1 | /* Compute x * y + z as ternary operation. |
2 | Copyright (C) 2010-2018 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Jakub Jelinek <jakub@redhat.com>, 2010. |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <http://www.gnu.org/licenses/>. */ |
19 | |
20 | #include <float.h> |
21 | #include <math.h> |
22 | #include <fenv.h> |
23 | #include <ieee754.h> |
24 | #include <math-barriers.h> |
25 | #include <math_private.h> |
26 | #include <libm-alias-double.h> |
27 | #include <tininess.h> |
28 | |
29 | /* This implementation uses rounding to odd to avoid problems with |
30 | double rounding. See a paper by Boldo and Melquiond: |
31 | http://www.lri.fr/~melquion/doc/08-tc.pdf */ |
32 | |
33 | double |
34 | __fma (double x, double y, double z) |
35 | { |
36 | union ieee754_double u, v, w; |
37 | int adjust = 0; |
38 | u.d = x; |
39 | v.d = y; |
40 | w.d = z; |
41 | if (__builtin_expect (u.ieee.exponent + v.ieee.exponent |
42 | >= 0x7ff + IEEE754_DOUBLE_BIAS - DBL_MANT_DIG, 0) |
43 | || __builtin_expect (u.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0) |
44 | || __builtin_expect (v.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0) |
45 | || __builtin_expect (w.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0) |
46 | || __builtin_expect (u.ieee.exponent + v.ieee.exponent |
47 | <= IEEE754_DOUBLE_BIAS + DBL_MANT_DIG, 0)) |
48 | { |
49 | /* If z is Inf, but x and y are finite, the result should be |
50 | z rather than NaN. */ |
51 | if (w.ieee.exponent == 0x7ff |
52 | && u.ieee.exponent != 0x7ff |
53 | && v.ieee.exponent != 0x7ff) |
54 | return (z + x) + y; |
55 | /* If z is zero and x are y are nonzero, compute the result |
56 | as x * y to avoid the wrong sign of a zero result if x * y |
57 | underflows to 0. */ |
58 | if (z == 0 && x != 0 && y != 0) |
59 | return x * y; |
60 | /* If x or y or z is Inf/NaN, or if x * y is zero, compute as |
61 | x * y + z. */ |
62 | if (u.ieee.exponent == 0x7ff |
63 | || v.ieee.exponent == 0x7ff |
64 | || w.ieee.exponent == 0x7ff |
65 | || x == 0 |
66 | || y == 0) |
67 | return x * y + z; |
68 | /* If fma will certainly overflow, compute as x * y. */ |
69 | if (u.ieee.exponent + v.ieee.exponent > 0x7ff + IEEE754_DOUBLE_BIAS) |
70 | return x * y; |
71 | /* If x * y is less than 1/4 of DBL_TRUE_MIN, neither the |
72 | result nor whether there is underflow depends on its exact |
73 | value, only on its sign. */ |
74 | if (u.ieee.exponent + v.ieee.exponent |
75 | < IEEE754_DOUBLE_BIAS - DBL_MANT_DIG - 2) |
76 | { |
77 | int neg = u.ieee.negative ^ v.ieee.negative; |
78 | double tiny = neg ? -0x1p-1074 : 0x1p-1074; |
79 | if (w.ieee.exponent >= 3) |
80 | return tiny + z; |
81 | /* Scaling up, adding TINY and scaling down produces the |
82 | correct result, because in round-to-nearest mode adding |
83 | TINY has no effect and in other modes double rounding is |
84 | harmless. But it may not produce required underflow |
85 | exceptions. */ |
86 | v.d = z * 0x1p54 + tiny; |
87 | if (TININESS_AFTER_ROUNDING |
88 | ? v.ieee.exponent < 55 |
89 | : (w.ieee.exponent == 0 |
90 | || (w.ieee.exponent == 1 |
91 | && w.ieee.negative != neg |
92 | && w.ieee.mantissa1 == 0 |
93 | && w.ieee.mantissa0 == 0))) |
94 | { |
95 | double force_underflow = x * y; |
96 | math_force_eval (force_underflow); |
97 | } |
98 | return v.d * 0x1p-54; |
99 | } |
