| 1 | /* |
| 2 | * IBM Accurate Mathematical Library |
| 3 | * written by International Business Machines Corp. |
| 4 | * Copyright (C) 2001-2018 Free Software Foundation, Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU Lesser General Public License as published by |
| 8 | * the Free Software Foundation; either version 2.1 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU Lesser General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Lesser General Public License |
| 17 | * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | /***************************************************************************/ |
| 20 | /* MODULE_NAME: upow.c */ |
| 21 | /* */ |
| 22 | /* FUNCTIONS: upow */ |
| 23 | /* log1 */ |
| 24 | /* checkint */ |
| 25 | /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h */ |
| 26 | /* root.tbl uexp.tbl upow.tbl */ |
| 27 | /* An ultimate power routine. Given two IEEE double machine numbers y,x */ |
| 28 | /* it computes the correctly rounded (to nearest) value of x^y. */ |
| 29 | /* Assumption: Machine arithmetic operations are performed in */ |
| 30 | /* round to nearest mode of IEEE 754 standard. */ |
| 31 | /* */ |
| 32 | /***************************************************************************/ |
| 33 | #include <math.h> |
| 34 | #include "endian.h" |
| 35 | #include "upow.h" |
| 36 | #include <dla.h> |
| 37 | #include "mydefs.h" |
| 38 | #include "MathLib.h" |
| 39 | #include "upow.tbl" |
| 40 | #include <math_private.h> |
| 41 | #include <math-underflow.h> |
| 42 | #include <fenv.h> |
| 43 | |
| 44 | #ifndef SECTION |
| 45 | # define SECTION |
| 46 | #endif |
| 47 | |
| 48 | static const double huge = 1.0e300, tiny = 1.0e-300; |
| 49 | |
| 50 | double __exp1 (double x, double xx); |
| 51 | static double log1 (double x, double *delta); |
| 52 | static int checkint (double x); |
| 53 | |
| 54 | /* An ultimate power routine. Given two IEEE double machine numbers y, x it |
| 55 | computes the correctly rounded (to nearest) value of X^y. */ |
| 56 | double |
| 57 | SECTION |
| 58 | __ieee754_pow (double x, double y) |
| 59 | { |
| 60 | double z, a, aa, t, a1, a2, y1, y2; |
| 61 | mynumber u, v; |
| 62 | int k; |
| 63 | int4 qx, qy; |
| 64 | v.x = y; |
| 65 | u.x = x; |
| 66 | if (v.i[LOW_HALF] == 0) |
| 67 | { /* of y */ |
| 68 | qx = u.i[HIGH_HALF] & 0x7fffffff; |
| 69 | /* Is x a NaN? */ |
| 70 | if ((((qx == 0x7ff00000) && (u.i[LOW_HALF] != 0)) || (qx > 0x7ff00000)) |
| 71 | && (y != 0 || issignaling (x))) |
| 72 | return x + x; |
| 73 | if (y == 1.0) |
| 74 | return x; |
| 75 | if (y == 2.0) |
| 76 | return x * x; |
| 77 | if (y == -1.0) |
| 78 | return 1.0 / x; |
| 79 | if (y == 0) |
| 80 | return 1.0; |
| 81 | } |
| 82 | /* else */ |
| 83 | if (((u.i[HIGH_HALF] > 0 && u.i[HIGH_HALF] < 0x7ff00000) || /* x>0 and not x->0 */ |
| 84 | (u.i[HIGH_HALF] == 0 && u.i[LOW_HALF] != 0)) && |
| 85 | /* 2^-1023< x<= 2^-1023 * 0x1.0000ffffffff */ |
