1 | /* e_j1f.c -- float version of e_j1.c. |
2 | * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
3 | */ |
4 | |
5 | /* |
6 | * ==================================================== |
7 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
8 | * |
9 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
10 | * Permission to use, copy, modify, and distribute this |
11 | * software is freely granted, provided that this notice |
12 | * is preserved. |
13 | * ==================================================== |
14 | */ |
15 | |
16 | #include <errno.h> |
17 | #include <float.h> |
18 | #include <math.h> |
19 | #include <math-narrow-eval.h> |
20 | #include <math_private.h> |
21 | #include <math-underflow.h> |
22 | |
23 | static float ponef(float), qonef(float); |
24 | |
25 | static const float |
26 | huge = 1e30, |
27 | one = 1.0, |
28 | invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */ |
29 | tpi = 6.3661974669e-01, /* 0x3f22f983 */ |
30 | /* R0/S0 on [0,2] */ |
31 | r00 = -6.2500000000e-02, /* 0xbd800000 */ |
32 | r01 = 1.4070566976e-03, /* 0x3ab86cfd */ |
33 | r02 = -1.5995563444e-05, /* 0xb7862e36 */ |
34 | r03 = 4.9672799207e-08, /* 0x335557d2 */ |
35 | s01 = 1.9153760746e-02, /* 0x3c9ce859 */ |
36 | s02 = 1.8594678841e-04, /* 0x3942fab6 */ |
37 | s03 = 1.1771846857e-06, /* 0x359dffc2 */ |
38 | s04 = 5.0463624390e-09, /* 0x31ad6446 */ |
39 | s05 = 1.2354227016e-11; /* 0x2d59567e */ |
40 | |
41 | static const float zero = 0.0; |
42 | |
43 | float |
44 | __ieee754_j1f(float x) |
45 | { |
46 | float z, s,c,ss,cc,r,u,v,y; |
47 | int32_t hx,ix; |
48 | |
49 | GET_FLOAT_WORD(hx,x); |
50 | ix = hx&0x7fffffff; |
51 | if(__builtin_expect(ix>=0x7f800000, 0)) return one/x; |
52 | y = fabsf(x); |
53 | if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
54 | __sincosf (y, &s, &c); |
55 | ss = -s-c; |
56 | cc = s-c; |
57 | if(ix<0x7f000000) { /* make sure y+y not overflow */ |
58 | z = __cosf(y+y); |
59 | if ((s*c)>zero) cc = z/ss; |
60 | else ss = z/cc; |
61 | } |
62 | /* |
63 | * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x) |
64 | * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x) |
65 | */ |
66 | if(ix>0x48000000) z = (invsqrtpi*cc)/sqrtf(y); |
67 | else { |
68 | u = ponef(y); v = qonef(y); |
69 | z = invsqrtpi*(u*cc-v*ss)/sqrtf(y); |
70 | } |
71 | if(hx<0) return -z; |
72 | else return z; |
73 | } |
74 | if(__builtin_expect(ix<0x32000000, 0)) { /* |x|<2**-27 */ |
75 | if(huge+x>one) { /* inexact if x!=0 necessary */ |
76 | float ret = math_narrow_eval ((float) 0.5 * x); |
77 | math_check_force_underflow (ret); |
78 | if (ret == 0 && x != 0) |
79 | __set_errno (ERANGE); |
80 | return ret; |
81 | } |
82 | } |
83 | z = x*x; |
84 | r = z*(r00+z*(r01+z*(r02+z*r03))); |
85 | s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05)))); |
86 | r *= x; |
87 | return(x*(float)0.5+r/s); |
88 | } |
89 | strong_alias (__ieee754_j1f, __j1f_finite) |
90 | |
91 | static const float U0[5] = { |
92 | -1.9605709612e-01, /* 0xbe48c331 */ |
93 | 5.0443872809e-02, /* 0x3d4e9e3c */ |
94 | -1.9125689287e-03, /* 0xbafaaf2a */ |
