1 | /* Copyright (C) 2002-2018 Free Software Foundation, Inc. |
2 | This file is part of the GNU C Library. |
3 | Contributed by Ulrich Drepper <drepper@redhat.com>, 2002. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <http://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <assert.h> |
20 | #include <errno.h> |
21 | #include <signal.h> |
22 | #include <stdint.h> |
23 | #include <string.h> |
24 | #include <unistd.h> |
25 | #include <sys/mman.h> |
26 | #include <sys/param.h> |
27 | #include <dl-sysdep.h> |
28 | #include <dl-tls.h> |
29 | #include <tls.h> |
30 | #include <list.h> |
31 | #include <lowlevellock.h> |
32 | #include <futex-internal.h> |
33 | #include <kernel-features.h> |
34 | #include <stack-aliasing.h> |
35 | |
36 | |
37 | #ifndef NEED_SEPARATE_REGISTER_STACK |
38 | |
39 | /* Most architectures have exactly one stack pointer. Some have more. */ |
40 | # define STACK_VARIABLES void *stackaddr = NULL |
41 | |
42 | /* How to pass the values to the 'create_thread' function. */ |
43 | # define STACK_VARIABLES_ARGS stackaddr |
44 | |
45 | /* How to declare function which gets there parameters. */ |
46 | # define STACK_VARIABLES_PARMS void *stackaddr |
47 | |
48 | /* How to declare allocate_stack. */ |
49 | # define ALLOCATE_STACK_PARMS void **stack |
50 | |
51 | /* This is how the function is called. We do it this way to allow |
52 | other variants of the function to have more parameters. */ |
53 | # define ALLOCATE_STACK(attr, pd) allocate_stack (attr, pd, &stackaddr) |
54 | |
55 | #else |
56 | |
57 | /* We need two stacks. The kernel will place them but we have to tell |
58 | the kernel about the size of the reserved address space. */ |
59 | # define STACK_VARIABLES void *stackaddr = NULL; size_t stacksize = 0 |
60 | |
61 | /* How to pass the values to the 'create_thread' function. */ |
62 | # define STACK_VARIABLES_ARGS stackaddr, stacksize |
63 | |
64 | /* How to declare function which gets there parameters. */ |
65 | # define STACK_VARIABLES_PARMS void *stackaddr, size_t stacksize |
66 | |
67 | /* How to declare allocate_stack. */ |
68 | # define ALLOCATE_STACK_PARMS void **stack, size_t *stacksize |
69 | |
70 | /* This is how the function is called. We do it this way to allow |
71 | other variants of the function to have more parameters. */ |
72 | # define ALLOCATE_STACK(attr, pd) \ |
73 | allocate_stack (attr, pd, &stackaddr, &stacksize) |
74 | |
75 | #endif |
76 | |
77 | |
78 | /* Default alignment of stack. */ |
79 | #ifndef STACK_ALIGN |
80 | # define STACK_ALIGN __alignof__ (long double) |
81 | #endif |
82 | |
83 | /* Default value for minimal stack size after allocating thread |
84 | descriptor and guard. */ |
85 | #ifndef MINIMAL_REST_STACK |
86 | # define MINIMAL_REST_STACK 4096 |
87 | #endif |
88 | |
89 | |
90 | /* Newer kernels have the MAP_STACK flag to indicate a mapping is used for |
91 | a stack. Use it when possible. */ |
92 | #ifndef MAP_STACK |
93 | # define MAP_STACK 0 |
94 | #endif |
95 | |
96 | /* This yields the pointer that TLS support code calls the thread pointer. */ |
97 | #if TLS_TCB_AT_TP |
98 | # define TLS_TPADJ(pd) (pd) |
99 | #elif TLS_DTV_AT_TP |
100 | # define TLS_TPADJ(pd) ((struct pthread *)((char *) (pd) + TLS_PRE_TCB_SIZE)) |
101 | #endif |
102 | |
103 | /* Cache handling for not-yet free stacks. */ |
104 | |
105 | /* Maximum size in kB of cache. */ |
106 | static size_t stack_cache_maxsize = 40 * 1024 * 1024; /* 40MiBi by default. */ |
107 | static size_t stack_cache_actsize; |
108 | |
109 | /* Mutex protecting this variable. */ |
110 | static int stack_cache_lock = LLL_LOCK_INITIALIZER; |
111 | |
112 | /* List of queued stack frames. */ |
113 | static LIST_HEAD (stack_cache); |
114 | |
115 | /* List of the stacks in use. */ |
116 | static LIST_HEAD (stack_used); |
117 | |
118 | /* We need to record what list operations we are going to do so that, |
119 | in case of an asynchronous interruption due to a fork() call, we |
120 | can correct for the work. */ |
121 | static uintptr_t in_flight_stack; |
122 | |
123 | /* List of the threads with user provided stacks in use. No need to |
124 | initialize this, since it's done in __pthread_initialize_minimal. */ |
125 | list_t __stack_user __attribute__ ((nocommon)); |
126 | hidden_data_def (__stack_user) |
127 | |
128 | |
129 | /* Check whether the stack is still used or not. */ |
130 | #define FREE_P(descr) ((descr)->tid <= 0) |
131 | |
132 | |
133 | static void |
134 | stack_list_del (list_t *elem) |
135 | { |
136 | in_flight_stack = (uintptr_t) elem; |
137 | |
138 | atomic_write_barrier (); |
139 | |
140 | list_del (elem); |
141 | |
142 | atomic_write_barrier (); |
