1 | /* |
2 | * IBM Accurate Mathematical Library |
3 | * written by International Business Machines Corp. |
4 | * Copyright (C) 2001-2018 Free Software Foundation, Inc. |
5 | * |
6 | * This program is free software; you can redistribute it and/or modify |
7 | * it under the terms of the GNU Lesser General Public License as published by |
8 | * the Free Software Foundation; either version 2.1 of the License, or |
9 | * (at your option) any later version. |
10 | * |
11 | * This program is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | * GNU Lesser General Public License for more details. |
15 | * |
16 | * You should have received a copy of the GNU Lesser General Public License |
17 | * along with this program; if not, see <http://www.gnu.org/licenses/>. |
18 | */ |
19 | /*********************************************************************/ |
20 | /* MODULE_NAME: utan.c */ |
21 | /* */ |
22 | /* FUNCTIONS: utan */ |
23 | /* tanMp */ |
24 | /* */ |
25 | /* FILES NEEDED:dla.h endian.h mpa.h mydefs.h utan.h */ |
26 | /* branred.c sincos32.c mptan.c */ |
27 | /* utan.tbl */ |
28 | /* */ |
29 | /* An ultimate tan routine. Given an IEEE double machine number x */ |
30 | /* it computes the correctly rounded (to nearest) value of tan(x). */ |
31 | /* Assumption: Machine arithmetic operations are performed in */ |
32 | /* round to nearest mode of IEEE 754 standard. */ |
33 | /* */ |
34 | /*********************************************************************/ |
35 | |
36 | #include <errno.h> |
37 | #include <float.h> |
38 | #include "endian.h" |
39 | #include <dla.h> |
40 | #include "mpa.h" |
41 | #include "MathLib.h" |
42 | #include <math.h> |
43 | #include <math_private.h> |
44 | #include <math-underflow.h> |
45 | #include <libm-alias-double.h> |
46 | #include <fenv.h> |
47 | #include <stap-probe.h> |
48 | |
49 | #ifndef SECTION |
50 | # define SECTION |
51 | #endif |
52 | |
53 | static double tanMp (double); |
54 | void __mptan (double, mp_no *, int); |
55 | |
56 | double |
57 | SECTION |
58 | __tan (double x) |
59 | { |
60 | #include "utan.h" |
61 | #include "utan.tbl" |
62 | |
63 | int ux, i, n; |
64 | double a, da, a2, b, db, c, dc, c1, cc1, c2, cc2, c3, cc3, fi, ffi, gi, pz, |
65 | s, sy, t, t1, t2, t3, t4, t7, t8, t9, t10, w, x2, xn, xx2, y, ya, |
66 | yya, z0, z, zz, z2, zz2; |
67 | #ifndef DLA_FMS |
68 | double t5, t6; |
69 | #endif |
70 | int p; |
71 | number num, v; |
72 | mp_no mpa, mpt1, mpt2; |
73 | |
74 | double retval; |
75 | |
76 | int __branred (double, double *, double *); |
77 | int __mpranred (double, mp_no *, int); |
78 | |
79 | SET_RESTORE_ROUND_53BIT (FE_TONEAREST); |
80 | |
81 | /* x=+-INF, x=NaN */ |
82 | num.d = x; |
83 | ux = num.i[HIGH_HALF]; |
84 | if ((ux & 0x7ff00000) == 0x7ff00000) |
85 | { |
86 | if ((ux & 0x7fffffff) == 0x7ff00000) |
87 | __set_errno (EDOM); |
88 | retval = x - x; |
89 | goto ret; |
90 | } |
91 | |
92 | w = (x < 0.0) ? -x : x; |
93 | |
94 | /* (I) The case abs(x) <= 1.259e-8 */ |
95 | if (w <= g1.d) |
96 | { |
97 | math_check_force_underflow_nonneg (w); |
98 | retval = x; |
99 | goto ret; |
100 | } |
101 | |
102 | /* (II) The case 1.259e-8 < abs(x) <= 0.0608 */ |
