1 | /* |
2 | * IBM Accurate Mathematical Library |
3 | * written by International Business Machines Corp. |
4 | * Copyright (C) 2001-2018 Free Software Foundation, Inc. |
5 | * |
6 | * This program is free software; you can redistribute it and/or modify |
7 | * it under the terms of the GNU Lesser General Public License as published by |
8 | * the Free Software Foundation; either version 2.1 of the License, or |
9 | * (at your option) any later version. |
10 | * |
11 | * This program is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | * GNU Lesser General Public License for more details. |
15 | * |
16 | * You should have received a copy of the GNU Lesser General Public License |
17 | * along with this program; if not, see <http://www.gnu.org/licenses/>. |
18 | */ |
19 | /************************************************************************/ |
20 | /* MODULE_NAME: atnat2.c */ |
21 | /* */ |
22 | /* FUNCTIONS: uatan2 */ |
23 | /* atan2Mp */ |
24 | /* signArctan2 */ |
25 | /* normalized */ |
26 | /* */ |
27 | /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat2.h */ |
28 | /* mpatan.c mpatan2.c mpsqrt.c */ |
29 | /* uatan.tbl */ |
30 | /* */ |
31 | /* An ultimate atan2() routine. Given two IEEE double machine numbers y,*/ |
32 | /* x it computes the correctly rounded (to nearest) value of atan2(y,x).*/ |
33 | /* */ |
34 | /* Assumption: Machine arithmetic operations are performed in */ |
35 | /* round to nearest mode of IEEE 754 standard. */ |
36 | /* */ |
37 | /************************************************************************/ |
38 | |
39 | #include <dla.h> |
40 | #include "mpa.h" |
41 | #include "MathLib.h" |
42 | #include "uatan.tbl" |
43 | #include "atnat2.h" |
44 | #include <fenv.h> |
45 | #include <float.h> |
46 | #include <math.h> |
47 | #include <math-barriers.h> |
48 | #include <math_private.h> |
49 | #include <stap-probe.h> |
50 | |
51 | #ifndef SECTION |
52 | # define SECTION |
53 | #endif |
54 | |
55 | /************************************************************************/ |
56 | /* An ultimate atan2 routine. Given two IEEE double machine numbers y,x */ |
57 | /* it computes the correctly rounded (to nearest) value of atan2(y,x). */ |
58 | /* Assumption: Machine arithmetic operations are performed in */ |
59 | /* round to nearest mode of IEEE 754 standard. */ |
60 | /************************************************************************/ |
61 | static double atan2Mp (double, double, const int[]); |
62 | /* Fix the sign and return after stage 1 or stage 2 */ |
63 | static double |
64 | signArctan2 (double y, double z) |
65 | { |
66 | return __copysign (z, y); |
67 | } |
68 | |
69 | static double normalized (double, double, double, double); |
70 | void __mpatan2 (mp_no *, mp_no *, mp_no *, int); |
71 | |
72 | double |
73 | SECTION |
74 | __ieee754_atan2 (double y, double x) |
75 | { |
76 | int i, de, ux, dx, uy, dy; |
77 | static const int pr[MM] = { 6, 8, 10, 20, 32 }; |
78 | double ax, ay, u, du, u9, ua, v, vv, dv, t1, t2, t3, t7, t8, |
79 | z, zz, cor, s1, ss1, s2, ss2; |
80 | #ifndef DLA_FMS |
81 | double t4, t5, t6; |
82 | #endif |
83 | number num; |
84 | |
85 | static const int ep = 59768832, /* 57*16**5 */ |
86 | em = -59768832; /* -57*16**5 */ |
87 | |
88 | /* x=NaN or y=NaN */ |
89 | num.d = x; |
90 | ux = num.i[HIGH_HALF]; |
91 | dx = num.i[LOW_HALF]; |
