1 | /* |
2 | * IBM Accurate Mathematical Library |
3 | * written by International Business Machines Corp. |
4 | * Copyright (C) 2001-2018 Free Software Foundation, Inc. |
5 | * |
6 | * This program is free software; you can redistribute it and/or modify |
7 | * it under the terms of the GNU Lesser General Public License as published by |
8 | * the Free Software Foundation; either version 2.1 of the License, or |
9 | * (at your option) any later version. |
10 | * |
11 | * This program is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | * GNU Lesser General Public License for more details. |
15 | * |
16 | * You should have received a copy of the GNU Lesser General Public License |
17 | * along with this program; if not, see <http://www.gnu.org/licenses/>. |
18 | */ |
19 | /***************************************************************************/ |
20 | /* MODULE_NAME:uexp.c */ |
21 | /* */ |
22 | /* FUNCTION:uexp */ |
23 | /* exp1 */ |
24 | /* */ |
25 | /* FILES NEEDED:dla.h endian.h mpa.h mydefs.h uexp.h */ |
26 | /* */ |
27 | /* An ultimate exp routine. Given an IEEE double machine number x */ |
28 | /* it computes an almost correctly rounded (to nearest) value of e^x */ |
29 | /* Assumption: Machine arithmetic operations are performed in */ |
30 | /* round to nearest mode of IEEE 754 standard. */ |
31 | /* */ |
32 | /***************************************************************************/ |
33 | |
34 | #include <math.h> |
35 | #include "endian.h" |
36 | #include "uexp.h" |
37 | #include "mydefs.h" |
38 | #include "MathLib.h" |
39 | #include "uexp.tbl" |
40 | #include <math-barriers.h> |
41 | #include <math_private.h> |
42 | #include <fenv.h> |
43 | #include <float.h> |
44 | #include "eexp.tbl" |
45 | |
46 | #ifndef SECTION |
47 | # define SECTION |
48 | #endif |
49 | |
50 | double |
51 | SECTION |
52 | __ieee754_exp (double x) |
53 | { |
54 | double bexp, t, eps, del, base, y, al, bet, res, rem, cor; |
55 | double z; |
56 | mynumber junk1, junk2, binexp = {{0, 0}}; |
57 | int4 i, j, m, n, ex; |
58 | int4 k; |
59 | double retval; |
60 | |
61 | { |
62 | SET_RESTORE_ROUND (FE_TONEAREST); |
63 | |
64 | junk1.x = x; |
65 | m = junk1.i[HIGH_HALF]; |
66 | n = m & hugeint; |
67 | |
68 | if (n < 0x3ff0a2b2) /* |x| < 1.03972053527832 */ |
69 | { |
70 | if (n < 0x3f862e42) /* |x| < 3/2 ln 2 */ |
71 | { |
72 | if (n < 0x3ed00000) /* |x| < 1/64 ln 2 */ |
73 | { |
74 | if (n < 0x3e300000) /* |x| < 2^18 */ |
75 | { |
76 | retval = one + junk1.x; |
77 | goto ret; |
78 | } |
79 | retval = one + junk1.x * (one + half * junk1.x); |
80 | goto ret; |
81 | } |
82 | t = junk1.x * junk1.x; |
83 | retval = junk1.x + (t * (half + junk1.x * t2) + |
84 | (t * t) * (t3 + junk1.x * t4 + t * t5)); |
85 | retval = one + retval; |
86 | goto ret; |
87 | } |
88 | |
89 | /* Find the multiple of 2^-6 nearest x. */ |
90 | k = n >> 20; |
91 | j = (0x00100000 | (n & 0x000fffff)) >> (0x40c - k); |
92 | j = (j - 1) & ~1; |
93 | if (m < 0) |
94 | j += 134; |
95 | z = junk1.x - TBL2[j]; |
96 | t = z * z; |
97 | retval = z + (t * (half + (z * t2)) |
98 | + (t * t) * (t3 + z * t4 + t * t5)); |
99 | retval = TBL2[j + 1] + TBL2[j + 1] * retval; |
100 | goto ret; |
101 | } |
102 | |
103 | if (n < bigint) /* && |x| >= 1.03972053527832 */ |
104 | { |
105 | y = x * log2e.x + three51.x; |
106 | bexp = y - three51.x; /* multiply the result by 2**bexp */ |
107 | |
108 | junk1.x = y; |
109 | |
110 | eps = bexp * ln_two2.x; /* x = bexp*ln(2) + t - eps */ |
111 | t = x - bexp * ln_two1.x; |
112 | |
113 | y = t + three33.x; |
114 | base = y - three33.x; /* t rounded to a multiple of 2**-18 */ |
115 | junk2.x = y; |