143 | |
144 | in_flight_stack = 0; |
145 | } |
146 | |
147 | |
148 | static void |
149 | stack_list_add (list_t *elem, list_t *list) |
150 | { |
151 | in_flight_stack = (uintptr_t) elem | 1; |
152 | |
153 | atomic_write_barrier (); |
154 | |
155 | list_add (elem, list); |
156 | |
157 | atomic_write_barrier (); |
158 | |
159 | in_flight_stack = 0; |
160 | } |
161 | |
162 | |
163 | /* We create a double linked list of all cache entries. Double linked |
164 | because this allows removing entries from the end. */ |
165 | |
166 | |
167 | /* Get a stack frame from the cache. We have to match by size since |
168 | some blocks might be too small or far too large. */ |
169 | static struct pthread * |
170 | get_cached_stack (size_t *sizep, void **memp) |
171 | { |
172 | size_t size = *sizep; |
173 | struct pthread *result = NULL; |
174 | list_t *entry; |
175 | |
176 | lll_lock (stack_cache_lock, LLL_PRIVATE); |
177 | |
178 | /* Search the cache for a matching entry. We search for the |
179 | smallest stack which has at least the required size. Note that |
180 | in normal situations the size of all allocated stacks is the |
181 | same. As the very least there are only a few different sizes. |
182 | Therefore this loop will exit early most of the time with an |
183 | exact match. */ |
184 | list_for_each (entry, &stack_cache) |
185 | { |
186 | struct pthread *curr; |
187 | |
188 | curr = list_entry (entry, struct pthread, list); |
189 | if (FREE_P (curr) && curr->stackblock_size >= size) |
190 | { |
191 | if (curr->stackblock_size == size) |
192 | { |
193 | result = curr; |
194 | break; |
195 | } |
196 | |
197 | if (result == NULL |
198 | || result->stackblock_size > curr->stackblock_size) |
199 | result = curr; |
200 | } |
201 | } |
202 | |
203 | if (__builtin_expect (result == NULL, 0) |
204 | /* Make sure the size difference is not too excessive. In that |
205 | case we do not use the block. */ |
206 | || __builtin_expect (result->stackblock_size > 4 * size, 0)) |
207 | { |
208 | /* Release the lock. */ |
209 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
210 | |
211 | return NULL; |
212 | } |
213 | |
214 | /* Don't allow setxid until cloned. */ |
215 | result->setxid_futex = -1; |
216 | |
217 | /* Dequeue the entry. */ |
218 | stack_list_del (&result->list); |
219 | |
220 | /* And add to the list of stacks in use. */ |
221 | stack_list_add (&result->list, &stack_used); |
222 | |
223 | /* And decrease the cache size. */ |
224 | stack_cache_actsize -= result->stackblock_size; |
225 | |
226 | /* Release the lock early. */ |
227 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
228 | |
229 | /* Report size and location of the stack to the caller. */ |
230 | *sizep = result->stackblock_size; |
231 | *memp = result->stackblock; |
232 | |
233 | /* Cancellation handling is back to the default. */ |
234 | result->cancelhandling = 0; |
235 | result->cleanup = NULL; |
236 | |
237 | /* No pending event. */ |
238 | result->nextevent = NULL; |
239 | |
240 | /* Clear the DTV. */ |
241 | dtv_t *dtv = GET_DTV (TLS_TPADJ (result)); |
242 | for (size_t cnt = 0; cnt < dtv[-1].counter; ++cnt) |
243 | free (dtv[1 + cnt].pointer.to_free); |
244 | memset (dtv, '\0', (dtv[-1].counter + 1) * sizeof (dtv_t)); |
245 | |
246 | /* Re-initialize the TLS. */ |
247 | _dl_allocate_tls_init (TLS_TPADJ (result)); |
248 | |
249 | return result; |
250 | } |
251 | |
252 | |
253 | /* Free stacks until cache size is lower than LIMIT. */ |
254 | static void |
255 | free_stacks (size_t limit) |
256 | { |
257 | /* We reduce the size of the cache. Remove the last entries until |
258 | the size is below the limit. */ |
259 | list_t *entry; |
260 | list_t *prev; |
261 | |
262 | /* Search from the end of the list. */ |
263 | list_for_each_prev_safe (entry, prev, &stack_cache) |
264 | { |
265 | struct pthread *curr; |
266 | |
267 | curr = list_entry (entry, struct pthread, list); |
268 | if (FREE_P (curr)) |
269 | { |
270 | /* Unlink the block. */ |
271 | stack_list_del (entry); |
272 | |
273 | /* Account for the freed memory. */ |
274 | stack_cache_actsize -= curr->stackblock_size; |
275 | |
276 | /* Free the memory associated with the ELF TLS. */ |
277 | _dl_deallocate_tls (TLS_TPADJ (curr), false); |
278 | |
279 | /* Remove this block. This should never fail. If it does |
280 | something is really wrong. */ |
281 | if (__munmap (curr->stackblock, curr->stackblock_size) != 0) |
282 | abort (); |
283 | |
284 | /* Maybe we have freed enough. */ |
285 | if (stack_cache_actsize <= limit) |
286 | break; |
287 | } |
288 | } |
289 | } |
290 | |
291 | /* Free all the stacks on cleanup. */ |
