1 | /* e_lgammaf_r.c -- float version of e_lgamma_r.c. |
2 | * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
3 | */ |
4 | |
5 | /* |
6 | * ==================================================== |
7 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
8 | * |
9 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
10 | * Permission to use, copy, modify, and distribute this |
11 | * software is freely granted, provided that this notice |
12 | * is preserved. |
13 | * ==================================================== |
14 | */ |
15 | |
16 | #include <math.h> |
17 | #include <math-narrow-eval.h> |
18 | #include <math_private.h> |
19 | #include <libc-diag.h> |
20 | |
21 | static const float |
22 | two23= 8.3886080000e+06, /* 0x4b000000 */ |
23 | half= 5.0000000000e-01, /* 0x3f000000 */ |
24 | one = 1.0000000000e+00, /* 0x3f800000 */ |
25 | pi = 3.1415927410e+00, /* 0x40490fdb */ |
26 | a0 = 7.7215664089e-02, /* 0x3d9e233f */ |
27 | a1 = 3.2246702909e-01, /* 0x3ea51a66 */ |
28 | a2 = 6.7352302372e-02, /* 0x3d89f001 */ |
29 | a3 = 2.0580807701e-02, /* 0x3ca89915 */ |
30 | a4 = 7.3855509982e-03, /* 0x3bf2027e */ |
31 | a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */ |
32 | a6 = 1.1927076848e-03, /* 0x3a9c54a1 */ |
33 | a7 = 5.1006977446e-04, /* 0x3a05b634 */ |
34 | a8 = 2.2086278477e-04, /* 0x39679767 */ |
35 | a9 = 1.0801156895e-04, /* 0x38e28445 */ |
36 | a10 = 2.5214456400e-05, /* 0x37d383a2 */ |
37 | a11 = 4.4864096708e-05, /* 0x383c2c75 */ |
38 | tc = 1.4616321325e+00, /* 0x3fbb16c3 */ |
39 | tf = -1.2148628384e-01, /* 0xbdf8cdcd */ |
40 | /* tt = -(tail of tf) */ |
41 | tt = 6.6971006518e-09, /* 0x31e61c52 */ |
42 | t0 = 4.8383611441e-01, /* 0x3ef7b95e */ |
43 | t1 = -1.4758771658e-01, /* 0xbe17213c */ |
44 | t2 = 6.4624942839e-02, /* 0x3d845a15 */ |
45 | t3 = -3.2788541168e-02, /* 0xbd064d47 */ |
46 | t4 = 1.7970675603e-02, /* 0x3c93373d */ |
47 | t5 = -1.0314224288e-02, /* 0xbc28fcfe */ |
48 | t6 = 6.1005386524e-03, /* 0x3bc7e707 */ |
49 | t7 = -3.6845202558e-03, /* 0xbb7177fe */ |
50 | t8 = 2.2596477065e-03, /* 0x3b141699 */ |
51 | t9 = -1.4034647029e-03, /* 0xbab7f476 */ |
52 | t10 = 8.8108185446e-04, /* 0x3a66f867 */ |
53 | t11 = -5.3859531181e-04, /* 0xba0d3085 */ |
54 | t12 = 3.1563205994e-04, /* 0x39a57b6b */ |
55 | t13 = -3.1275415677e-04, /* 0xb9a3f927 */ |
56 | t14 = 3.3552918467e-04, /* 0x39afe9f7 */ |
57 | u0 = -7.7215664089e-02, /* 0xbd9e233f */ |
58 | u1 = 6.3282704353e-01, /* 0x3f2200f4 */ |
59 | u2 = 1.4549225569e+00, /* 0x3fba3ae7 */ |
60 | u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */ |
61 | u4 = 2.2896373272e-01, /* 0x3e6a7578 */ |
62 | u5 = 1.3381091878e-02, /* 0x3c5b3c5e */ |
63 | v1 = 2.4559779167e+00, /* 0x401d2ebe */ |
64 | v2 = 2.1284897327e+00, /* 0x4008392d */ |
65 | v3 = 7.6928514242e-01, /* 0x3f44efdf */ |
66 | v4 = 1.0422264785e-01, /* 0x3dd572af */ |
67 | v5 = 3.2170924824e-03, /* 0x3b52d5db */ |
68 | s0 = -7.7215664089e-02, /* 0xbd9e233f */ |
69 | s1 = 2.1498242021e-01, /* 0x3e5c245a */ |
70 | s2 = 3.2577878237e-01, /* 0x3ea6cc7a */ |