92 | if ((ux & 0x7ff00000) == 0x7ff00000) |
93 | { |
94 | if (((ux & 0x000fffff) | dx) != 0x00000000) |
95 | return x + y; |
96 | } |
97 | num.d = y; |
98 | uy = num.i[HIGH_HALF]; |
99 | dy = num.i[LOW_HALF]; |
100 | if ((uy & 0x7ff00000) == 0x7ff00000) |
101 | { |
102 | if (((uy & 0x000fffff) | dy) != 0x00000000) |
103 | return y + y; |
104 | } |
105 | |
106 | /* y=+-0 */ |
107 | if (uy == 0x00000000) |
108 | { |
109 | if (dy == 0x00000000) |
110 | { |
111 | if ((ux & 0x80000000) == 0x00000000) |
112 | return 0; |
113 | else |
114 | return opi.d; |
115 | } |
116 | } |
117 | else if (uy == 0x80000000) |
118 | { |
119 | if (dy == 0x00000000) |
120 | { |
121 | if ((ux & 0x80000000) == 0x00000000) |
122 | return -0.0; |
123 | else |
124 | return mopi.d; |
125 | } |
126 | } |
127 | |
128 | /* x=+-0 */ |
129 | if (x == 0) |
130 | { |
131 | if ((uy & 0x80000000) == 0x00000000) |
132 | return hpi.d; |
133 | else |
134 | return mhpi.d; |
135 | } |
136 | |
137 | /* x=+-INF */ |
138 | if (ux == 0x7ff00000) |
139 | { |
140 | if (dx == 0x00000000) |
141 | { |
142 | if (uy == 0x7ff00000) |
143 | { |
144 | if (dy == 0x00000000) |
145 | return qpi.d; |
146 | } |
147 | else if (uy == 0xfff00000) |
148 | { |
149 | if (dy == 0x00000000) |
150 | return mqpi.d; |
151 | } |
152 | else |
153 | { |
154 | if ((uy & 0x80000000) == 0x00000000) |
155 | return 0; |
156 | else |
157 | return -0.0; |
158 | } |
159 | } |
160 | } |
161 | else if (ux == 0xfff00000) |
162 | { |
163 | if (dx == 0x00000000) |
164 | { |
165 | if (uy == 0x7ff00000) |
166 | { |
167 | if (dy == 0x00000000) |
168 | return tqpi.d; |
169 | } |
170 | else if (uy == 0xfff00000) |
171 | { |
172 | if (dy == 0x00000000) |
173 | return mtqpi.d; |
174 | } |
175 | else |
176 | { |
177 | if ((uy & 0x80000000) == 0x00000000) |
178 | return opi.d; |
179 | else |
180 | return mopi.d; |
181 | } |
182 | } |
183 | } |
184 | |
185 | /* y=+-INF */ |
186 | if (uy == 0x7ff00000) |
187 | { |
188 | if (dy == 0x00000000) |
189 | return hpi.d; |
190 | } |
191 | else if (uy == 0xfff00000) |
192 | { |
193 | if (dy == 0x00000000) |
194 | return mhpi.d; |
195 | } |
196 | |
197 | SET_RESTORE_ROUND (FE_TONEAREST); |
198 | /* either x/y or y/x is very close to zero */ |
199 | ax = (x < 0) ? -x : x; |
200 | ay = (y < 0) ? -y : y; |
201 | de = (uy & 0x7ff00000) - (ux & 0x7ff00000); |
202 | if (de >= ep) |
203 | { |
204 | return ((y > 0) ? hpi.d : mhpi.d); |
205 | } |
206 | else if (de <= em) |
207 | { |
208 | if (x > 0) |
209 | { |
210 | double ret; |
211 | if ((z = ay / ax) < TWOM1022) |
212 | ret = normalized (ax, ay, y, z); |
213 | else |
214 | ret = signArctan2 (y, z); |
215 | if (fabs (ret) < DBL_MIN) |
216 | { |
217 | double vret = ret ? ret : DBL_MIN; |
218 | double force_underflow = vret * vret; |
219 | math_force_eval (force_underflow); |
220 | } |
221 | return ret; |
222 | } |
223 | else |
224 | { |
225 | return ((y > 0) ? opi.d : mopi.d); |
226 | } |
227 | } |
228 | |
229 | /* if either x or y is extremely close to zero, scale abs(x), abs(y). */ |
230 | if (ax < twom500.d || ay < twom500.d) |
231 | { |
232 | ax *= two500.d; |
233 | ay *= two500.d; |
234 | } |
235 | |
236 | /* Likewise for large x and y. */ |
237 | if (ax > two500.d || ay > two500.d) |
238 | { |
239 | ax *= twom500.d; |
240 | ay *= twom500.d; |
241 | } |
242 | |
243 | /* x,y which are neither special nor extreme */ |
244 | if (ay < ax) |