103 | if (w <= g2.d) |
104 | { |
105 | /* First stage */ |
106 | x2 = x * x; |
107 | |
108 | t2 = d9.d + x2 * d11.d; |
109 | t2 = d7.d + x2 * t2; |
110 | t2 = d5.d + x2 * t2; |
111 | t2 = d3.d + x2 * t2; |
112 | t2 *= x * x2; |
113 | |
114 | if ((y = x + (t2 - u1.d * t2)) == x + (t2 + u1.d * t2)) |
115 | { |
116 | retval = y; |
117 | goto ret; |
118 | } |
119 | |
120 | /* Second stage */ |
121 | c1 = a25.d + x2 * a27.d; |
122 | c1 = a23.d + x2 * c1; |
123 | c1 = a21.d + x2 * c1; |
124 | c1 = a19.d + x2 * c1; |
125 | c1 = a17.d + x2 * c1; |
126 | c1 = a15.d + x2 * c1; |
127 | c1 *= x2; |
128 | |
129 | EMULV (x, x, x2, xx2, t1, t2, t3, t4, t5); |
130 | ADD2 (a13.d, aa13.d, c1, 0.0, c2, cc2, t1, t2); |
131 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
132 | ADD2 (a11.d, aa11.d, c1, cc1, c2, cc2, t1, t2); |
133 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
134 | ADD2 (a9.d, aa9.d, c1, cc1, c2, cc2, t1, t2); |
135 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
136 | ADD2 (a7.d, aa7.d, c1, cc1, c2, cc2, t1, t2); |
137 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
138 | ADD2 (a5.d, aa5.d, c1, cc1, c2, cc2, t1, t2); |
139 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
140 | ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2); |
141 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
142 | MUL2 (x, 0.0, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8); |
143 | ADD2 (x, 0.0, c2, cc2, c1, cc1, t1, t2); |
144 | if ((y = c1 + (cc1 - u2.d * c1)) == c1 + (cc1 + u2.d * c1)) |
145 | { |
146 | retval = y; |
147 | goto ret; |
148 | } |
149 | retval = tanMp (x); |
150 | goto ret; |
151 | } |
152 | |
153 | /* (III) The case 0.0608 < abs(x) <= 0.787 */ |
154 | if (w <= g3.d) |
155 | { |
156 | /* First stage */ |
157 | i = ((int) (mfftnhf.d + TWO8 * w)); |
158 | z = w - xfg[i][0].d; |
159 | z2 = z * z; |
160 | s = (x < 0.0) ? -1 : 1; |
161 | pz = z + z * z2 * (e0.d + z2 * e1.d); |
162 | fi = xfg[i][1].d; |
163 | gi = xfg[i][2].d; |
164 | t2 = pz * (gi + fi) / (gi - pz); |
165 | if ((y = fi + (t2 - fi * u3.d)) == fi + (t2 + fi * u3.d)) |
166 | { |
167 | retval = (s * y); |
168 | goto ret; |
169 | } |
170 | t3 = (t2 < 0.0) ? -t2 : t2; |
171 | t4 = fi * ua3.d + t3 * ub3.d; |
172 | if ((y = fi + (t2 - t4)) == fi + (t2 + t4)) |
173 | { |
174 | retval = (s * y); |
175 | goto ret; |
176 | } |
177 | |
178 | /* Second stage */ |
179 | ffi = xfg[i][3].d; |
180 | c1 = z2 * (a7.d + z2 * (a9.d + z2 * a11.d)); |
181 | EMULV (z, z, z2, zz2, t1, t2, t3, t4, t5); |
182 | ADD2 (a5.d, aa5.d, c1, 0.0, c2, cc2, t1, t2); |
183 | MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
184 | ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2); |
185 | MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
186 | MUL2 (z, 0.0, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8); |
187 | ADD2 (z, 0.0, c2, cc2, c1, cc1, t1, t2); |
188 | |
189 | ADD2 (fi, ffi, c1, cc1, c2, cc2, t1, t2); |
190 | MUL2 (fi, ffi, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8); |
191 | SUB2 (1.0, 0.0, c3, cc3, c1, cc1, t1, t2); |
192 | DIV2 (c2, cc2, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8, t9, |