292 | void |
293 | __nptl_stacks_freeres (void) |
294 | { |
295 | free_stacks (0); |
296 | } |
297 | |
298 | /* Add a stack frame which is not used anymore to the stack. Must be |
299 | called with the cache lock held. */ |
300 | static inline void |
301 | __attribute ((always_inline)) |
302 | queue_stack (struct pthread *stack) |
303 | { |
304 | /* We unconditionally add the stack to the list. The memory may |
305 | still be in use but it will not be reused until the kernel marks |
306 | the stack as not used anymore. */ |
307 | stack_list_add (&stack->list, &stack_cache); |
308 | |
309 | stack_cache_actsize += stack->stackblock_size; |
310 | if (__glibc_unlikely (stack_cache_actsize > stack_cache_maxsize)) |
311 | free_stacks (stack_cache_maxsize); |
312 | } |
313 | |
314 | |
315 | static int |
316 | change_stack_perm (struct pthread *pd |
317 | #ifdef NEED_SEPARATE_REGISTER_STACK |
318 | , size_t pagemask |
319 | #endif |
320 | ) |
321 | { |
322 | #ifdef NEED_SEPARATE_REGISTER_STACK |
323 | void *stack = (pd->stackblock |
324 | + (((((pd->stackblock_size - pd->guardsize) / 2) |
325 | & pagemask) + pd->guardsize) & pagemask)); |
326 | size_t len = pd->stackblock + pd->stackblock_size - stack; |
327 | #elif _STACK_GROWS_DOWN |
328 | void *stack = pd->stackblock + pd->guardsize; |
329 | size_t len = pd->stackblock_size - pd->guardsize; |
330 | #elif _STACK_GROWS_UP |
331 | void *stack = pd->stackblock; |
332 | size_t len = (uintptr_t) pd - pd->guardsize - (uintptr_t) pd->stackblock; |
333 | #else |
334 | # error "Define either _STACK_GROWS_DOWN or _STACK_GROWS_UP" |
335 | #endif |
336 | if (__mprotect (stack, len, PROT_READ | PROT_WRITE | PROT_EXEC) != 0) |
337 | return errno; |
338 | |
339 | return 0; |
340 | } |
341 | |
342 | /* Return the guard page position on allocated stack. */ |
343 | static inline char * |
344 | __attribute ((always_inline)) |
345 | guard_position (void *mem, size_t size, size_t guardsize, struct pthread *pd, |
346 | size_t pagesize_m1) |
347 | { |
348 | #ifdef NEED_SEPARATE_REGISTER_STACK |
349 | return mem + (((size - guardsize) / 2) & ~pagesize_m1); |
350 | #elif _STACK_GROWS_DOWN |
351 | return mem; |
352 | #elif _STACK_GROWS_UP |
353 | return (char *) (((uintptr_t) pd - guardsize) & ~pagesize_m1); |
354 | #endif |
355 | } |
356 | |
357 | /* Based on stack allocated with PROT_NONE, setup the required portions with |
358 | 'prot' flags based on the guard page position. */ |
359 | static inline int |
360 | setup_stack_prot (char *mem, size_t size, char *guard, size_t guardsize, |
361 | const int prot) |
362 | { |
363 | char *guardend = guard + guardsize; |
364 | #if _STACK_GROWS_DOWN && !defined(NEED_SEPARATE_REGISTER_STACK) |
365 | /* As defined at guard_position, for architectures with downward stack |
366 | the guard page is always at start of the allocated area. */ |
367 | if (__mprotect (guardend, size - guardsize, prot) != 0) |
368 | return errno; |
369 | #else |
370 | size_t mprots1 = (uintptr_t) guard - (uintptr_t) mem; |
371 | if (__mprotect (mem, mprots1, prot) != 0) |
372 | return errno; |
373 | size_t mprots2 = ((uintptr_t) mem + size) - (uintptr_t) guardend; |
374 | if (__mprotect (guardend, mprots2, prot) != 0) |
375 | return errno; |
376 | #endif |
377 | return 0; |
378 | } |
379 | |
380 | /* Mark the memory of the stack as usable to the kernel. It frees everything |
381 | except for the space used for the TCB itself. */ |
382 | static inline void |
383 | __always_inline |
384 | advise_stack_range (void *mem, size_t size, uintptr_t pd, size_t guardsize) |
385 | { |
386 | uintptr_t sp = (uintptr_t) CURRENT_STACK_FRAME; |
387 | size_t pagesize_m1 = __getpagesize () - 1; |
388 | #if _STACK_GROWS_DOWN && !defined(NEED_SEPARATE_REGISTER_STACK) |
389 | size_t freesize = (sp - (uintptr_t) mem) & ~pagesize_m1; |
390 | assert (freesize < size); |
391 | if (freesize > PTHREAD_STACK_MIN) |
392 | __madvise (mem, freesize - PTHREAD_STACK_MIN, MADV_DONTNEED); |
393 | #else |
394 | /* Page aligned start of memory to free (higher than or equal |
395 | to current sp plus the minimum stack size). */ |
396 | uintptr_t freeblock = (sp + PTHREAD_STACK_MIN + pagesize_m1) & ~pagesize_m1; |
397 | uintptr_t free_end = (pd - guardsize) & ~pagesize_m1; |
398 | if (free_end > freeblock) |
399 | { |
400 | size_t freesize = free_end - freeblock; |
401 | assert (freesize < size); |
402 | __madvise ((void*) freeblock, freesize, MADV_DONTNEED); |
403 | } |
404 | #endif |
405 | } |
406 | |
407 | /* Returns a usable stack for a new thread either by allocating a |
408 | new stack or reusing a cached stack of sufficient size. |