245 | { |
246 | u = ay / ax; |
247 | EMULV (ax, u, v, vv, t1, t2, t3, t4, t5); |
248 | du = ((ay - v) - vv) / ax; |
249 | } |
250 | else |
251 | { |
252 | u = ax / ay; |
253 | EMULV (ay, u, v, vv, t1, t2, t3, t4, t5); |
254 | du = ((ax - v) - vv) / ay; |
255 | } |
256 | |
257 | if (x > 0) |
258 | { |
259 | /* (i) x>0, abs(y)< abs(x): atan(ay/ax) */ |
260 | if (ay < ax) |
261 | { |
262 | if (u < inv16.d) |
263 | { |
264 | v = u * u; |
265 | |
266 | zz = du + u * v * (d3.d |
267 | + v * (d5.d |
268 | + v * (d7.d |
269 | + v * (d9.d |
270 | + v * (d11.d |
271 | + v * d13.d))))); |
272 | |
273 | if ((z = u + (zz - u1.d * u)) == u + (zz + u1.d * u)) |
274 | return signArctan2 (y, z); |
275 | |
276 | MUL2 (u, du, u, du, v, vv, t1, t2, t3, t4, t5, t6, t7, t8); |
277 | s1 = v * (f11.d + v * (f13.d |
278 | + v * (f15.d + v * (f17.d + v * f19.d)))); |
279 | ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2); |
280 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
281 | ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2); |
282 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
283 | ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2); |
284 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
285 | ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2); |
286 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
287 | MUL2 (u, du, s1, ss1, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); |
288 | ADD2 (u, du, s2, ss2, s1, ss1, t1, t2); |
289 | |
290 | if ((z = s1 + (ss1 - u5.d * s1)) == s1 + (ss1 + u5.d * s1)) |
291 | return signArctan2 (y, z); |
292 | |
293 | return atan2Mp (x, y, pr); |
294 | } |
295 | |
296 | i = (TWO52 + TWO8 * u) - TWO52; |
297 | i -= 16; |
298 | t3 = u - cij[i][0].d; |
299 | EADD (t3, du, v, dv); |
300 | t1 = cij[i][1].d; |
301 | t2 = cij[i][2].d; |
302 | zz = v * t2 + (dv * t2 |
303 | + v * v * (cij[i][3].d |
304 | + v * (cij[i][4].d |
305 | + v * (cij[i][5].d |
306 | + v * cij[i][6].d)))); |
307 | if (i < 112) |
308 | { |
309 | if (i < 48) |
310 | u9 = u91.d; /* u < 1/4 */ |
311 | else |
312 | u9 = u92.d; |
313 | } /* 1/4 <= u < 1/2 */ |
314 | else |
315 | { |
316 | if (i < 176) |
317 | u9 = u93.d; /* 1/2 <= u < 3/4 */ |
318 | else |
319 | u9 = u94.d; |
320 | } /* 3/4 <= u <= 1 */ |
321 | if ((z = t1 + (zz - u9 * t1)) == t1 + (zz + u9 * t1)) |
322 | return signArctan2 (y, z); |
323 | |
324 | t1 = u - hij[i][0].d; |
325 | EADD (t1, du, v, vv); |
326 | s1 = v * (hij[i][11].d |
327 | + v * (hij[i][12].d |
328 | + v * (hij[i][13].d |
329 | + v * (hij[i][14].d |
330 | + v * hij[i][15].d)))); |
331 | ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2); |
332 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
333 | ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2); |
334 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
335 | ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2); |
336 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
337 | ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2); |
338 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
339 | ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2); |
340 | |
341 | if ((z = s2 + (ss2 - ub.d * s2)) == s2 + (ss2 + ub.d * s2)) |
342 | return signArctan2 (y, z); |
343 | return atan2Mp (x, y, pr); |
344 | } |
345 | |
346 | /* (ii) x>0, abs(x)<=abs(y): pi/2-atan(ax/ay) */ |