| 86 | (v.i[HIGH_HALF] & 0x7fffffff) < 0x4ff00000) |
| 87 | { /* if y<-1 or y>1 */ |
| 88 | double retval; |
| 89 | |
| 90 | { |
| 91 | SET_RESTORE_ROUND (FE_TONEAREST); |
| 92 | |
| 93 | /* Avoid internal underflow for tiny y. The exact value of y does |
| 94 | not matter if |y| <= 2**-64. */ |
| 95 | if (fabs (y) < 0x1p-64) |
| 96 | y = y < 0 ? -0x1p-64 : 0x1p-64; |
| 97 | z = log1 (x, &aa); /* x^y =e^(y log (X)) */ |
| 98 | t = y * CN; |
| 99 | y1 = t - (t - y); |
| 100 | y2 = y - y1; |
| 101 | t = z * CN; |
| 102 | a1 = t - (t - z); |
| 103 | a2 = (z - a1) + aa; |
| 104 | a = y1 * a1; |
| 105 | aa = y2 * a1 + y * a2; |
| 106 | a1 = a + aa; |
| 107 | a2 = (a - a1) + aa; |
| 108 | |
| 109 | /* Maximum relative error RElog of log1 is 1.0e-21 (69.7 bits). |
| 110 | Maximum relative error REexp of __exp1 is 8.8e-22 (69.9 bits). |
| 111 | We actually compute exp ((1 + RElog) * log (x) * y) * (1 + REexp). |
| 112 | Since RElog/REexp are tiny and log (x) * y is at most log (DBL_MAX), |
| 113 | this is equivalent to pow (x, y) * (1 + 710 * RElog + REexp). |
| 114 | So the relative error is 710 * 1.0e-21 + 8.8e-22 = 7.1e-19 |
| 115 | (60.2 bits). The worst-case ULP error is 0.5064. */ |
| 116 | |
| 117 | retval = __exp1 (a1, a2); |
| 118 | } |
| 119 | |
| 120 | if (isinf (retval)) |
| 121 | retval = huge * huge; |
| 122 | else if (retval == 0) |
| 123 | retval = tiny * tiny; |
| 124 | else |
| 125 | math_check_force_underflow_nonneg (retval); |
| 126 | return retval; |
| 127 | } |
| 128 | |
| 129 | if (x == 0) |
| 130 | { |
| 131 | if (((v.i[HIGH_HALF] & 0x7fffffff) == 0x7ff00000 && v.i[LOW_HALF] != 0) |
| 132 | || (v.i[HIGH_HALF] & 0x7fffffff) > 0x7ff00000) /* NaN */ |
| 133 | return y + y; |
| 134 | if (fabs (y) > 1.0e20) |
| 135 | return (y > 0) ? 0 : 1.0 / 0.0; |
| 136 | k = checkint (y); |
| 137 | if (k == -1) |
| 138 | return y < 0 ? 1.0 / x : x; |
| 139 | else |
| 140 | return y < 0 ? 1.0 / 0.0 : 0.0; /* return 0 */ |
| 141 | } |
| 142 | |
| 143 | qx = u.i[HIGH_HALF] & 0x7fffffff; /* no sign */ |
| 144 | qy = v.i[HIGH_HALF] & 0x7fffffff; /* no sign */ |
| 145 | |
| 146 | if (qx >= 0x7ff00000 && (qx > 0x7ff00000 || u.i[LOW_HALF] != 0)) /* NaN */ |
| 147 | return x + y; |
| 148 | if (qy >= 0x7ff00000 && (qy > 0x7ff00000 || v.i[LOW_HALF] != 0)) /* NaN */ |
| 149 | return x == 1.0 && !issignaling (y) ? 1.0 : y + y; |
| 150 | |
| 151 | /* if x<0 */ |
| 152 | if (u.i[HIGH_HALF] < 0) |
| 153 | { |
| 154 | k = checkint (y); |
| 155 | if (k == 0) |
| 156 | { |
| 157 | if (qy == 0x7ff00000) |
| 158 | { |
| 159 | if (x == -1.0) |
| 160 | return 1.0; |
| 161 | else if (x > -1.0) |
| 162 | return v.i[HIGH_HALF] < 0 ? INF.x : 0.0; |
| 163 | else |
| 164 | return v.i[HIGH_HALF] < 0 ? 0.0 : INF.x; |
| 165 | } |
| 166 | else if (qx == 0x7ff00000) |
| 167 | return y < 0 ? 0.0 : INF.x; |
| 168 | return (x - x) / (x - x); /* y not integer and x<0 */ |
| 169 | } |
| 170 | else if (qx == 0x7ff00000) |
