 | static inline double_t |
87 | exp2_inline (double_t xd, uint32_t sign_bias) |
88 | { |
89 | uint64_t ki, ski, t; |
90 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ |
91 | double_t kd, z, r, r2, y, s; |
92 | |
93 | #if TOINT_INTRINSICS |
94 | # define C __exp2f_data.poly_scaled |
95 | /* N*x = k + r with r in [-1/2, 1/2] */ |
96 | kd = roundtoint (xd); /* k */ |
97 | ki = converttoint (xd); |
98 | #else |
99 | # define C __exp2f_data.poly |
100 | # define SHIFT __exp2f_data.shift_scaled |
101 | /* x = k/N + r with r in [-1/(2N), 1/(2N)] */ |
102 | kd = (double) (xd + SHIFT); /* Rounding to double precision is required. */ |
103 | ki = asuint64 (kd); |
104 | kd -= SHIFT; /* k/N */ |
105 | #endif |
106 | r = xd - kd; |
107 | |
108 | /* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */ |
109 | t = T[ki % N]; |
110 | ski = ki + sign_bias; |
111 | t += ski << (52 - EXP2F_TABLE_BITS); |
112 | s = asdouble (t); |
113 | z = C[0] * r + C[1]; |
114 | r2 = r * r; |
115 | y = C[2] * r + 1; |
116 | y = z * r2 + y; |
117 | y = y * s; |
118 | return y; |
119 | } |
120 | |
121 | /* Returns 0 if not int, 1 if odd int, 2 if even int. */ |
122 | static inline int |
123 | checkint (uint32_t iy) |
124 | { |
125 | int e = iy >> 23 & 0xff; |
126 | if (e < 0x7f) |
127 | return 0; |
128 | if (e > 0x7f + 23) |
129 | return 2; |
130 | if (iy & ((1 << (0x7f + 23 - e)) - 1)) |
131 | return 0; |
132 | if (iy & (1 << (0x7f + 23 - e))) |
133 | return 1; |
134 | return 2; |
135 | } |
136 | |
137 | static inline int |
138 | zeroinfnan (uint32_t ix) |
139 | { |
140 | return 2 * ix - 1 >= 2u * 0x7f800000 - 1; |
141 | } |
142 | |
143 | float |
144 | __powf (float x, float y) |
145 | { |
146 | uint32_t sign_bias = 0; |
147 | uint32_t ix, iy; |
148 | |
149 | ix = asuint (x); |
150 | iy = asuint (y); |
151 | if (__glibc_unlikely (ix - 0x00800000 >= 0x7f800000 - 0x00800000 |
152 | || zeroinfnan (iy))) |
153 | { |
154 | /* Either (x < 0x1p-126 or inf or nan) or (y is 0 or inf or nan). */ |
155 | if (__glibc_unlikely (zeroinfnan (iy))) |
156 | { |
157 | if (2 * iy == 0) |
158 | return issignalingf_inline (x) ? x + y : 1.0f; |
159 | if (ix == 0x3f800000) |
160 | return issignalingf_inline (y) ? x + y : 1.0f; |
161 | if (2 * ix > 2u * 0x7f800000 || 2 * iy > 2u * 0x7f800000) |
162 | return x + y; |
163 | if (2 * ix == 2 * 0x3f800000) |
164 | return 1.0f; |
165 | if ((2 * ix < 2 * 0x3f800000) == !(iy & 0x80000000)) |
166 | return 0.0f; /* |x|<1 && y==inf or |x|>1 && y==-inf. */ |
167 | return y * y; |
168 | } |
169 | if (__glibc_unlikely (zeroinfnan (ix))) |
170 | { |
171 | float_t x2 = x * x; |
172 | if (ix & 0x80000000 && checkint (iy) == 1) |
173 | { |
174 | x2 = -x2; |
175 | sign_bias = 1; |
176 | } |
177 | #if WANT_ERRNO |
178 | if (2 * ix == 0 && iy & 0x80000000) |
179 | return __math_divzerof (sign_bias); |
180 | #endif |
181 | return iy & 0x80000000 ? 1 / x2 : x2; |
182 | } |
183 | /* x and y are non-zero finite. */ |
184 | if (ix & 0x80000000) |
185 | { |
186 | /* Finite x < 0. */ |
187 | int yint = checkint (iy); |
188 | if (yint == 0) |
189 | return __math_invalidf (x); |
190 | if (yint == 1) |
191 | sign_bias = SIGN_BIAS; |
192 | ix &= 0x7fffffff; |
193 | } |
194 | if (ix < 0x00800000) |
195 | { |
196 | /* Normalize subnormal x so exponent becomes negative. */ |
197 | ix = asuint (x * 0x1p23f); |
198 | ix &= 0x7fffffff; |
199 | ix -= 23 << 23; |
200 | } |
201 | } |
202 | double_t logx = log2_inline (ix); |
203 | double_t ylogx = y * logx; /* Note: cannot overflow, y is single prec. */ |
204 | if (__glibc_unlikely ((asuint64 (ylogx) >> 47 & 0xffff) |
205 | >= asuint64 (126.0 * POWF_SCALE) >> 47)) |
206 | { |
207 | /* |y*log(x)| >= 126. */ |
208 | if (ylogx > 0x1.fffffffd1d571p+6 * POWF_SCALE) |
209 | return __math_oflowf (sign_bias); |
210 | if (ylogx <= -150.0 * POWF_SCALE) |
211 | return __math_uflowf (sign_bias); |
212 | #if WANT_ERRNO_UFLOW |
213 | if (ylogx < -149.0 * POWF_SCALE) |
214 | return __math_may_uflowf (sign_bias); |
215 | #endif |
216 | } |
217 | return (float) exp2_inline (ylogx, sign_bias); |
218 | } |
219 | #ifndef __powf |
220 | strong_alias (__powf, __ieee754_powf) |
221 | strong_alias (__powf, __powf_finite) |
222 | versioned_symbol (libm, __powf, powf, GLIBC_2_27); |
223 | libm_alias_float_other (__pow, pow) |
224 | #endif |
225 | |