347 | if (u < inv16.d) |
348 | { |
349 | v = u * u; |
350 | zz = u * v * (d3.d |
351 | + v * (d5.d |
352 | + v * (d7.d |
353 | + v * (d9.d |
354 | + v * (d11.d |
355 | + v * d13.d))))); |
356 | ESUB (hpi.d, u, t2, cor); |
357 | t3 = ((hpi1.d + cor) - du) - zz; |
358 | if ((z = t2 + (t3 - u2.d)) == t2 + (t3 + u2.d)) |
359 | return signArctan2 (y, z); |
360 | |
361 | MUL2 (u, du, u, du, v, vv, t1, t2, t3, t4, t5, t6, t7, t8); |
362 | s1 = v * (f11.d |
363 | + v * (f13.d |
364 | + v * (f15.d + v * (f17.d + v * f19.d)))); |
365 | ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2); |
366 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
367 | ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2); |
368 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
369 | ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2); |
370 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
371 | ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2); |
372 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
373 | MUL2 (u, du, s1, ss1, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); |
374 | ADD2 (u, du, s2, ss2, s1, ss1, t1, t2); |
375 | SUB2 (hpi.d, hpi1.d, s1, ss1, s2, ss2, t1, t2); |
376 | |
377 | if ((z = s2 + (ss2 - u6.d)) == s2 + (ss2 + u6.d)) |
378 | return signArctan2 (y, z); |
379 | return atan2Mp (x, y, pr); |
380 | } |
381 | |
382 | i = (TWO52 + TWO8 * u) - TWO52; |
383 | i -= 16; |
384 | v = (u - cij[i][0].d) + du; |
385 | |
386 | zz = hpi1.d - v * (cij[i][2].d |
387 | + v * (cij[i][3].d |
388 | + v * (cij[i][4].d |
389 | + v * (cij[i][5].d |
390 | + v * cij[i][6].d)))); |
391 | t1 = hpi.d - cij[i][1].d; |
392 | if (i < 112) |
393 | ua = ua1.d; /* w < 1/2 */ |
394 | else |
395 | ua = ua2.d; /* w >= 1/2 */ |
396 | if ((z = t1 + (zz - ua)) == t1 + (zz + ua)) |
397 | return signArctan2 (y, z); |
398 | |
399 | t1 = u - hij[i][0].d; |
400 | EADD (t1, du, v, vv); |
401 | |
402 | s1 = v * (hij[i][11].d |
403 | + v * (hij[i][12].d |
404 | + v * (hij[i][13].d |
405 | + v * (hij[i][14].d |
406 | + v * hij[i][15].d)))); |
407 | |
408 | ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2); |
409 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
410 | ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2); |
411 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
412 | ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2); |
413 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
414 | ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2); |
415 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
416 | ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2); |
417 | SUB2 (hpi.d, hpi1.d, s2, ss2, s1, ss1, t1, t2); |
418 | |
419 | if ((z = s1 + (ss1 - uc.d)) == s1 + (ss1 + uc.d)) |
420 | return signArctan2 (y, z); |
421 | return atan2Mp (x, y, pr); |
422 | } |
423 | |
424 | /* (iii) x<0, abs(x)< abs(y): pi/2+atan(ax/ay) */ |
425 | if (ax < ay) |
426 | { |
427 | if (u < inv16.d) |
428 | { |
429 | v = u * u; |
430 | zz = u * v * (d3.d |
431 | + v * (d5.d |
432 | + v * (d7.d |
433 | + v * (d9.d |
434 | + v * (d11.d + v * d13.d))))); |
435 | EADD (hpi.d, u, t2, cor); |
436 | t3 = ((hpi1.d + cor) + du) + zz; |
437 | if ((z = t2 + (t3 - u3.d)) == t2 + (t3 + u3.d)) |
438 | return signArctan2 (y, z); |
439 | |
440 | MUL2 (u, du, u, du, v, vv, t1, t2, t3, t4, t5, t6, t7, t8); |
441 | s1 = v * (f11.d |