409 | ATTR must be non-NULL and point to a valid pthread_attr. |
410 | PDP must be non-NULL. */ |
411 | static int |
412 | allocate_stack (const struct pthread_attr *attr, struct pthread **pdp, |
413 | ALLOCATE_STACK_PARMS) |
414 | { |
415 | struct pthread *pd; |
416 | size_t size; |
417 | size_t pagesize_m1 = __getpagesize () - 1; |
418 | |
419 | assert (powerof2 (pagesize_m1 + 1)); |
420 | assert (TCB_ALIGNMENT >= STACK_ALIGN); |
421 | |
422 | /* Get the stack size from the attribute if it is set. Otherwise we |
423 | use the default we determined at start time. */ |
424 | if (attr->stacksize != 0) |
425 | size = attr->stacksize; |
426 | else |
427 | { |
428 | lll_lock (__default_pthread_attr_lock, LLL_PRIVATE); |
429 | size = __default_pthread_attr.stacksize; |
430 | lll_unlock (__default_pthread_attr_lock, LLL_PRIVATE); |
431 | } |
432 | |
433 | /* Get memory for the stack. */ |
434 | if (__glibc_unlikely (attr->flags & ATTR_FLAG_STACKADDR)) |
435 | { |
436 | uintptr_t adj; |
437 | char *stackaddr = (char *) attr->stackaddr; |
438 | |
439 | /* Assume the same layout as the _STACK_GROWS_DOWN case, with struct |
440 | pthread at the top of the stack block. Later we adjust the guard |
441 | location and stack address to match the _STACK_GROWS_UP case. */ |
442 | if (_STACK_GROWS_UP) |
443 | stackaddr += attr->stacksize; |
444 | |
445 | /* If the user also specified the size of the stack make sure it |
446 | is large enough. */ |
447 | if (attr->stacksize != 0 |
448 | && attr->stacksize < (__static_tls_size + MINIMAL_REST_STACK)) |
449 | return EINVAL; |
450 | |
451 | /* Adjust stack size for alignment of the TLS block. */ |
452 | #if TLS_TCB_AT_TP |
453 | adj = ((uintptr_t) stackaddr - TLS_TCB_SIZE) |
454 | & __static_tls_align_m1; |
455 | assert (size > adj + TLS_TCB_SIZE); |
456 | #elif TLS_DTV_AT_TP |
457 | adj = ((uintptr_t) stackaddr - __static_tls_size) |
458 | & __static_tls_align_m1; |
459 | assert (size > adj); |
460 | #endif |
461 | |
462 | /* The user provided some memory. Let's hope it matches the |
463 | size... We do not allocate guard pages if the user provided |
464 | the stack. It is the user's responsibility to do this if it |
465 | is wanted. */ |
466 | #if TLS_TCB_AT_TP |
467 | pd = (struct pthread *) ((uintptr_t) stackaddr |
468 | - TLS_TCB_SIZE - adj); |
469 | #elif TLS_DTV_AT_TP |
470 | pd = (struct pthread *) (((uintptr_t) stackaddr |
471 | - __static_tls_size - adj) |
472 | - TLS_PRE_TCB_SIZE); |
473 | #endif |
474 | |
475 | /* The user provided stack memory needs to be cleared. */ |
476 | memset (pd, '\0', sizeof (struct pthread)); |
477 | |
478 | /* The first TSD block is included in the TCB. */ |
479 | pd->specific[0] = pd->specific_1stblock; |
480 | |
481 | /* Remember the stack-related values. */ |
482 | pd->stackblock = (char *) stackaddr - size; |
483 | pd->stackblock_size = size; |
484 | |
485 | /* This is a user-provided stack. It will not be queued in the |
486 | stack cache nor will the memory (except the TLS memory) be freed. */ |
487 | pd->user_stack = true; |
488 | |
489 | /* This is at least the second thread. */ |
490 | pd->header.multiple_threads = 1; |
491 | #ifndef TLS_MULTIPLE_THREADS_IN_TCB |
492 | __pthread_multiple_threads = *__libc_multiple_threads_ptr = 1; |
493 | #endif |
494 | |
495 | #ifdef NEED_DL_SYSINFO |
496 | SETUP_THREAD_SYSINFO (pd); |
497 | #endif |
498 | |
499 | /* Don't allow setxid until cloned. */ |
500 | pd->setxid_futex = -1; |
501 | |
502 | /* Allocate the DTV for this thread. */ |
503 | if (_dl_allocate_tls (TLS_TPADJ (pd)) == NULL) |
504 | { |
505 | /* Something went wrong. */ |
506 | assert (errno == ENOMEM); |
507 | return errno; |
508 | } |
509 | |
510 | |
511 | /* Prepare to modify global data. */ |
512 | lll_lock (stack_cache_lock, LLL_PRIVATE); |
513 | |
514 | /* And add to the list of stacks in use. */ |
515 | list_add (&pd->list, &__stack_user); |
516 | |
517 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
518 | } |
519 | else |
520 | { |
521 | /* Allocate some anonymous memory. If possible use the cache. */ |
522 | size_t guardsize; |
523 | size_t reqsize; |
524 | void *mem; |
525 | const int prot = (PROT_READ | PROT_WRITE |
526 | | ((GL(dl_stack_flags) & PF_X) ? PROT_EXEC : 0)); |
527 | |
528 | /* Adjust the stack size for alignment. */ |
529 | size &= ~__static_tls_align_m1; |
530 | assert (size != 0); |
531 | |
532 | /* Make sure the size of the stack is enough for the guard and |
533 | eventually the thread descriptor. */ |
534 | guardsize = (attr->guardsize + pagesize_m1) & ~pagesize_m1; |
535 | if (guardsize < attr->guardsize || size + guardsize < guardsize) |
536 | /* Arithmetic overflow. */ |