193 | t10); |
194 | |
195 | if ((y = c3 + (cc3 - u4.d * c3)) == c3 + (cc3 + u4.d * c3)) |
196 | { |
197 | retval = (s * y); |
198 | goto ret; |
199 | } |
200 | retval = tanMp (x); |
201 | goto ret; |
202 | } |
203 | |
204 | /* (---) The case 0.787 < abs(x) <= 25 */ |
205 | if (w <= g4.d) |
206 | { |
207 | /* Range reduction by algorithm i */ |
208 | t = (x * hpinv.d + toint.d); |
209 | xn = t - toint.d; |
210 | v.d = t; |
211 | t1 = (x - xn * mp1.d) - xn * mp2.d; |
212 | n = v.i[LOW_HALF] & 0x00000001; |
213 | da = xn * mp3.d; |
214 | a = t1 - da; |
215 | da = (t1 - a) - da; |
216 | if (a < 0.0) |
217 | { |
218 | ya = -a; |
219 | yya = -da; |
220 | sy = -1; |
221 | } |
222 | else |
223 | { |
224 | ya = a; |
225 | yya = da; |
226 | sy = 1; |
227 | } |
228 | |
229 | /* (IV),(V) The case 0.787 < abs(x) <= 25, abs(y) <= 1e-7 */ |
230 | if (ya <= gy1.d) |
231 | { |
232 | retval = tanMp (x); |
233 | goto ret; |
234 | } |
235 | |
236 | /* (VI) The case 0.787 < abs(x) <= 25, 1e-7 < abs(y) <= 0.0608 */ |
237 | if (ya <= gy2.d) |
238 | { |
239 | a2 = a * a; |
240 | t2 = d9.d + a2 * d11.d; |
241 | t2 = d7.d + a2 * t2; |
242 | t2 = d5.d + a2 * t2; |
243 | t2 = d3.d + a2 * t2; |
244 | t2 = da + a * a2 * t2; |
245 | |
246 | if (n) |
247 | { |
248 | /* First stage -cot */ |
249 | EADD (a, t2, b, db); |
250 | DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4, t5, t6, t7, t8, |
251 | t9, t10); |
252 | if ((y = c + (dc - u6.d * c)) == c + (dc + u6.d * c)) |
253 | { |
254 | retval = (-y); |
255 | goto ret; |
256 | } |
257 | } |
258 | else |
259 | { |
260 | /* First stage tan */ |
261 | if ((y = a + (t2 - u5.d * a)) == a + (t2 + u5.d * a)) |
262 | { |
263 | retval = y; |
264 | goto ret; |
265 | } |
266 | } |
267 | /* Second stage */ |
268 | /* Range reduction by algorithm ii */ |
269 | t = (x * hpinv.d + toint.d); |
270 | xn = t - toint.d; |
271 | v.d = t; |
272 | t1 = (x - xn * mp1.d) - xn * mp2.d; |
273 | n = v.i[LOW_HALF] & 0x00000001; |
274 | da = xn * pp3.d; |
275 | t = t1 - da; |
276 | da = (t1 - t) - da; |
277 | t1 = xn * pp4.d; |
278 | a = t - t1; |
279 | da = ((t - a) - t1) + da; |
280 | |
281 | /* Second stage */ |
282 | EADD (a, da, t1, t2); |
283 | a = t1; |
284 | da = t2; |
285 | MUL2 (a, da, a, da, x2, xx2, t1, t2, t3, t4, t5, t6, t7, t8); |
286 | |
287 | c1 = a25.d + x2 * a27.d; |
288 | c1 = a23.d + x2 * c1; |
289 | c1 = a21.d + x2 * c1; |
290 | c1 = a19.d + x2 * c1; |
291 | c1 = a17.d + x2 * c1; |
292 | c1 = a15.d + x2 * c1; |
293 | c1 *= x2; |
294 | |
295 | ADD2 (a13.d, aa13.d, c1, 0.0, c2, cc2, t1, t2); |
296 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
297 | ADD2 (a11.d, aa11.d, c1, cc1, c2, cc2, t1, t2); |
298 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
299 | ADD2 (a9.d, aa9.d, c1, cc1, c2, cc2, t1, t2); |
300 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
301 | ADD2 (a7.d, aa7.d, c1, cc1, c2, cc2, t1, t2); |
302 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
303 | ADD2 (a5.d, aa5.d, c1, cc1, c2, cc2, t1, t2); |
304 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
305 | ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2); |