100 | if (u.ieee.exponent + v.ieee.exponent |
101 | >= 0x7ff + IEEE754_DOUBLE_BIAS - DBL_MANT_DIG) |
102 | { |
103 | /* Compute 1p-53 times smaller result and multiply |
104 | at the end. */ |
105 | if (u.ieee.exponent > v.ieee.exponent) |
106 | u.ieee.exponent -= DBL_MANT_DIG; |
107 | else |
108 | v.ieee.exponent -= DBL_MANT_DIG; |
109 | /* If x + y exponent is very large and z exponent is very small, |
110 | it doesn't matter if we don't adjust it. */ |
111 | if (w.ieee.exponent > DBL_MANT_DIG) |
112 | w.ieee.exponent -= DBL_MANT_DIG; |
113 | adjust = 1; |
114 | } |
115 | else if (w.ieee.exponent >= 0x7ff - DBL_MANT_DIG) |
116 | { |
117 | /* Similarly. |
118 | If z exponent is very large and x and y exponents are |
119 | very small, adjust them up to avoid spurious underflows, |
120 | rather than down. */ |
121 | if (u.ieee.exponent + v.ieee.exponent |
122 | <= IEEE754_DOUBLE_BIAS + 2 * DBL_MANT_DIG) |
123 | { |
124 | if (u.ieee.exponent > v.ieee.exponent) |
125 | u.ieee.exponent += 2 * DBL_MANT_DIG + 2; |
126 | else |
127 | v.ieee.exponent += 2 * DBL_MANT_DIG + 2; |
128 | } |
129 | else if (u.ieee.exponent > v.ieee.exponent) |
130 | { |
131 | if (u.ieee.exponent > DBL_MANT_DIG) |
132 | u.ieee.exponent -= DBL_MANT_DIG; |
133 | } |
134 | else if (v.ieee.exponent > DBL_MANT_DIG) |
135 | v.ieee.exponent -= DBL_MANT_DIG; |
136 | w.ieee.exponent -= DBL_MANT_DIG; |
137 | adjust = 1; |
138 | } |
139 | else if (u.ieee.exponent >= 0x7ff - DBL_MANT_DIG) |
140 | { |
141 | u.ieee.exponent -= DBL_MANT_DIG; |
142 | if (v.ieee.exponent) |
143 | v.ieee.exponent += DBL_MANT_DIG; |
144 | else |
145 | v.d *= 0x1p53; |
146 | } |
147 | else if (v.ieee.exponent >= 0x7ff - DBL_MANT_DIG) |
148 | { |
149 | v.ieee.exponent -= DBL_MANT_DIG; |
150 | if (u.ieee.exponent) |
151 | u.ieee.exponent += DBL_MANT_DIG; |
152 | else |
153 | u.d *= 0x1p53; |
154 | } |
155 | else /* if (u.ieee.exponent + v.ieee.exponent |
156 | <= IEEE754_DOUBLE_BIAS + DBL_MANT_DIG) */ |
157 | { |
158 | if (u.ieee.exponent > v.ieee.exponent) |
159 | u.ieee.exponent += 2 * DBL_MANT_DIG + 2; |
160 | else |
161 | v.ieee.exponent += 2 * DBL_MANT_DIG + 2; |
162 | if (w.ieee.exponent <= 4 * DBL_MANT_DIG + 6) |
163 | { |
164 | if (w.ieee.exponent) |
165 | w.ieee.exponent += 2 * DBL_MANT_DIG + 2; |
166 | else |
167 | w.d *= 0x1p108; |
168 | adjust = -1; |
169 | } |
170 | /* Otherwise x * y should just affect inexact |
171 | and nothing else. */ |
172 | } |
173 | x = u.d; |
174 | y = v.d; |
175 | z = w.d; |
176 | } |
177 | |
178 | /* Ensure correct sign of exact 0 + 0. */ |
179 | if (__glibc_unlikely ((x == 0 || y == 0) && z == 0)) |
180 | { |
181 | x = math_opt_barrier (x); |
182 | return x * y + z; |
183 | } |
184 | |
185 | fenv_t env; |
186 | libc_feholdexcept_setround (&env, FE_TONEAREST); |
187 | |
188 | /* Multiplication m1 + m2 = x * y using Dekker's algorithm. */ |
189 | #define C ((1 << (DBL_MANT_DIG + 1) / 2) + 1) |
190 | double x1 = x * C; |
191 | double y1 = y * C; |
192 | double m1 = x * y; |
193 | x1 = (x - x1) + x1; |
194 | y1 = (y - y1) + y1; |
195 | double x2 = x - x1; |
196 | double y2 = y - y1; |
197 | double m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2; |
198 | |
199 | /* Addition a1 + a2 = z + m1 using Knuth's algorithm. */ |
200 | double a1 = z + m1; |
201 | double t1 = a1 - z; |
202 | double t2 = a1 - t1; |
203 | t1 = m1 - t1; |