95 | 2.3525259166e-05, /* 0x37c5581c */ |
96 | -9.1909917899e-08, /* 0xb3c56003 */ |
97 | }; |
98 | static const float V0[5] = { |
99 | 1.9916731864e-02, /* 0x3ca3286a */ |
100 | 2.0255257550e-04, /* 0x3954644b */ |
101 | 1.3560879779e-06, /* 0x35b602d4 */ |
102 | 6.2274145840e-09, /* 0x31d5f8eb */ |
103 | 1.6655924903e-11, /* 0x2d9281cf */ |
104 | }; |
105 | |
106 | float |
107 | __ieee754_y1f(float x) |
108 | { |
109 | float z, s,c,ss,cc,u,v; |
110 | int32_t hx,ix; |
111 | |
112 | GET_FLOAT_WORD(hx,x); |
113 | ix = 0x7fffffff&hx; |
114 | /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */ |
115 | if(__builtin_expect(ix>=0x7f800000, 0)) return one/(x+x*x); |
116 | if(__builtin_expect(ix==0, 0)) |
117 | return -1/zero; /* -inf and divide by zero exception. */ |
118 | if(__builtin_expect(hx<0, 0)) return zero/(zero*x); |
119 | if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
120 | SET_RESTORE_ROUNDF (FE_TONEAREST); |
121 | __sincosf (x, &s, &c); |
122 | ss = -s-c; |
123 | cc = s-c; |
124 | if(ix<0x7f000000) { /* make sure x+x not overflow */ |
125 | z = __cosf(x+x); |
126 | if ((s*c)>zero) cc = z/ss; |
127 | else ss = z/cc; |
128 | } |
129 | /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0)) |
130 | * where x0 = x-3pi/4 |
131 | * Better formula: |
132 | * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) |
133 | * = 1/sqrt(2) * (sin(x) - cos(x)) |
134 | * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) |
135 | * = -1/sqrt(2) * (cos(x) + sin(x)) |
136 | * To avoid cancellation, use |
137 | * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
138 | * to compute the worse one. |
139 | */ |
140 | if(ix>0x48000000) z = (invsqrtpi*ss)/sqrtf(x); |
141 | else { |
142 | u = ponef(x); v = qonef(x); |
143 | z = invsqrtpi*(u*ss+v*cc)/sqrtf(x); |
144 | } |
145 | return z; |
146 | } |
147 | if(__builtin_expect(ix<=0x33000000, 0)) { /* x < 2**-25 */ |
148 | z = -tpi / x; |
149 | if (isinf (z)) |
150 | __set_errno (ERANGE); |
151 | return z; |
152 | } |
153 | z = x*x; |
154 | u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4]))); |
155 | v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4])))); |
156 | return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x)); |
157 | } |
158 | strong_alias (__ieee754_y1f, __y1f_finite) |
159 | |
160 | /* For x >= 8, the asymptotic expansions of pone is |
161 | * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. |
162 | * We approximate pone by |
163 | * pone(x) = 1 + (R/S) |
164 | * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 |
165 | * S = 1 + ps0*s^2 + ... + ps4*s^10 |
166 | * and |
167 | * | pone(x)-1-R/S | <= 2 ** ( -60.06) |
168 | */ |
169 | |
170 | static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
171 | 0.0000000000e+00, /* 0x00000000 */ |
172 | 1.1718750000e-01, /* 0x3df00000 */ |
173 | 1.3239480972e+01, /* 0x4153d4ea */ |
174 | 4.1205184937e+02, /* 0x43ce06a3 */ |
175 | 3.8747453613e+03, /* 0x45722bed */ |
176 | 7.9144794922e+03, /* 0x45f753d6 */ |
177 | }; |
178 | static const float ps8[5] = { |
179 | 1.1420736694e+02, /* 0x42e46a2c */ |
180 | 3.6509309082e+03, /* 0x45642ee5 */ |