537 | return EINVAL; |
538 | size += guardsize; |
539 | if (__builtin_expect (size < ((guardsize + __static_tls_size |
540 | + MINIMAL_REST_STACK + pagesize_m1) |
541 | & ~pagesize_m1), |
542 | 0)) |
543 | /* The stack is too small (or the guard too large). */ |
544 | return EINVAL; |
545 | |
546 | /* Try to get a stack from the cache. */ |
547 | reqsize = size; |
548 | pd = get_cached_stack (&size, &mem); |
549 | if (pd == NULL) |
550 | { |
551 | /* To avoid aliasing effects on a larger scale than pages we |
552 | adjust the allocated stack size if necessary. This way |
553 | allocations directly following each other will not have |
554 | aliasing problems. */ |
555 | #if MULTI_PAGE_ALIASING != 0 |
556 | if ((size % MULTI_PAGE_ALIASING) == 0) |
557 | size += pagesize_m1 + 1; |
558 | #endif |
559 | |
560 | /* If a guard page is required, avoid committing memory by first |
561 | allocate with PROT_NONE and then reserve with required permission |
562 | excluding the guard page. */ |
563 | mem = __mmap (NULL, size, (guardsize == 0) ? prot : PROT_NONE, |
564 | MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, -1, 0); |
565 | |
566 | if (__glibc_unlikely (mem == MAP_FAILED)) |
567 | return errno; |
568 | |
569 | /* SIZE is guaranteed to be greater than zero. |
570 | So we can never get a null pointer back from mmap. */ |
571 | assert (mem != NULL); |
572 | |
573 | /* Place the thread descriptor at the end of the stack. */ |
574 | #if TLS_TCB_AT_TP |
575 | pd = (struct pthread *) ((char *) mem + size) - 1; |
576 | #elif TLS_DTV_AT_TP |
577 | pd = (struct pthread *) ((((uintptr_t) mem + size |
578 | - __static_tls_size) |
579 | & ~__static_tls_align_m1) |
580 | - TLS_PRE_TCB_SIZE); |
581 | #endif |
582 | |
583 | /* Now mprotect the required region excluding the guard area. */ |
584 | if (__glibc_likely (guardsize > 0)) |
585 | { |
586 | char *guard = guard_position (mem, size, guardsize, pd, |
587 | pagesize_m1); |
588 | if (setup_stack_prot (mem, size, guard, guardsize, prot) != 0) |
589 | { |
590 | __munmap (mem, size); |
591 | return errno; |
592 | } |
593 | } |
594 | |
595 | /* Remember the stack-related values. */ |
596 | pd->stackblock = mem; |
597 | pd->stackblock_size = size; |
598 | /* Update guardsize for newly allocated guardsize to avoid |
599 | an mprotect in guard resize below. */ |
600 | pd->guardsize = guardsize; |
601 | |
602 | /* We allocated the first block thread-specific data array. |
603 | This address will not change for the lifetime of this |
604 | descriptor. */ |
605 | pd->specific[0] = pd->specific_1stblock; |
606 | |
607 | /* This is at least the second thread. */ |
608 | pd->header.multiple_threads = 1; |
609 | #ifndef TLS_MULTIPLE_THREADS_IN_TCB |
610 | __pthread_multiple_threads = *__libc_multiple_threads_ptr = 1; |
611 | #endif |
612 | |
613 | #ifdef NEED_DL_SYSINFO |
614 | SETUP_THREAD_SYSINFO (pd); |
615 | #endif |
616 | |
617 | /* Don't allow setxid until cloned. */ |
618 | pd->setxid_futex = -1; |
619 | |
620 | /* Allocate the DTV for this thread. */ |
621 | if (_dl_allocate_tls (TLS_TPADJ (pd)) == NULL) |
622 | { |
623 | /* Something went wrong. */ |
624 | assert (errno == ENOMEM); |
625 | |
626 | /* Free the stack memory we just allocated. */ |
627 | (void) __munmap (mem, size); |
628 | |
629 | return errno; |
630 | } |
631 | |
632 | |
633 | /* Prepare to modify global data. */ |
634 | lll_lock (stack_cache_lock, LLL_PRIVATE); |
635 | |
636 | /* And add to the list of stacks in use. */ |
637 | stack_list_add (&pd->list, &stack_used); |
638 | |
639 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
640 | |
641 | |
642 | /* There might have been a race. Another thread might have |
643 | caused the stacks to get exec permission while this new |
644 | stack was prepared. Detect if this was possible and |
645 | change the permission if necessary. */ |
646 | if (__builtin_expect ((GL(dl_stack_flags) & PF_X) != 0 |
647 | && (prot & PROT_EXEC) == 0, 0)) |
648 | { |
649 | int err = change_stack_perm (pd |
650 | #ifdef NEED_SEPARATE_REGISTER_STACK |
651 | , ~pagesize_m1 |
652 | #endif |
653 | ); |
654 | if (err != 0) |
655 | { |
656 | /* Free the stack memory we just allocated. */ |
657 | (void) __munmap (mem, size); |
658 | |
659 | return err; |
660 | } |
661 | } |
662 | |
663 | |
664 | /* Note that all of the stack and the thread descriptor is |
665 | zeroed. This means we do not have to initialize fields |
666 | with initial value zero. This is specifically true for |
667 | the 'tid' field which is always set back to zero once the |
668 | stack is not used anymore and for the 'guardsize' field |
669 | which will be read next. */ |