306 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
307 | MUL2 (a, da, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8); |
308 | ADD2 (a, da, c2, cc2, c1, cc1, t1, t2); |
309 | |
310 | if (n) |
311 | { |
312 | /* Second stage -cot */ |
313 | DIV2 (1.0, 0.0, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, |
314 | t8, t9, t10); |
315 | if ((y = c2 + (cc2 - u8.d * c2)) == c2 + (cc2 + u8.d * c2)) |
316 | { |
317 | retval = (-y); |
318 | goto ret; |
319 | } |
320 | } |
321 | else |
322 | { |
323 | /* Second stage tan */ |
324 | if ((y = c1 + (cc1 - u7.d * c1)) == c1 + (cc1 + u7.d * c1)) |
325 | { |
326 | retval = y; |
327 | goto ret; |
328 | } |
329 | } |
330 | retval = tanMp (x); |
331 | goto ret; |
332 | } |
333 | |
334 | /* (VII) The case 0.787 < abs(x) <= 25, 0.0608 < abs(y) <= 0.787 */ |
335 | |
336 | /* First stage */ |
337 | i = ((int) (mfftnhf.d + TWO8 * ya)); |
338 | z = (z0 = (ya - xfg[i][0].d)) + yya; |
339 | z2 = z * z; |
340 | pz = z + z * z2 * (e0.d + z2 * e1.d); |
341 | fi = xfg[i][1].d; |
342 | gi = xfg[i][2].d; |
343 | |
344 | if (n) |
345 | { |
346 | /* -cot */ |
347 | t2 = pz * (fi + gi) / (fi + pz); |
348 | if ((y = gi - (t2 - gi * u10.d)) == gi - (t2 + gi * u10.d)) |
349 | { |
350 | retval = (-sy * y); |
351 | goto ret; |
352 | } |
353 | t3 = (t2 < 0.0) ? -t2 : t2; |
354 | t4 = gi * ua10.d + t3 * ub10.d; |
355 | if ((y = gi - (t2 - t4)) == gi - (t2 + t4)) |
356 | { |
357 | retval = (-sy * y); |
358 | goto ret; |
359 | } |
360 | } |
361 | else |
362 | { |
363 | /* tan */ |
364 | t2 = pz * (gi + fi) / (gi - pz); |
365 | if ((y = fi + (t2 - fi * u9.d)) == fi + (t2 + fi * u9.d)) |
366 | { |
367 | retval = (sy * y); |
368 | goto ret; |
369 | } |
370 | t3 = (t2 < 0.0) ? -t2 : t2; |
371 | t4 = fi * ua9.d + t3 * ub9.d; |
372 | if ((y = fi + (t2 - t4)) == fi + (t2 + t4)) |
373 | { |
374 | retval = (sy * y); |
375 | goto ret; |
376 | } |
377 | } |
378 | |
379 | /* Second stage */ |
380 | ffi = xfg[i][3].d; |
381 | EADD (z0, yya, z, zz) |
382 | MUL2 (z, zz, z, zz, z2, zz2, t1, t2, t3, t4, t5, t6, t7, t8); |
383 | c1 = z2 * (a7.d + z2 * (a9.d + z2 * a11.d)); |
384 | ADD2 (a5.d, aa5.d, c1, 0.0, c2, cc2, t1, t2); |
385 | MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
386 | ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2); |
387 | MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
388 | MUL2 (z, zz, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8); |
389 | ADD2 (z, zz, c2, cc2, c1, cc1, t1, t2); |
390 | |
391 | ADD2 (fi, ffi, c1, cc1, c2, cc2, t1, t2); |
392 | MUL2 (fi, ffi, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8); |
393 | SUB2 (1.0, 0.0, c3, cc3, c1, cc1, t1, t2); |
394 | |
395 | if (n) |
396 | { |
397 | /* -cot */ |
398 | DIV2 (c1, cc1, c2, cc2, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8, t9, |
399 | t10); |
400 | if ((y = c3 + (cc3 - u12.d * c3)) == c3 + (cc3 + u12.d * c3)) |
401 | { |
402 | retval = (-sy * y); |
403 | goto ret; |
404 | } |
405 | } |
406 | else |
407 | { |
408 | /* tan */ |
409 | DIV2 (c2, cc2, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8, t9, |
410 | t10); |