116 | del = (t - base) - eps; /* x = bexp*ln(2) + base + del */ |
117 | eps = del + del * del * (p3.x * del + p2.x); |
118 | |
119 | binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 1023) << 20; |
120 | |
121 | i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356; |
122 | j = (junk2.i[LOW_HALF] & 511) << 1; |
123 | |
124 | al = coar.x[i] * fine.x[j]; |
125 | bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j]) |
126 | + coar.x[i + 1] * fine.x[j + 1]); |
127 | |
128 | rem = (bet + bet * eps) + al * eps; |
129 | res = al + rem; |
130 | /* Maximum relative error is 7.8e-22 (70.1 bits). |
131 | Maximum ULP error is 0.500007. */ |
132 | retval = res * binexp.x; |
133 | goto ret; |
134 | } |
135 | |
136 | if (n >= badint) |
137 | { |
138 | if (n > infint) |
139 | { |
140 | retval = x + x; |
141 | goto ret; |
142 | } /* x is NaN */ |
143 | if (n < infint) |
144 | { |
145 | if (x > 0) |
146 | goto ret_huge; |
147 | else |
148 | goto ret_tiny; |
149 | } |
150 | /* x is finite, cause either overflow or underflow */ |
151 | if (junk1.i[LOW_HALF] != 0) |
152 | { |
153 | retval = x + x; |
154 | goto ret; |
155 | } /* x is NaN */ |
156 | retval = (x > 0) ? inf.x : zero; /* |x| = inf; return either inf or 0 */ |
157 | goto ret; |
158 | } |
159 | |
160 | y = x * log2e.x + three51.x; |
161 | bexp = y - three51.x; |
162 | junk1.x = y; |
163 | eps = bexp * ln_two2.x; |
164 | t = x - bexp * ln_two1.x; |
165 | y = t + three33.x; |
166 | base = y - three33.x; |
167 | junk2.x = y; |
168 | del = (t - base) - eps; |
169 | eps = del + del * del * (p3.x * del + p2.x); |
170 | i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356; |
171 | j = (junk2.i[LOW_HALF] & 511) << 1; |
172 | al = coar.x[i] * fine.x[j]; |
173 | bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j]) |
174 | + coar.x[i + 1] * fine.x[j + 1]); |
175 | rem = (bet + bet * eps) + al * eps; |
176 | res = al + rem; |
177 | cor = (al - res) + rem; |
178 | if (m >> 31) |
179 | { |
180 | ex = junk1.i[LOW_HALF]; |
181 | if (res < 1.0) |
182 | { |
183 | res += res; |
184 | cor += cor; |
185 | ex -= 1; |
186 | } |
187 | if (ex >= -1022) |
188 | { |
189 | binexp.i[HIGH_HALF] = (1023 + ex) << 20; |
190 | /* Does not underflow: res >= 1.0, binexp >= 0x1p-1022 |
191 | Maximum relative error is 7.8e-22 (70.1 bits). |
192 | Maximum ULP error is 0.500007. */ |
193 | retval = res * binexp.x; |
194 | goto ret; |
195 | } |
196 | ex = -(1022 + ex); |
197 | binexp.i[HIGH_HALF] = (1023 - ex) << 20; |
198 | res *= binexp.x; |
199 | cor *= binexp.x; |
200 | t = 1.0 + res; |
201 | y = ((1.0 - t) + res) + cor; |
202 | res = t + y; |
203 | /* Maximum ULP error is 0.5000035. */ |
204 | binexp.i[HIGH_HALF] = 0x00100000; |
205 | retval = (res - 1.0) * binexp.x; |
206 | if (retval < DBL_MIN) |
207 | { |
208 | double force_underflow = tiny * tiny; |
209 | math_force_eval (force_underflow); |
210 | } |
211 | if (retval == 0) |
212 | goto ret_tiny; |
213 | goto ret; |
214 | } |
215 | else |
216 | { |
217 | binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 767) << 20; |
218 | /* Maximum relative error is 7.8e-22 (70.1 bits). |
219 | Maximum ULP error is 0.500007. */ |
220 | retval = res * binexp.x * t256.x; |
221 | if (isinf (retval)) |
222 | goto ret_huge; |
223 | else |
224 | goto ret; |
225 | } |
226 | } |
227 | ret: |
228 | return retval; |
229 | |
230 | ret_huge: |
231 | return hhuge * hhuge; |
232 | |
233 | ret_tiny: |
234 | return tiny * tiny; |
235 | } |
236 | #ifndef __ieee754_exp |
237 | strong_alias (__ieee754_exp, __exp_finite) |
238 | #endif |
239 | |
240 | /* Compute e^(x+xx). */ |
241 | double |
242 | SECTION |