670 | } |
671 | |
672 | /* Create or resize the guard area if necessary. */ |
673 | if (__glibc_unlikely (guardsize > pd->guardsize)) |
674 | { |
675 | char *guard = guard_position (mem, size, guardsize, pd, |
676 | pagesize_m1); |
677 | if (__mprotect (guard, guardsize, PROT_NONE) != 0) |
678 | { |
679 | mprot_error: |
680 | lll_lock (stack_cache_lock, LLL_PRIVATE); |
681 | |
682 | /* Remove the thread from the list. */ |
683 | stack_list_del (&pd->list); |
684 | |
685 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
686 | |
687 | /* Get rid of the TLS block we allocated. */ |
688 | _dl_deallocate_tls (TLS_TPADJ (pd), false); |
689 | |
690 | /* Free the stack memory regardless of whether the size |
691 | of the cache is over the limit or not. If this piece |
692 | of memory caused problems we better do not use it |
693 | anymore. Uh, and we ignore possible errors. There |
694 | is nothing we could do. */ |
695 | (void) __munmap (mem, size); |
696 | |
697 | return errno; |
698 | } |
699 | |
700 | pd->guardsize = guardsize; |
701 | } |
702 | else if (__builtin_expect (pd->guardsize - guardsize > size - reqsize, |
703 | 0)) |
704 | { |
705 | /* The old guard area is too large. */ |
706 | |
707 | #ifdef NEED_SEPARATE_REGISTER_STACK |
708 | char *guard = mem + (((size - guardsize) / 2) & ~pagesize_m1); |
709 | char *oldguard = mem + (((size - pd->guardsize) / 2) & ~pagesize_m1); |
710 | |
711 | if (oldguard < guard |
712 | && __mprotect (oldguard, guard - oldguard, prot) != 0) |
713 | goto mprot_error; |
714 | |
715 | if (__mprotect (guard + guardsize, |
716 | oldguard + pd->guardsize - guard - guardsize, |
717 | prot) != 0) |
718 | goto mprot_error; |
719 | #elif _STACK_GROWS_DOWN |
720 | if (__mprotect ((char *) mem + guardsize, pd->guardsize - guardsize, |
721 | prot) != 0) |
722 | goto mprot_error; |
723 | #elif _STACK_GROWS_UP |
724 | char *new_guard = (char *)(((uintptr_t) pd - guardsize) |
725 | & ~pagesize_m1); |
726 | char *old_guard = (char *)(((uintptr_t) pd - pd->guardsize) |
727 | & ~pagesize_m1); |
728 | /* The guard size difference might be > 0, but once rounded |
729 | to the nearest page the size difference might be zero. */ |
730 | if (new_guard > old_guard |
731 | && __mprotect (old_guard, new_guard - old_guard, prot) != 0) |
732 | goto mprot_error; |
733 | #endif |
734 | |
735 | pd->guardsize = guardsize; |
736 | } |
737 | /* The pthread_getattr_np() calls need to get passed the size |
738 | requested in the attribute, regardless of how large the |
739 | actually used guardsize is. */ |
740 | pd->reported_guardsize = guardsize; |
741 | } |
742 | |
743 | /* Initialize the lock. We have to do this unconditionally since the |
744 | stillborn thread could be canceled while the lock is taken. */ |
745 | pd->lock = LLL_LOCK_INITIALIZER; |
746 | |
747 | /* The robust mutex lists also need to be initialized |
748 | unconditionally because the cleanup for the previous stack owner |
749 | might have happened in the kernel. */ |
750 | pd->robust_head.futex_offset = (offsetof (pthread_mutex_t, __data.__lock) |
751 | - offsetof (pthread_mutex_t, |
752 | __data.__list.__next)); |
753 | pd->robust_head.list_op_pending = NULL; |
754 | #if __PTHREAD_MUTEX_HAVE_PREV |
755 | pd->robust_prev = &pd->robust_head; |
756 | #endif |
757 | pd->robust_head.list = &pd->robust_head; |
758 | |
759 | /* We place the thread descriptor at the end of the stack. */ |
760 | *pdp = pd; |
761 | |
762 | #if _STACK_GROWS_DOWN |
763 | void *stacktop; |
764 | |
765 | # if TLS_TCB_AT_TP |
766 | /* The stack begins before the TCB and the static TLS block. */ |
767 | stacktop = ((char *) (pd + 1) - __static_tls_size); |
768 | # elif TLS_DTV_AT_TP |
769 | stacktop = (char *) (pd - 1); |
770 | # endif |
771 | |
772 | # ifdef NEED_SEPARATE_REGISTER_STACK |
773 | *stack = pd->stackblock; |
774 | *stacksize = stacktop - *stack; |
775 | # else |
776 | *stack = stacktop; |
777 | # endif |
778 | #else |
779 | *stack = pd->stackblock; |
780 | #endif |
781 | |
782 | return 0; |
783 | } |
784 | |
785 | |
786 | void |
787 | __deallocate_stack (struct pthread *pd) |
788 | { |
789 | lll_lock (stack_cache_lock, LLL_PRIVATE); |
790 | |
791 | /* Remove the thread from the list of threads with user defined |
792 | stacks. */ |
793 | stack_list_del (&pd->list); |
794 | |
795 | /* Not much to do. Just free the mmap()ed memory. Note that we do |
796 | not reset the 'used' flag in the 'tid' field. This is done by |
797 | the kernel. If no thread has been created yet this field is |
798 | still zero. */ |
799 | if (__glibc_likely (! pd->user_stack)) |
800 | (void) queue_stack (pd); |
801 | else |