411 | if ((y = c3 + (cc3 - u11.d * c3)) == c3 + (cc3 + u11.d * c3)) |
412 | { |
413 | retval = (sy * y); |
414 | goto ret; |
415 | } |
416 | } |
417 | |
418 | retval = tanMp (x); |
419 | goto ret; |
420 | } |
421 | |
422 | /* (---) The case 25 < abs(x) <= 1e8 */ |
423 | if (w <= g5.d) |
424 | { |
425 | /* Range reduction by algorithm ii */ |
426 | t = (x * hpinv.d + toint.d); |
427 | xn = t - toint.d; |
428 | v.d = t; |
429 | t1 = (x - xn * mp1.d) - xn * mp2.d; |
430 | n = v.i[LOW_HALF] & 0x00000001; |
431 | da = xn * pp3.d; |
432 | t = t1 - da; |
433 | da = (t1 - t) - da; |
434 | t1 = xn * pp4.d; |
435 | a = t - t1; |
436 | da = ((t - a) - t1) + da; |
437 | EADD (a, da, t1, t2); |
438 | a = t1; |
439 | da = t2; |
440 | if (a < 0.0) |
441 | { |
442 | ya = -a; |
443 | yya = -da; |
444 | sy = -1; |
445 | } |
446 | else |
447 | { |
448 | ya = a; |
449 | yya = da; |
450 | sy = 1; |
451 | } |
452 | |
453 | /* (+++) The case 25 < abs(x) <= 1e8, abs(y) <= 1e-7 */ |
454 | if (ya <= gy1.d) |
455 | { |
456 | retval = tanMp (x); |
457 | goto ret; |
458 | } |
459 | |
460 | /* (VIII) The case 25 < abs(x) <= 1e8, 1e-7 < abs(y) <= 0.0608 */ |
461 | if (ya <= gy2.d) |
462 | { |
463 | a2 = a * a; |
464 | t2 = d9.d + a2 * d11.d; |
465 | t2 = d7.d + a2 * t2; |
466 | t2 = d5.d + a2 * t2; |
467 | t2 = d3.d + a2 * t2; |
468 | t2 = da + a * a2 * t2; |
469 | |
470 | if (n) |
471 | { |
472 | /* First stage -cot */ |
473 | EADD (a, t2, b, db); |
474 | DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4, t5, t6, t7, t8, |
475 | t9, t10); |
476 | if ((y = c + (dc - u14.d * c)) == c + (dc + u14.d * c)) |
477 | { |
478 | retval = (-y); |
479 | goto ret; |
480 | } |
481 | } |
482 | else |
483 | { |
484 | /* First stage tan */ |
485 | if ((y = a + (t2 - u13.d * a)) == a + (t2 + u13.d * a)) |
486 | { |
487 | retval = y; |
488 | goto ret; |
489 | } |
490 | } |
491 | |
492 | /* Second stage */ |
493 | MUL2 (a, da, a, da, x2, xx2, t1, t2, t3, t4, t5, t6, t7, t8); |
494 | c1 = a25.d + x2 * a27.d; |
495 | c1 = a23.d + x2 * c1; |
496 | c1 = a21.d + x2 * c1; |
497 | c1 = a19.d + x2 * c1; |
498 | c1 = a17.d + x2 * c1; |
499 | c1 = a15.d + x2 * c1; |
500 | c1 *= x2; |
501 | |
502 | ADD2 (a13.d, aa13.d, c1, 0.0, c2, cc2, t1, t2); |
503 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
504 | ADD2 (a11.d, aa11.d, c1, cc1, c2, cc2, t1, t2); |
505 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
506 | ADD2 (a9.d, aa9.d, c1, cc1, c2, cc2, t1, t2); |
507 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
508 | ADD2 (a7.d, aa7.d, c1, cc1, c2, cc2, t1, t2); |
509 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
510 | ADD2 (a5.d, aa5.d, c1, cc1, c2, cc2, t1, t2); |
511 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
512 | ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2); |
513 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
514 | MUL2 (a, da, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8); |
515 | ADD2 (a, da, c2, cc2, c1, cc1, t1, t2); |
516 | |
517 | if (n) |
518 | { |
519 | /* Second stage -cot */ |
520 | DIV2 (1.0, 0.0, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, |
521 | t8, t9, t10); |