71 | s3 = 1.4635047317e-01, /* 0x3e15dce6 */ |
72 | s4 = 2.6642270386e-02, /* 0x3cda40e4 */ |
73 | s5 = 1.8402845599e-03, /* 0x3af135b4 */ |
74 | s6 = 3.1947532989e-05, /* 0x3805ff67 */ |
75 | r1 = 1.3920053244e+00, /* 0x3fb22d3b */ |
76 | r2 = 7.2193557024e-01, /* 0x3f38d0c5 */ |
77 | r3 = 1.7193385959e-01, /* 0x3e300f6e */ |
78 | r4 = 1.8645919859e-02, /* 0x3c98bf54 */ |
79 | r5 = 7.7794247773e-04, /* 0x3a4beed6 */ |
80 | r6 = 7.3266842264e-06, /* 0x36f5d7bd */ |
81 | w0 = 4.1893854737e-01, /* 0x3ed67f1d */ |
82 | w1 = 8.3333335817e-02, /* 0x3daaaaab */ |
83 | w2 = -2.7777778450e-03, /* 0xbb360b61 */ |
84 | w3 = 7.9365057172e-04, /* 0x3a500cfd */ |
85 | w4 = -5.9518753551e-04, /* 0xba1c065c */ |
86 | w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */ |
87 | w6 = -1.6309292987e-03; /* 0xbad5c4e8 */ |
88 | |
89 | static const float zero= 0.0000000000e+00; |
90 | |
91 | static float |
92 | sin_pif(float x) |
93 | { |
94 | float y,z; |
95 | int n,ix; |
96 | |
97 | GET_FLOAT_WORD(ix,x); |
98 | ix &= 0x7fffffff; |
99 | |
100 | if(ix<0x3e800000) return __kernel_sinf(pi*x,zero,0); |
101 | y = -x; /* x is assume negative */ |
102 | |
103 | /* |
104 | * argument reduction, make sure inexact flag not raised if input |
105 | * is an integer |
106 | */ |
107 | z = __floorf(y); |
108 | if(z!=y) { /* inexact anyway */ |
109 | y *= (float)0.5; |
110 | y = (float)2.0*(y - __floorf(y)); /* y = |x| mod 2.0 */ |
111 | n = (int) (y*(float)4.0); |
112 | } else { |
113 | if(ix>=0x4b800000) { |
114 | y = zero; n = 0; /* y must be even */ |
115 | } else { |
116 | if(ix<0x4b000000) z = y+two23; /* exact */ |
117 | GET_FLOAT_WORD(n,z); |
118 | n &= 1; |
119 | y = n; |
120 | n<<= 2; |
121 | } |
122 | } |
123 | switch (n) { |
124 | case 0: y = __kernel_sinf(pi*y,zero,0); break; |
125 | case 1: |
126 | case 2: y = __kernel_cosf(pi*((float)0.5-y),zero); break; |
127 | case 3: |
128 | case 4: y = __kernel_sinf(pi*(one-y),zero,0); break; |
129 | case 5: |
130 | case 6: y = -__kernel_cosf(pi*(y-(float)1.5),zero); break; |
131 | default: y = __kernel_sinf(pi*(y-(float)2.0),zero,0); break; |
132 | } |
133 | return -y; |
134 | } |
135 | |
136 | |
137 | float |
138 | __ieee754_lgammaf_r(float x, int *signgamp) |
139 | { |
140 | float t,y,z,nadj,p,p1,p2,p3,q,r,w; |
141 | int i,hx,ix; |
142 | |
143 | GET_FLOAT_WORD(hx,x); |
144 | |
145 | /* purge off +-inf, NaN, +-0, and negative arguments */ |
146 | *signgamp = 1; |
147 | ix = hx&0x7fffffff; |
148 | if(__builtin_expect(ix>=0x7f800000, 0)) return x*x; |
149 | if(__builtin_expect(ix==0, 0)) |
150 | { |
151 | if (hx < 0) |
152 | *signgamp = -1; |
153 | return one/fabsf(x); |
154 | } |
155 | if(__builtin_expect(ix<0x30800000, 0)) { |
156 | /* |x|<2**-30, return -log(|x|) */ |
157 | if(hx<0) { |
158 | *signgamp = -1; |
159 | return -__ieee754_logf(-x); |
160 | } else return -__ieee754_logf(x); |
161 | } |
162 | if(hx<0) { |
163 | if(ix>=0x4b000000) /* |x|>=2**23, must be -integer */ |
164 | return fabsf (x)/zero; |
165 | if (ix > 0x40000000 /* X < 2.0f. */ |
166 | && ix < 0x41700000 /* X > -15.0f. */) |