442 | + v * (f13.d + v * (f15.d + v * (f17.d + v * f19.d)))); |
443 | ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2); |
444 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
445 | ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2); |
446 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
447 | ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2); |
448 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
449 | ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2); |
450 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
451 | MUL2 (u, du, s1, ss1, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); |
452 | ADD2 (u, du, s2, ss2, s1, ss1, t1, t2); |
453 | ADD2 (hpi.d, hpi1.d, s1, ss1, s2, ss2, t1, t2); |
454 | |
455 | if ((z = s2 + (ss2 - u7.d)) == s2 + (ss2 + u7.d)) |
456 | return signArctan2 (y, z); |
457 | return atan2Mp (x, y, pr); |
458 | } |
459 | |
460 | i = (TWO52 + TWO8 * u) - TWO52; |
461 | i -= 16; |
462 | v = (u - cij[i][0].d) + du; |
463 | zz = hpi1.d + v * (cij[i][2].d |
464 | + v * (cij[i][3].d |
465 | + v * (cij[i][4].d |
466 | + v * (cij[i][5].d |
467 | + v * cij[i][6].d)))); |
468 | t1 = hpi.d + cij[i][1].d; |
469 | if (i < 112) |
470 | ua = ua1.d; /* w < 1/2 */ |
471 | else |
472 | ua = ua2.d; /* w >= 1/2 */ |
473 | if ((z = t1 + (zz - ua)) == t1 + (zz + ua)) |
474 | return signArctan2 (y, z); |
475 | |
476 | t1 = u - hij[i][0].d; |
477 | EADD (t1, du, v, vv); |
478 | s1 = v * (hij[i][11].d |
479 | + v * (hij[i][12].d |
480 | + v * (hij[i][13].d |
481 | + v * (hij[i][14].d |
482 | + v * hij[i][15].d)))); |
483 | ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2); |
484 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
485 | ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2); |
486 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
487 | ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2); |
488 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
489 | ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2); |
490 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
491 | ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2); |
492 | ADD2 (hpi.d, hpi1.d, s2, ss2, s1, ss1, t1, t2); |
493 | |
494 | if ((z = s1 + (ss1 - uc.d)) == s1 + (ss1 + uc.d)) |
495 | return signArctan2 (y, z); |
496 | return atan2Mp (x, y, pr); |
497 | } |
498 | |
499 | /* (iv) x<0, abs(y)<=abs(x): pi-atan(ax/ay) */ |
500 | if (u < inv16.d) |
501 | { |
502 | v = u * u; |
503 | zz = u * v * (d3.d |
504 | + v * (d5.d |
505 | + v * (d7.d |
506 | + v * (d9.d + v * (d11.d + v * d13.d))))); |
507 | ESUB (opi.d, u, t2, cor); |
508 | t3 = ((opi1.d + cor) - du) - zz; |
509 | if ((z = t2 + (t3 - u4.d)) == t2 + (t3 + u4.d)) |
510 | return signArctan2 (y, z); |
511 | |
512 | MUL2 (u, du, u, du, v, vv, t1, t2, t3, t4, t5, t6, t7, t8); |
513 | s1 = v * (f11.d + v * (f13.d + v * (f15.d + v * (f17.d + v * f19.d)))); |
514 | ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2); |
515 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
516 | ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2); |
517 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
518 | ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2); |
519 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
520 | ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2); |
521 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