522 | if ((y = c2 + (cc2 - u16.d * c2)) == c2 + (cc2 + u16.d * c2)) |
523 | { |
524 | retval = (-y); |
525 | goto ret; |
526 | } |
527 | } |
528 | else |
529 | { |
530 | /* Second stage tan */ |
531 | if ((y = c1 + (cc1 - u15.d * c1)) == c1 + (cc1 + u15.d * c1)) |
532 | { |
533 | retval = (y); |
534 | goto ret; |
535 | } |
536 | } |
537 | retval = tanMp (x); |
538 | goto ret; |
539 | } |
540 | |
541 | /* (IX) The case 25 < abs(x) <= 1e8, 0.0608 < abs(y) <= 0.787 */ |
542 | /* First stage */ |
543 | i = ((int) (mfftnhf.d + TWO8 * ya)); |
544 | z = (z0 = (ya - xfg[i][0].d)) + yya; |
545 | z2 = z * z; |
546 | pz = z + z * z2 * (e0.d + z2 * e1.d); |
547 | fi = xfg[i][1].d; |
548 | gi = xfg[i][2].d; |
549 | |
550 | if (n) |
551 | { |
552 | /* -cot */ |
553 | t2 = pz * (fi + gi) / (fi + pz); |
554 | if ((y = gi - (t2 - gi * u18.d)) == gi - (t2 + gi * u18.d)) |
555 | { |
556 | retval = (-sy * y); |
557 | goto ret; |
558 | } |
559 | t3 = (t2 < 0.0) ? -t2 : t2; |
560 | t4 = gi * ua18.d + t3 * ub18.d; |
561 | if ((y = gi - (t2 - t4)) == gi - (t2 + t4)) |
562 | { |
563 | retval = (-sy * y); |
564 | goto ret; |
565 | } |
566 | } |
567 | else |
568 | { |
569 | /* tan */ |
570 | t2 = pz * (gi + fi) / (gi - pz); |
571 | if ((y = fi + (t2 - fi * u17.d)) == fi + (t2 + fi * u17.d)) |
572 | { |
573 | retval = (sy * y); |
574 | goto ret; |
575 | } |
576 | t3 = (t2 < 0.0) ? -t2 : t2; |
577 | t4 = fi * ua17.d + t3 * ub17.d; |
578 | if ((y = fi + (t2 - t4)) == fi + (t2 + t4)) |
579 | { |
580 | retval = (sy * y); |
581 | goto ret; |
582 | } |
583 | } |
584 | |
585 | /* Second stage */ |
586 | ffi = xfg[i][3].d; |
587 | EADD (z0, yya, z, zz); |
588 | MUL2 (z, zz, z, zz, z2, zz2, t1, t2, t3, t4, t5, t6, t7, t8); |
589 | c1 = z2 * (a7.d + z2 * (a9.d + z2 * a11.d)); |
590 | ADD2 (a5.d, aa5.d, c1, 0.0, c2, cc2, t1, t2); |
591 | MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
592 | ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2); |
593 | MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
594 | MUL2 (z, zz, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8); |
595 | ADD2 (z, zz, c2, cc2, c1, cc1, t1, t2); |
596 | |
597 | ADD2 (fi, ffi, c1, cc1, c2, cc2, t1, t2); |
598 | MUL2 (fi, ffi, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8); |
599 | SUB2 (1.0, 0.0, c3, cc3, c1, cc1, t1, t2); |
600 | |
601 | if (n) |
602 | { |
603 | /* -cot */ |
604 | DIV2 (c1, cc1, c2, cc2, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8, t9, |
605 | t10); |
606 | if ((y = c3 + (cc3 - u20.d * c3)) == c3 + (cc3 + u20.d * c3)) |
607 | { |
608 | retval = (-sy * y); |
609 | goto ret; |
610 | } |
611 | } |
612 | else |
613 | { |
614 | /* tan */ |
615 | DIV2 (c2, cc2, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8, t9, |
616 | t10); |
617 | if ((y = c3 + (cc3 - u19.d * c3)) == c3 + (cc3 + u19.d * c3)) |
618 | { |
619 | retval = (sy * y); |
620 | goto ret; |
621 | } |
622 | } |
623 | retval = tanMp (x); |
624 | goto ret; |
625 | } |
626 | |
627 | /* (---) The case 1e8 < abs(x) < 2**1024 */ |
628 | /* Range reduction by algorithm iii */ |
629 | n = (__branred (x, &a, &da)) & 0x00000001; |
630 | EADD (a, da, t1, t2); |