802 | /* Free the memory associated with the ELF TLS. */ |
803 | _dl_deallocate_tls (TLS_TPADJ (pd), false); |
804 | |
805 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
806 | } |
807 | |
808 | |
809 | int |
810 | __make_stacks_executable (void **stack_endp) |
811 | { |
812 | /* First the main thread's stack. */ |
813 | int err = _dl_make_stack_executable (stack_endp); |
814 | if (err != 0) |
815 | return err; |
816 | |
817 | #ifdef NEED_SEPARATE_REGISTER_STACK |
818 | const size_t pagemask = ~(__getpagesize () - 1); |
819 | #endif |
820 | |
821 | lll_lock (stack_cache_lock, LLL_PRIVATE); |
822 | |
823 | list_t *runp; |
824 | list_for_each (runp, &stack_used) |
825 | { |
826 | err = change_stack_perm (list_entry (runp, struct pthread, list) |
827 | #ifdef NEED_SEPARATE_REGISTER_STACK |
828 | , pagemask |
829 | #endif |
830 | ); |
831 | if (err != 0) |
832 | break; |
833 | } |
834 | |
835 | /* Also change the permission for the currently unused stacks. This |
836 | might be wasted time but better spend it here than adding a check |
837 | in the fast path. */ |
838 | if (err == 0) |
839 | list_for_each (runp, &stack_cache) |
840 | { |
841 | err = change_stack_perm (list_entry (runp, struct pthread, list) |
842 | #ifdef NEED_SEPARATE_REGISTER_STACK |
843 | , pagemask |
844 | #endif |
845 | ); |
846 | if (err != 0) |
847 | break; |
848 | } |
849 | |
850 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
851 | |
852 | return err; |
853 | } |
854 | |
855 | |
856 | /* In case of a fork() call the memory allocation in the child will be |
857 | the same but only one thread is running. All stacks except that of |
858 | the one running thread are not used anymore. We have to recycle |
859 | them. */ |
860 | void |
861 | __reclaim_stacks (void) |
862 | { |
863 | struct pthread *self = (struct pthread *) THREAD_SELF; |
864 | |
865 | /* No locking necessary. The caller is the only stack in use. But |
866 | we have to be aware that we might have interrupted a list |
867 | operation. */ |
868 | |
869 | if (in_flight_stack != 0) |
870 | { |
871 | bool add_p = in_flight_stack & 1; |
872 | list_t *elem = (list_t *) (in_flight_stack & ~(uintptr_t) 1); |
873 | |
874 | if (add_p) |
875 | { |
876 | /* We always add at the beginning of the list. So in this case we |
877 | only need to check the beginning of these lists to see if the |
878 | pointers at the head of the list are inconsistent. */ |
879 | list_t *l = NULL; |
880 | |
881 | if (stack_used.next->prev != &stack_used) |
882 | l = &stack_used; |
883 | else if (stack_cache.next->prev != &stack_cache) |
884 | l = &stack_cache; |
885 | |
886 | if (l != NULL) |
887 | { |
888 | assert (l->next->prev == elem); |
889 | elem->next = l->next; |
890 | elem->prev = l; |
891 | l->next = elem; |
892 | } |
893 | } |
894 | else |
895 | { |
896 | /* We can simply always replay the delete operation. */ |
897 | elem->next->prev = elem->prev; |
898 | elem->prev->next = elem->next; |
899 | } |
900 | } |
901 | |
902 | /* Mark all stacks except the still running one as free. */ |
903 | list_t *runp; |
904 | list_for_each (runp, &stack_used) |
905 | { |
906 | struct pthread *curp = list_entry (runp, struct pthread, list); |
907 | if (curp != self) |
908 | { |
909 | /* This marks the stack as free. */ |
910 | curp->tid = 0; |
911 | |
912 | /* Account for the size of the stack. */ |
913 | stack_cache_actsize += curp->stackblock_size; |
914 | |
915 | if (curp->specific_used) |
916 | { |
917 | /* Clear the thread-specific data. */ |
918 | memset (curp->specific_1stblock, '\0', |
919 | sizeof (curp->specific_1stblock)); |
920 | |
921 | curp->specific_used = false; |
922 | |
923 | for (size_t cnt = 1; cnt < PTHREAD_KEY_1STLEVEL_SIZE; ++cnt) |
924 | if (curp->specific[cnt] != NULL) |
925 | { |
926 | memset (curp->specific[cnt], '\0', |
927 | sizeof (curp->specific_1stblock)); |
928 | |
929 | /* We have allocated the block which we do not |
930 | free here so re-set the bit. */ |
931 | curp->specific_used = true; |
932 | } |
933 | } |
934 | } |
935 | } |
936 | |
937 | /* Add the stack of all running threads to the cache. */ |
938 | list_splice (&stack_used, &stack_cache); |
939 | |
940 | /* Remove the entry for the current thread to from the cache list |
941 | and add it to the list of running threads. Which of the two |
942 | lists is decided by the user_stack flag. */ |
943 | stack_list_del (&self->list); |
944 | |
945 | /* Re-initialize the lists for all the threads. */ |
946 | INIT_LIST_HEAD (&stack_used); |
947 | INIT_LIST_HEAD (&__stack_user); |
948 | |
949 | if (__glibc_unlikely (THREAD_GETMEM (self, user_stack))) |
950 | list_add (&self->list, &__stack_user); |