522 | MUL2 (u, du, s1, ss1, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); |
523 | ADD2 (u, du, s2, ss2, s1, ss1, t1, t2); |
524 | SUB2 (opi.d, opi1.d, s1, ss1, s2, ss2, t1, t2); |
525 | |
526 | if ((z = s2 + (ss2 - u8.d)) == s2 + (ss2 + u8.d)) |
527 | return signArctan2 (y, z); |
528 | return atan2Mp (x, y, pr); |
529 | } |
530 | |
531 | i = (TWO52 + TWO8 * u) - TWO52; |
532 | i -= 16; |
533 | v = (u - cij[i][0].d) + du; |
534 | zz = opi1.d - v * (cij[i][2].d |
535 | + v * (cij[i][3].d |
536 | + v * (cij[i][4].d |
537 | + v * (cij[i][5].d + v * cij[i][6].d)))); |
538 | t1 = opi.d - cij[i][1].d; |
539 | if (i < 112) |
540 | ua = ua1.d; /* w < 1/2 */ |
541 | else |
542 | ua = ua2.d; /* w >= 1/2 */ |
543 | if ((z = t1 + (zz - ua)) == t1 + (zz + ua)) |
544 | return signArctan2 (y, z); |
545 | |
546 | t1 = u - hij[i][0].d; |
547 | |
548 | EADD (t1, du, v, vv); |
549 | |
550 | s1 = v * (hij[i][11].d |
551 | + v * (hij[i][12].d |
552 | + v * (hij[i][13].d |
553 | + v * (hij[i][14].d + v * hij[i][15].d)))); |
554 | |
555 | ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2); |
556 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
557 | ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2); |
558 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
559 | ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2); |
560 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
561 | ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2); |
562 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); |
563 | ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2); |
564 | SUB2 (opi.d, opi1.d, s2, ss2, s1, ss1, t1, t2); |
565 | |
566 | if ((z = s1 + (ss1 - uc.d)) == s1 + (ss1 + uc.d)) |
567 | return signArctan2 (y, z); |
568 | return atan2Mp (x, y, pr); |
569 | } |
570 | |
571 | #ifndef __ieee754_atan2 |
572 | strong_alias (__ieee754_atan2, __atan2_finite) |
573 | #endif |
574 | |
575 | /* Treat the Denormalized case */ |
576 | static double |
577 | SECTION |
578 | normalized (double ax, double ay, double y, double z) |
579 | { |
580 | int p; |
581 | mp_no mpx, mpy, mpz, mperr, mpz2, mpt1; |
582 | p = 6; |
583 | __dbl_mp (ax, &mpx, p); |
584 | __dbl_mp (ay, &mpy, p); |
585 | __dvd (&mpy, &mpx, &mpz, p); |
586 | __dbl_mp (ue.d, &mpt1, p); |
587 | __mul (&mpz, &mpt1, &mperr, p); |
588 | __sub (&mpz, &mperr, &mpz2, p); |
589 | __mp_dbl (&mpz2, &z, p); |
590 | return signArctan2 (y, z); |
591 | } |
592 | |
593 | /* Stage 3: Perform a multi-Precision computation */ |
594 | static double |
595 | SECTION |
596 | atan2Mp (double x, double y, const int pr[]) |
597 | { |
598 | double z1, z2; |
599 | int i, p; |
600 | mp_no mpx, mpy, mpz, mpz1, mpz2, mperr, mpt1; |
601 | for (i = 0; i < MM; i++) |
602 | { |
603 | p = pr[i]; |
604 | __dbl_mp (x, &mpx, p); |
605 | __dbl_mp (y, &mpy, p); |
606 | __mpatan2 (&mpy, &mpx, &mpz, p); |
607 | __dbl_mp (ud[i].d, &mpt1, p); |
608 | __mul (&mpz, &mpt1, &mperr, p); |
609 | __add (&mpz, &mperr, &mpz1, p); |
610 | __sub (&mpz, &mperr, &mpz2, p); |
611 | __mp_dbl (&mpz1, &z1, p); |
612 | __mp_dbl (&mpz2, &z2, p); |
613 | if (z1 == z2) |
614 | { |
615 | LIBC_PROBE (slowatan2, 4, &p, &x, &y, &z1); |
616 | return z1; |
617 | } |
618 | } |
619 | LIBC_PROBE (slowatan2_inexact, 4, &p, &x, &y, &z1); |
620 | return z1; /*if impossible to do exact computing */ |
621 | } |
622 | |