181 | 3.6956207031e+04, /* 0x47105c35 */ |
182 | 9.7602796875e+04, /* 0x47bea166 */ |
183 | 3.0804271484e+04, /* 0x46f0a88b */ |
184 | }; |
185 | |
186 | static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
187 | 1.3199052094e-11, /* 0x2d68333f */ |
188 | 1.1718749255e-01, /* 0x3defffff */ |
189 | 6.8027510643e+00, /* 0x40d9b023 */ |
190 | 1.0830818176e+02, /* 0x42d89dca */ |
191 | 5.1763616943e+02, /* 0x440168b7 */ |
192 | 5.2871520996e+02, /* 0x44042dc6 */ |
193 | }; |
194 | static const float ps5[5] = { |
195 | 5.9280597687e+01, /* 0x426d1f55 */ |
196 | 9.9140142822e+02, /* 0x4477d9b1 */ |
197 | 5.3532670898e+03, /* 0x45a74a23 */ |
198 | 7.8446904297e+03, /* 0x45f52586 */ |
199 | 1.5040468750e+03, /* 0x44bc0180 */ |
200 | }; |
201 | |
202 | static const float pr3[6] = { |
203 | 3.0250391081e-09, /* 0x314fe10d */ |
204 | 1.1718686670e-01, /* 0x3defffab */ |
205 | 3.9329774380e+00, /* 0x407bb5e7 */ |
206 | 3.5119403839e+01, /* 0x420c7a45 */ |
207 | 9.1055007935e+01, /* 0x42b61c2a */ |
208 | 4.8559066772e+01, /* 0x42423c7c */ |
209 | }; |
210 | static const float ps3[5] = { |
211 | 3.4791309357e+01, /* 0x420b2a4d */ |
212 | 3.3676245117e+02, /* 0x43a86198 */ |
213 | 1.0468714600e+03, /* 0x4482dbe3 */ |
214 | 8.9081134033e+02, /* 0x445eb3ed */ |
215 | 1.0378793335e+02, /* 0x42cf936c */ |
216 | }; |
217 | |
218 | static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
219 | 1.0771083225e-07, /* 0x33e74ea8 */ |
220 | 1.1717621982e-01, /* 0x3deffa16 */ |
221 | 2.3685150146e+00, /* 0x401795c0 */ |
222 | 1.2242610931e+01, /* 0x4143e1bc */ |
223 | 1.7693971634e+01, /* 0x418d8d41 */ |
224 | 5.0735230446e+00, /* 0x40a25a4d */ |
225 | }; |
226 | static const float ps2[5] = { |
227 | 2.1436485291e+01, /* 0x41ab7dec */ |
228 | 1.2529022980e+02, /* 0x42fa9499 */ |
229 | 2.3227647400e+02, /* 0x436846c7 */ |
230 | 1.1767937469e+02, /* 0x42eb5bd7 */ |
231 | 8.3646392822e+00, /* 0x4105d590 */ |
232 | }; |
233 | |
234 | static float |
235 | ponef(float x) |
236 | { |
237 | const float *p,*q; |
238 | float z,r,s; |
239 | int32_t ix; |
240 | GET_FLOAT_WORD(ix,x); |
241 | ix &= 0x7fffffff; |
242 | /* ix >= 0x40000000 for all calls to this function. */ |
243 | if(ix>=0x41000000) {p = pr8; q= ps8;} |
244 | else if(ix>=0x40f71c58){p = pr5; q= ps5;} |
245 | else if(ix>=0x4036db68){p = pr3; q= ps3;} |
246 | else {p = pr2; q= ps2;} |
247 | z = one/(x*x); |
248 | r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
249 | s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); |
250 | return one+ r/s; |
251 | } |
252 | |
253 | |
254 | /* For x >= 8, the asymptotic expansions of qone is |
255 | * 3/8 s - 105/1024 s^3 - ..., where s = 1/x. |
256 | * We approximate pone by |
257 | * qone(x) = s*(0.375 + (R/S)) |
258 | * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 |
259 | * S = 1 + qs1*s^2 + ... + qs6*s^12 |
260 | * and |
261 | * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13) |
262 | */ |
263 | |
264 | static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
265 | 0.0000000000e+00, /* 0x00000000 */ |