| 171 | { |
| 172 | if (k < 0) |
| 173 | return y < 0 ? nZERO.x : nINF.x; |
| 174 | else |
| 175 | return y < 0 ? 0.0 : INF.x; |
| 176 | } |
| 177 | /* if y even or odd */ |
| 178 | if (k == 1) |
| 179 | return __ieee754_pow (-x, y); |
| 180 | else |
| 181 | { |
| 182 | double retval; |
| 183 | { |
| 184 | SET_RESTORE_ROUND (FE_TONEAREST); |
| 185 | retval = -__ieee754_pow (-x, y); |
| 186 | } |
| 187 | if (isinf (retval)) |
| 188 | retval = -huge * huge; |
| 189 | else if (retval == 0) |
| 190 | retval = -tiny * tiny; |
| 191 | return retval; |
| 192 | } |
| 193 | } |
| 194 | /* x>0 */ |
| 195 | |
| 196 | if (qx == 0x7ff00000) /* x= 2^-0x3ff */ |
| 197 | return y > 0 ? x : 0; |
| 198 | |
| 199 | if (qy > 0x45f00000 && qy < 0x7ff00000) |
| 200 | { |
| 201 | if (x == 1.0) |
| 202 | return 1.0; |
| 203 | if (y > 0) |
| 204 | return (x > 1.0) ? huge * huge : tiny * tiny; |
| 205 | if (y < 0) |
| 206 | return (x < 1.0) ? huge * huge : tiny * tiny; |
| 207 | } |
| 208 | |
| 209 | if (x == 1.0) |
| 210 | return 1.0; |
| 211 | if (y > 0) |
| 212 | return (x > 1.0) ? INF.x : 0; |
| 213 | if (y < 0) |
| 214 | return (x < 1.0) ? INF.x : 0; |
| 215 | return 0; /* unreachable, to make the compiler happy */ |
| 216 | } |
| 217 | |
| 218 | #ifndef __ieee754_pow |
| 219 | strong_alias (__ieee754_pow, __pow_finite) |
| 220 | #endif |
| 221 | |
| 222 | /* Compute log(x) (x is left argument). The result is the returned double + the |
| 223 | parameter DELTA. */ |
| 224 | static double |
| 225 | SECTION |
| 226 | log1 (double x, double *delta) |
| 227 | { |
| 228 | unsigned int i, j; |
| 229 | int m; |
| 230 | double uu, vv, eps, nx, e, e1, e2, t, t1, t2, res, add = 0; |
| 231 | mynumber u, v; |
| 232 | #ifdef BIG_ENDI |
| 233 | mynumber /**/ two52 = {{0x43300000, 0x00000000}}; /* 2**52 */ |
| 234 | #else |
| 235 | # ifdef LITTLE_ENDI |
| 236 | mynumber /**/ two52 = {{0x00000000, 0x43300000}}; /* 2**52 */ |
| 237 | # endif |
| 238 | #endif |
| 239 | |
| 240 | u.x = x; |
| 241 | m = u.i[HIGH_HALF]; |
| 242 | if (m < 0x00100000) /* Handle denormal x. */ |
| 243 | { |
| 244 | x = x * t52.x; |
| 245 | add = -52.0; |
| 246 | u.x = x; |
| 247 | m = u.i[HIGH_HALF]; |
| 248 | } |
| 249 | |
| 250 | if ((m & 0x000fffff) < 0x0006a09e) |
| 251 | { |
| 252 | u.i[HIGH_HALF] = (m & 0x000fffff) | 0x3ff00000; |
| 253 | two52.i[LOW_HALF] = (m >> 20); |
| 254 | } |
| 255 | else |
| 256 | { |
| 257 | u.i[HIGH_HALF] = (m & 0x000fffff) | 0x3fe00000; |
| 258 | two52.i[LOW_HALF] = (m >> 20) + 1; |
| 259 | } |
| 260 | |
| 261 | v.x = u.x + bigu.x; |
| 262 | uu = v.x - bigu.x; |
| 263 | i = (v.i[LOW_HALF] & 0x000003ff) << 2; |
| 264 | if (two52.i[LOW_HALF] == 1023) /* Exponent of x is 0. */ |
| 265 | { |
| 266 | if (i > 1192 && i < 1208) /* |x-1| < 1.5*2**-10 */ |
| 267 | { |
| 268 | t = x - 1.0; |
| 269 | t1 = (t + 5.0e6) - 5.0e6; |
| 270 | t2 = t - t1; |
| 271 | e1 = t - 0.5 * t1 * t1; |