167 | return __lgamma_negf (x, signgamp); |
168 | t = sin_pif(x); |
169 | if(t==zero) return one/fabsf(t); /* -integer */ |
170 | nadj = __ieee754_logf(pi/fabsf(t*x)); |
171 | if(t<zero) *signgamp = -1; |
172 | x = -x; |
173 | } |
174 | |
175 | /* purge off 1 and 2 */ |
176 | if (ix==0x3f800000||ix==0x40000000) r = 0; |
177 | /* for x < 2.0 */ |
178 | else if(ix<0x40000000) { |
179 | if(ix<=0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */ |
180 | r = -__ieee754_logf(x); |
181 | if(ix>=0x3f3b4a20) {y = one-x; i= 0;} |
182 | else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;} |
183 | else {y = x; i=2;} |
184 | } else { |
185 | r = zero; |
186 | if(ix>=0x3fdda618) {y=(float)2.0-x;i=0;} /* [1.7316,2] */ |
187 | else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */ |
188 | else {y=x-one;i=2;} |
189 | } |
190 | switch(i) { |
191 | case 0: |
192 | z = y*y; |
193 | p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); |
194 | p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); |
195 | p = y*p1+p2; |
196 | r += (p-(float)0.5*y); break; |
197 | case 1: |
198 | z = y*y; |
199 | w = z*y; |
200 | p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ |
201 | p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); |
202 | p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); |
203 | p = z*p1-(tt-w*(p2+y*p3)); |
204 | r += (tf + p); break; |
205 | case 2: |
206 | p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); |
207 | p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); |
208 | r += (-(float)0.5*y + p1/p2); |
209 | } |
210 | } |
211 | else if(ix<0x41000000) { /* x < 8.0 */ |
212 | i = (int)x; |
213 | t = zero; |
214 | y = x-(float)i; |
215 | p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); |
216 | q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); |
217 | r = half*y+p/q; |
218 | z = one; /* lgamma(1+s) = log(s) + lgamma(s) */ |
219 | switch(i) { |
220 | case 7: z *= (y+(float)6.0); /* FALLTHRU */ |
221 | case 6: z *= (y+(float)5.0); /* FALLTHRU */ |
222 | case 5: z *= (y+(float)4.0); /* FALLTHRU */ |
223 | case 4: z *= (y+(float)3.0); /* FALLTHRU */ |
224 | case 3: z *= (y+(float)2.0); /* FALLTHRU */ |
225 | r += __ieee754_logf(z); break; |
226 | } |
227 | /* 8.0 <= x < 2**26 */ |
228 | } else if (ix < 0x4c800000) { |
229 | t = __ieee754_logf(x); |
230 | z = one/x; |
231 | y = z*z; |
232 | w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); |
233 | r = (x-half)*(t-one)+w; |
234 | } else |
235 | /* 2**26 <= x <= inf */ |
236 | r = math_narrow_eval (x*(__ieee754_logf(x)-one)); |
237 | /* NADJ is set for negative arguments but not otherwise, |
238 | resulting in warnings that it may be used uninitialized |
239 | although in the cases where it is used it has always been |
240 | set. */ |
241 | DIAG_PUSH_NEEDS_COMMENT; |
242 | DIAG_IGNORE_NEEDS_COMMENT (4.9, "-Wmaybe-uninitialized" ); |
243 | if(hx<0) r = nadj - r; |
244 | DIAG_POP_NEEDS_COMMENT; |
245 | return r; |
246 | } |
247 | strong_alias (__ieee754_lgammaf_r, __lgammaf_r_finite) |
248 | |