631 | a = t1; |
632 | da = t2; |
633 | if (a < 0.0) |
634 | { |
635 | ya = -a; |
636 | yya = -da; |
637 | sy = -1; |
638 | } |
639 | else |
640 | { |
641 | ya = a; |
642 | yya = da; |
643 | sy = 1; |
644 | } |
645 | |
646 | /* (+++) The case 1e8 < abs(x) < 2**1024, abs(y) <= 1e-7 */ |
647 | if (ya <= gy1.d) |
648 | { |
649 | retval = tanMp (x); |
650 | goto ret; |
651 | } |
652 | |
653 | /* (X) The case 1e8 < abs(x) < 2**1024, 1e-7 < abs(y) <= 0.0608 */ |
654 | if (ya <= gy2.d) |
655 | { |
656 | a2 = a * a; |
657 | t2 = d9.d + a2 * d11.d; |
658 | t2 = d7.d + a2 * t2; |
659 | t2 = d5.d + a2 * t2; |
660 | t2 = d3.d + a2 * t2; |
661 | t2 = da + a * a2 * t2; |
662 | if (n) |
663 | { |
664 | /* First stage -cot */ |
665 | EADD (a, t2, b, db); |
666 | DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4, t5, t6, t7, t8, t9, |
667 | t10); |
668 | if ((y = c + (dc - u22.d * c)) == c + (dc + u22.d * c)) |
669 | { |
670 | retval = (-y); |
671 | goto ret; |
672 | } |
673 | } |
674 | else |
675 | { |
676 | /* First stage tan */ |
677 | if ((y = a + (t2 - u21.d * a)) == a + (t2 + u21.d * a)) |
678 | { |
679 | retval = y; |
680 | goto ret; |
681 | } |
682 | } |
683 | |
684 | /* Second stage */ |
685 | /* Reduction by algorithm iv */ |
686 | p = 10; |
687 | n = (__mpranred (x, &mpa, p)) & 0x00000001; |
688 | __mp_dbl (&mpa, &a, p); |
689 | __dbl_mp (a, &mpt1, p); |
690 | __sub (&mpa, &mpt1, &mpt2, p); |
691 | __mp_dbl (&mpt2, &da, p); |
692 | |
693 | MUL2 (a, da, a, da, x2, xx2, t1, t2, t3, t4, t5, t6, t7, t8); |
694 | |
695 | c1 = a25.d + x2 * a27.d; |
696 | c1 = a23.d + x2 * c1; |
697 | c1 = a21.d + x2 * c1; |
698 | c1 = a19.d + x2 * c1; |
699 | c1 = a17.d + x2 * c1; |
700 | c1 = a15.d + x2 * c1; |
701 | c1 *= x2; |
702 | |
703 | ADD2 (a13.d, aa13.d, c1, 0.0, c2, cc2, t1, t2); |
704 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
705 | ADD2 (a11.d, aa11.d, c1, cc1, c2, cc2, t1, t2); |
706 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
707 | ADD2 (a9.d, aa9.d, c1, cc1, c2, cc2, t1, t2); |
708 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
709 | ADD2 (a7.d, aa7.d, c1, cc1, c2, cc2, t1, t2); |
710 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
711 | ADD2 (a5.d, aa5.d, c1, cc1, c2, cc2, t1, t2); |
712 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
713 | ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2); |
714 | MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
715 | MUL2 (a, da, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8); |
716 | ADD2 (a, da, c2, cc2, c1, cc1, t1, t2); |
717 | |
718 | if (n) |
719 | { |
720 | /* Second stage -cot */ |
721 | DIV2 (1.0, 0.0, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8, |
722 | t9, t10); |
723 | if ((y = c2 + (cc2 - u24.d * c2)) == c2 + (cc2 + u24.d * c2)) |
724 | { |
725 | retval = (-y); |
726 | goto ret; |
727 | } |
728 | } |
729 | else |
730 | { |
731 | /* Second stage tan */ |
732 | if ((y = c1 + (cc1 - u23.d * c1)) == c1 + (cc1 + u23.d * c1)) |
733 | { |
734 | retval = y; |
735 | goto ret; |
736 | } |
737 | } |
738 | retval = tanMp (x); |
739 | goto ret; |
740 | } |
741 | |