| 272 | e2 = (t * t * t * (r3 + t * (r4 + t * (r5 + t * (r6 + t |
| 273 | * (r7 + t * r8))))) |
| 274 | - 0.5 * t2 * (t + t1)); |
| 275 | res = e1 + e2; |
| 276 | *delta = (e1 - res) + e2; |
| 277 | /* Max relative error is 1.464844e-24, so accurate to 79.1 bits. */ |
| 278 | return res; |
| 279 | } /* |x-1| < 1.5*2**-10 */ |
| 280 | else |
| 281 | { |
| 282 | v.x = u.x * (ui.x[i] + ui.x[i + 1]) + bigv.x; |
| 283 | vv = v.x - bigv.x; |
| 284 | j = v.i[LOW_HALF] & 0x0007ffff; |
| 285 | j = j + j + j; |
| 286 | eps = u.x - uu * vv; |
| 287 | e1 = eps * ui.x[i]; |
| 288 | e2 = eps * (ui.x[i + 1] + vj.x[j] * (ui.x[i] + ui.x[i + 1])); |
| 289 | e = e1 + e2; |
| 290 | e2 = ((e1 - e) + e2); |
| 291 | t = ui.x[i + 2] + vj.x[j + 1]; |
| 292 | t1 = t + e; |
| 293 | t2 = ((((t - t1) + e) + (ui.x[i + 3] + vj.x[j + 2])) + e2 + e * e |
| 294 | * (p2 + e * (p3 + e * p4))); |
| 295 | res = t1 + t2; |
| 296 | *delta = (t1 - res) + t2; |
| 297 | /* Max relative error is 1.0e-24, so accurate to 79.7 bits. */ |
| 298 | return res; |
| 299 | } |
| 300 | } |
| 301 | else /* Exponent of x != 0. */ |
| 302 | { |
| 303 | eps = u.x - uu; |
| 304 | nx = (two52.x - two52e.x) + add; |
| 305 | e1 = eps * ui.x[i]; |
| 306 | e2 = eps * ui.x[i + 1]; |
| 307 | e = e1 + e2; |
| 308 | e2 = (e1 - e) + e2; |
| 309 | t = nx * ln2a.x + ui.x[i + 2]; |
| 310 | t1 = t + e; |
| 311 | t2 = ((((t - t1) + e) + nx * ln2b.x + ui.x[i + 3] + e2) + e * e |
| 312 | * (q2 + e * (q3 + e * (q4 + e * (q5 + e * q6))))); |
| 313 | res = t1 + t2; |
| 314 | *delta = (t1 - res) + t2; |
| 315 | /* Max relative error is 1.0e-21, so accurate to 69.7 bits. */ |
| 316 | return res; |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | |
| 321 | /* This function receives a double x and checks if it is an integer. If not, |
| 322 | it returns 0, else it returns 1 if even or -1 if odd. */ |
| 323 | static int |
| 324 | SECTION |
| 325 | checkint (double x) |
| 326 | { |
| 327 | union |
| 328 | { |
| 329 | int4 i[2]; |
| 330 | double x; |
| 331 | } u; |
| 332 | int k; |
| 333 | unsigned int m, n; |
| 334 | u.x = x; |
| 335 | m = u.i[HIGH_HALF] & 0x7fffffff; /* no sign */ |
| 336 | if (m >= 0x7ff00000) |
| 337 | return 0; /* x is +/-inf or NaN */ |
| 338 | if (m >= 0x43400000) |
| 339 | return 1; /* |x| >= 2**53 */ |
| 340 | if (m < 0x40000000) |
| 341 | return 0; /* |x| < 2, can not be 0 or 1 */ |
| 342 | n = u.i[LOW_HALF]; |
| 343 | k = (m >> 20) - 1023; /* 1 <= k <= 52 */ |
| 344 | if (k == 52) |
| 345 | return (n & 1) ? -1 : 1; /* odd or even */ |
| 346 | if (k > 20) |
| 347 | { |
| 348 | if (n << (k - 20) != 0) |
| 349 | return 0; /* if not integer */ |
| 350 | return (n << (k - 21) != 0) ? -1 : 1; |
| 351 | } |
| 352 | if (n) |
| 353 | return 0; /*if not integer */ |
| 354 | if (k == 20) |
| 355 | return (m & 1) ? -1 : 1; |
| 356 | if (m << (k + 12) != 0) |
| 357 | return 0; |
| 358 | return (m << (k + 11) != 0) ? -1 : 1; |
| 359 | } |
| 360 | |