266 | -1.0253906250e-01, /* 0xbdd20000 */ |
267 | -1.6271753311e+01, /* 0xc1822c8d */ |
268 | -7.5960174561e+02, /* 0xc43de683 */ |
269 | -1.1849806641e+04, /* 0xc639273a */ |
270 | -4.8438511719e+04, /* 0xc73d3683 */ |
271 | }; |
272 | static const float qs8[6] = { |
273 | 1.6139537048e+02, /* 0x43216537 */ |
274 | 7.8253862305e+03, /* 0x45f48b17 */ |
275 | 1.3387534375e+05, /* 0x4802bcd6 */ |
276 | 7.1965775000e+05, /* 0x492fb29c */ |
277 | 6.6660125000e+05, /* 0x4922be94 */ |
278 | -2.9449025000e+05, /* 0xc88fcb48 */ |
279 | }; |
280 | |
281 | static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
282 | -2.0897993405e-11, /* 0xadb7d219 */ |
283 | -1.0253904760e-01, /* 0xbdd1fffe */ |
284 | -8.0564479828e+00, /* 0xc100e736 */ |
285 | -1.8366960144e+02, /* 0xc337ab6b */ |
286 | -1.3731937256e+03, /* 0xc4aba633 */ |
287 | -2.6124443359e+03, /* 0xc523471c */ |
288 | }; |
289 | static const float qs5[6] = { |
290 | 8.1276550293e+01, /* 0x42a28d98 */ |
291 | 1.9917987061e+03, /* 0x44f8f98f */ |
292 | 1.7468484375e+04, /* 0x468878f8 */ |
293 | 4.9851425781e+04, /* 0x4742bb6d */ |
294 | 2.7948074219e+04, /* 0x46da5826 */ |
295 | -4.7191835938e+03, /* 0xc5937978 */ |
296 | }; |
297 | |
298 | static const float qr3[6] = { |
299 | -5.0783124372e-09, /* 0xb1ae7d4f */ |
300 | -1.0253783315e-01, /* 0xbdd1ff5b */ |
301 | -4.6101160049e+00, /* 0xc0938612 */ |
302 | -5.7847221375e+01, /* 0xc267638e */ |
303 | -2.2824453735e+02, /* 0xc3643e9a */ |
304 | -2.1921012878e+02, /* 0xc35b35cb */ |
305 | }; |
306 | static const float qs3[6] = { |
307 | 4.7665153503e+01, /* 0x423ea91e */ |
308 | 6.7386511230e+02, /* 0x4428775e */ |
309 | 3.3801528320e+03, /* 0x45534272 */ |
310 | 5.5477290039e+03, /* 0x45ad5dd5 */ |
311 | 1.9031191406e+03, /* 0x44ede3d0 */ |
312 | -1.3520118713e+02, /* 0xc3073381 */ |
313 | }; |
314 | |
315 | static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
316 | -1.7838172539e-07, /* 0xb43f8932 */ |
317 | -1.0251704603e-01, /* 0xbdd1f475 */ |
318 | -2.7522056103e+00, /* 0xc0302423 */ |
319 | -1.9663616180e+01, /* 0xc19d4f16 */ |
320 | -4.2325313568e+01, /* 0xc2294d1f */ |
321 | -2.1371921539e+01, /* 0xc1aaf9b2 */ |
322 | }; |
323 | static const float qs2[6] = { |
324 | 2.9533363342e+01, /* 0x41ec4454 */ |
325 | 2.5298155212e+02, /* 0x437cfb47 */ |
326 | 7.5750280762e+02, /* 0x443d602e */ |
327 | 7.3939318848e+02, /* 0x4438d92a */ |
328 | 1.5594900513e+02, /* 0x431bf2f2 */ |
329 | -4.9594988823e+00, /* 0xc09eb437 */ |
330 | }; |
331 | |
332 | static float |
333 | qonef(float x) |
334 | { |
335 | const float *p,*q; |
336 | float s,r,z; |
337 | int32_t ix; |
338 | GET_FLOAT_WORD(ix,x); |
339 | ix &= 0x7fffffff; |
340 | /* ix >= 0x40000000 for all calls to this function. */ |
341 | if(ix>=0x40200000) {p = qr8; q= qs8;} |
342 | else if(ix>=0x40f71c58){p = qr5; q= qs5;} |
343 | else if(ix>=0x4036db68){p = qr3; q= qs3;} |
344 | else {p = qr2; q= qs2;} |
345 | z = one/(x*x); |
346 | r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
347 | s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); |
348 | return ((float).375 + r/s)/x; |
349 | } |
350 | |