243 | __exp1 (double x, double xx) |
244 | { |
245 | double bexp, t, eps, del, base, y, al, bet, res, rem, cor; |
246 | mynumber junk1, junk2, binexp = {{0, 0}}; |
247 | int4 i, j, m, n, ex; |
248 | |
249 | junk1.x = x; |
250 | m = junk1.i[HIGH_HALF]; |
251 | n = m & hugeint; /* no sign */ |
252 | |
253 | /* fabs (x) > 5.551112e-17 and fabs (x) < 7.080010e+02. */ |
254 | if (n > smallint && n < bigint) |
255 | { |
256 | y = x * log2e.x + three51.x; |
257 | bexp = y - three51.x; /* multiply the result by 2**bexp */ |
258 | |
259 | junk1.x = y; |
260 | |
261 | eps = bexp * ln_two2.x; /* x = bexp*ln(2) + t - eps */ |
262 | t = x - bexp * ln_two1.x; |
263 | |
264 | y = t + three33.x; |
265 | base = y - three33.x; /* t rounded to a multiple of 2**-18 */ |
266 | junk2.x = y; |
267 | del = (t - base) + (xx - eps); /* x = bexp*ln(2) + base + del */ |
268 | eps = del + del * del * (p3.x * del + p2.x); |
269 | |
270 | binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 1023) << 20; |
271 | |
272 | i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356; |
273 | j = (junk2.i[LOW_HALF] & 511) << 1; |
274 | |
275 | al = coar.x[i] * fine.x[j]; |
276 | bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j]) |
277 | + coar.x[i + 1] * fine.x[j + 1]); |
278 | |
279 | rem = (bet + bet * eps) + al * eps; |
280 | res = al + rem; |
281 | /* Maximum relative error before rounding is 8.8e-22 (69.9 bits). |
282 | Maximum ULP error is 0.500008. */ |
283 | return res * binexp.x; |
284 | } |
285 | |
286 | if (n <= smallint) |
287 | return 1.0; /* if x->0 e^x=1 */ |
288 | |
289 | if (n >= badint) |
290 | { |
291 | if (n > infint) |
292 | return (zero / zero); /* x is NaN, return invalid */ |
293 | if (n < infint) |
294 | return ((x > 0) ? (hhuge * hhuge) : (tiny * tiny)); |
295 | /* x is finite, cause either overflow or underflow */ |
296 | if (junk1.i[LOW_HALF] != 0) |
297 | return (zero / zero); /* x is NaN */ |
298 | return ((x > 0) ? inf.x : zero); /* |x| = inf; return either inf or 0 */ |
299 | } |
300 | |
301 | y = x * log2e.x + three51.x; |
302 | bexp = y - three51.x; |
303 | junk1.x = y; |
304 | eps = bexp * ln_two2.x; |
305 | t = x - bexp * ln_two1.x; |
306 | y = t + three33.x; |
307 | base = y - three33.x; |
308 | junk2.x = y; |
309 | del = (t - base) + (xx - eps); |
310 | eps = del + del * del * (p3.x * del + p2.x); |
311 | i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356; |
312 | j = (junk2.i[LOW_HALF] & 511) << 1; |
313 | al = coar.x[i] * fine.x[j]; |
314 | bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j]) |
315 | + coar.x[i + 1] * fine.x[j + 1]); |
316 | rem = (bet + bet * eps) + al * eps; |
317 | res = al + rem; |
318 | cor = (al - res) + rem; |
319 | if (m >> 31) |
320 | { |
321 | /* x < 0. */ |
322 | ex = junk1.i[LOW_HALF]; |
323 | if (res < 1.0) |
324 | { |
325 | res += res; |
326 | cor += cor; |
327 | ex -= 1; |
328 | } |
329 | if (ex >= -1022) |
330 | { |
331 | binexp.i[HIGH_HALF] = (1023 + ex) << 20; |
332 | /* Maximum ULP error is 0.500008. */ |
333 | return res * binexp.x; |
334 | } |
335 | /* Denormal case - ex < -1022. */ |
336 | ex = -(1022 + ex); |
337 | binexp.i[HIGH_HALF] = (1023 - ex) << 20; |
338 | res *= binexp.x; |
339 | cor *= binexp.x; |
340 | t = 1.0 + res; |
341 | y = ((1.0 - t) + res) + cor; |
342 | res = t + y; |
343 | binexp.i[HIGH_HALF] = 0x00100000; |
344 | /* Maximum ULP error is 0.500004. */ |
345 | return (res - 1.0) * binexp.x; |
346 | } |
347 | else |
348 | { |
349 | binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 767) << 20; |
350 | /* Maximum ULP error is 0.500008. */ |
351 | return res * binexp.x * t256.x; |
352 | } |
353 | } |
354 | |