742 | /* (XI) The case 1e8 < abs(x) < 2**1024, 0.0608 < abs(y) <= 0.787 */ |
743 | /* First stage */ |
744 | i = ((int) (mfftnhf.d + TWO8 * ya)); |
745 | z = (z0 = (ya - xfg[i][0].d)) + yya; |
746 | z2 = z * z; |
747 | pz = z + z * z2 * (e0.d + z2 * e1.d); |
748 | fi = xfg[i][1].d; |
749 | gi = xfg[i][2].d; |
750 | |
751 | if (n) |
752 | { |
753 | /* -cot */ |
754 | t2 = pz * (fi + gi) / (fi + pz); |
755 | if ((y = gi - (t2 - gi * u26.d)) == gi - (t2 + gi * u26.d)) |
756 | { |
757 | retval = (-sy * y); |
758 | goto ret; |
759 | } |
760 | t3 = (t2 < 0.0) ? -t2 : t2; |
761 | t4 = gi * ua26.d + t3 * ub26.d; |
762 | if ((y = gi - (t2 - t4)) == gi - (t2 + t4)) |
763 | { |
764 | retval = (-sy * y); |
765 | goto ret; |
766 | } |
767 | } |
768 | else |
769 | { |
770 | /* tan */ |
771 | t2 = pz * (gi + fi) / (gi - pz); |
772 | if ((y = fi + (t2 - fi * u25.d)) == fi + (t2 + fi * u25.d)) |
773 | { |
774 | retval = (sy * y); |
775 | goto ret; |
776 | } |
777 | t3 = (t2 < 0.0) ? -t2 : t2; |
778 | t4 = fi * ua25.d + t3 * ub25.d; |
779 | if ((y = fi + (t2 - t4)) == fi + (t2 + t4)) |
780 | { |
781 | retval = (sy * y); |
782 | goto ret; |
783 | } |
784 | } |
785 | |
786 | /* Second stage */ |
787 | ffi = xfg[i][3].d; |
788 | EADD (z0, yya, z, zz); |
789 | MUL2 (z, zz, z, zz, z2, zz2, t1, t2, t3, t4, t5, t6, t7, t8); |
790 | c1 = z2 * (a7.d + z2 * (a9.d + z2 * a11.d)); |
791 | ADD2 (a5.d, aa5.d, c1, 0.0, c2, cc2, t1, t2); |
792 | MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
793 | ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2); |
794 | MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8); |
795 | MUL2 (z, zz, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8); |
796 | ADD2 (z, zz, c2, cc2, c1, cc1, t1, t2); |
797 | |
798 | ADD2 (fi, ffi, c1, cc1, c2, cc2, t1, t2); |
799 | MUL2 (fi, ffi, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8); |
800 | SUB2 (1.0, 0.0, c3, cc3, c1, cc1, t1, t2); |
801 | |
802 | if (n) |
803 | { |
804 | /* -cot */ |
805 | DIV2 (c1, cc1, c2, cc2, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8, t9, |
806 | t10); |
807 | if ((y = c3 + (cc3 - u28.d * c3)) == c3 + (cc3 + u28.d * c3)) |
808 | { |
809 | retval = (-sy * y); |
810 | goto ret; |
811 | } |
812 | } |
813 | else |
814 | { |
815 | /* tan */ |
816 | DIV2 (c2, cc2, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8, t9, |
817 | t10); |
818 | if ((y = c3 + (cc3 - u27.d * c3)) == c3 + (cc3 + u27.d * c3)) |
819 | { |
820 | retval = (sy * y); |
821 | goto ret; |
822 | } |
823 | } |
824 | retval = tanMp (x); |
825 | goto ret; |
826 | |
827 | ret: |
828 | return retval; |
829 | } |
830 | |
831 | /* multiple precision stage */ |
832 | /* Convert x to multi precision number,compute tan(x) by mptan() routine */ |
833 | /* and converts result back to double */ |
834 | static double |
835 | SECTION |
836 | tanMp (double x) |
837 | { |
838 | int p; |
839 | double y; |
840 | mp_no mpy; |
841 | p = 32; |
842 | __mptan (x, &mpy, p); |
843 | __mp_dbl (&mpy, &y, p); |
844 | LIBC_PROBE (slowtan, 2, &x, &y); |
845 | return y; |
846 | } |
847 | |
848 | #ifndef __tan |
849 | libm_alias_double (__tan, tan) |
850 | #endif |
851 | |