204 | t2 = z - t2; |
205 | double a2 = t1 + t2; |
206 | /* Ensure the arithmetic is not scheduled after feclearexcept call. */ |
207 | math_force_eval (m2); |
208 | math_force_eval (a2); |
209 | feclearexcept (FE_INEXACT); |
210 | |
211 | /* If the result is an exact zero, ensure it has the correct sign. */ |
212 | if (a1 == 0 && m2 == 0) |
213 | { |
214 | libc_feupdateenv (&env); |
215 | /* Ensure that round-to-nearest value of z + m1 is not reused. */ |
216 | z = math_opt_barrier (z); |
217 | return z + m1; |
218 | } |
219 | |
220 | libc_fesetround (FE_TOWARDZERO); |
221 | |
222 | /* Perform m2 + a2 addition with round to odd. */ |
223 | u.d = a2 + m2; |
224 | |
225 | if (__glibc_unlikely (adjust < 0)) |
226 | { |
227 | if ((u.ieee.mantissa1 & 1) == 0) |
228 | u.ieee.mantissa1 |= libc_fetestexcept (FE_INEXACT) != 0; |
229 | v.d = a1 + u.d; |
230 | /* Ensure the addition is not scheduled after fetestexcept call. */ |
231 | math_force_eval (v.d); |
232 | } |
233 | |
234 | /* Reset rounding mode and test for inexact simultaneously. */ |
235 | int j = libc_feupdateenv_test (&env, FE_INEXACT) != 0; |
236 | |
237 | if (__glibc_likely (adjust == 0)) |
238 | { |
239 | if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7ff) |
240 | u.ieee.mantissa1 |= j; |
241 | /* Result is a1 + u.d. */ |
242 | return a1 + u.d; |
243 | } |
244 | else if (__glibc_likely (adjust > 0)) |
245 | { |
246 | if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7ff) |
247 | u.ieee.mantissa1 |= j; |
248 | /* Result is a1 + u.d, scaled up. */ |
249 | return (a1 + u.d) * 0x1p53; |
250 | } |
251 | else |
252 | { |
253 | /* If a1 + u.d is exact, the only rounding happens during |
254 | scaling down. */ |
255 | if (j == 0) |
256 | return v.d * 0x1p-108; |
257 | /* If result rounded to zero is not subnormal, no double |
258 | rounding will occur. */ |
259 | if (v.ieee.exponent > 108) |
260 | return (a1 + u.d) * 0x1p-108; |
261 | /* If v.d * 0x1p-108 with round to zero is a subnormal above |
262 | or equal to DBL_MIN / 2, then v.d * 0x1p-108 shifts mantissa |
263 | down just by 1 bit, which means v.ieee.mantissa1 |= j would |
264 | change the round bit, not sticky or guard bit. |
265 | v.d * 0x1p-108 never normalizes by shifting up, |
266 | so round bit plus sticky bit should be already enough |
267 | for proper rounding. */ |
268 | if (v.ieee.exponent == 108) |
269 | { |
270 | /* If the exponent would be in the normal range when |
271 | rounding to normal precision with unbounded exponent |
272 | range, the exact result is known and spurious underflows |
273 | must be avoided on systems detecting tininess after |
274 | rounding. */ |
275 | if (TININESS_AFTER_ROUNDING) |
276 | { |
277 | w.d = a1 + u.d; |
278 | if (w.ieee.exponent == 109) |
279 | return w.d * 0x1p-108; |
280 | } |
281 | /* v.ieee.mantissa1 & 2 is LSB bit of the result before rounding, |
282 | v.ieee.mantissa1 & 1 is the round bit and j is our sticky |
283 | bit. */ |
284 | w.d = 0.0; |
285 | w.ieee.mantissa1 = ((v.ieee.mantissa1 & 3) << 1) | j; |
286 | w.ieee.negative = v.ieee.negative; |
287 | v.ieee.mantissa1 &= ~3U; |
288 | v.d *= 0x1p-108; |
289 | w.d *= 0x1p-2; |
290 | return v.d + w.d; |
291 | } |
292 | v.ieee.mantissa1 |= j; |
293 | return v.d * 0x1p-108; |
294 | } |
295 | } |
296 | #ifndef __fma |
297 | libm_alias_double (__fma, fma) |
298 | #endif |
299 | |