951 | else |
952 | list_add (&self->list, &stack_used); |
953 | |
954 | /* There is one thread running. */ |
955 | __nptl_nthreads = 1; |
956 | |
957 | in_flight_stack = 0; |
958 | |
959 | /* Initialize locks. */ |
960 | stack_cache_lock = LLL_LOCK_INITIALIZER; |
961 | __default_pthread_attr_lock = LLL_LOCK_INITIALIZER; |
962 | } |
963 | |
964 | |
965 | #if HP_TIMING_AVAIL |
966 | # undef __find_thread_by_id |
967 | /* Find a thread given the thread ID. */ |
968 | attribute_hidden |
969 | struct pthread * |
970 | __find_thread_by_id (pid_t tid) |
971 | { |
972 | struct pthread *result = NULL; |
973 | |
974 | lll_lock (stack_cache_lock, LLL_PRIVATE); |
975 | |
976 | /* Iterate over the list with system-allocated threads first. */ |
977 | list_t *runp; |
978 | list_for_each (runp, &stack_used) |
979 | { |
980 | struct pthread *curp; |
981 | |
982 | curp = list_entry (runp, struct pthread, list); |
983 | |
984 | if (curp->tid == tid) |
985 | { |
986 | result = curp; |
987 | goto out; |
988 | } |
989 | } |
990 | |
991 | /* Now the list with threads using user-allocated stacks. */ |
992 | list_for_each (runp, &__stack_user) |
993 | { |
994 | struct pthread *curp; |
995 | |
996 | curp = list_entry (runp, struct pthread, list); |
997 | |
998 | if (curp->tid == tid) |
999 | { |
1000 | result = curp; |
1001 | goto out; |
1002 | } |
1003 | } |
1004 | |
1005 | out: |
1006 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
1007 | |
1008 | return result; |
1009 | } |
1010 | #endif |
1011 | |
1012 | |
1013 | #ifdef SIGSETXID |
1014 | static void |
1015 | setxid_mark_thread (struct xid_command *cmdp, struct pthread *t) |
1016 | { |
1017 | int ch; |
1018 | |
1019 | /* Wait until this thread is cloned. */ |
1020 | if (t->setxid_futex == -1 |
1021 | && ! atomic_compare_and_exchange_bool_acq (&t->setxid_futex, -2, -1)) |
1022 | do |
1023 | futex_wait_simple (&t->setxid_futex, -2, FUTEX_PRIVATE); |
1024 | while (t->setxid_futex == -2); |
1025 | |
1026 | /* Don't let the thread exit before the setxid handler runs. */ |
1027 | t->setxid_futex = 0; |
1028 | |
1029 | do |
1030 | { |
1031 | ch = t->cancelhandling; |
1032 | |
1033 | /* If the thread is exiting right now, ignore it. */ |
1034 | if ((ch & EXITING_BITMASK) != 0) |
1035 | { |
1036 | /* Release the futex if there is no other setxid in |
1037 | progress. */ |
1038 | if ((ch & SETXID_BITMASK) == 0) |
1039 | { |
1040 | t->setxid_futex = 1; |
1041 | futex_wake (&t->setxid_futex, 1, FUTEX_PRIVATE); |
1042 | } |
1043 | return; |
1044 | } |
1045 | } |
1046 | while (atomic_compare_and_exchange_bool_acq (&t->cancelhandling, |
1047 | ch | SETXID_BITMASK, ch)); |
1048 | } |
1049 | |
1050 | |
1051 | static void |
1052 | setxid_unmark_thread (struct xid_command *cmdp, struct pthread *t) |
1053 | { |
1054 | int ch; |
1055 | |
1056 | do |
1057 | { |
1058 | ch = t->cancelhandling; |
1059 | if ((ch & SETXID_BITMASK) == 0) |
1060 | return; |
1061 | } |
1062 | while (atomic_compare_and_exchange_bool_acq (&t->cancelhandling, |
1063 | ch & ~SETXID_BITMASK, ch)); |
1064 | |
1065 | /* Release the futex just in case. */ |
1066 | t->setxid_futex = 1; |
1067 | futex_wake (&t->setxid_futex, 1, FUTEX_PRIVATE); |
1068 | } |
1069 | |
1070 | |
1071 | static int |
1072 | setxid_signal_thread (struct xid_command *cmdp, struct pthread *t) |
1073 | { |
1074 | if ((t->cancelhandling & SETXID_BITMASK) == 0) |
1075 | return 0; |
1076 | |
1077 | int val; |
1078 | pid_t pid = __getpid (); |
1079 | INTERNAL_SYSCALL_DECL (err); |
1080 | val = INTERNAL_SYSCALL_CALL (tgkill, err, pid, t->tid, SIGSETXID); |
1081 | |
1082 | /* If this failed, it must have had not started yet or else exited. */ |
1083 | if (!INTERNAL_SYSCALL_ERROR_P (val, err)) |
1084 | { |
1085 | atomic_increment (&cmdp->cntr); |
1086 | return 1; |
1087 | } |
1088 | else |
1089 | return 0; |
1090 | } |
1091 | |
1092 | /* Check for consistency across set*id system call results. The abort |
1093 | should not happen as long as all privileges changes happen through |
1094 | the glibc wrappers. ERROR must be 0 (no error) or an errno |
1095 | code. */ |
1096 | void |
1097 | attribute_hidden |
1098 | __nptl_setxid_error (struct xid_command *cmdp, int error) |
1099 | { |
1100 | do |
1101 | { |
1102 | int olderror = cmdp->error; |
1103 | if (olderror == error) |
1104 | break; |
1105 | if (olderror != -1) |
1106 | { |
1107 | /* Mismatch between current and previous results. Save the |
1108 | error value to memory so that is not clobbered by the |
1109 | abort function and preserved in coredumps. */ |
1110 | volatile int xid_err __attribute__((unused)) = error; |
1111 | abort (); |
1112 | } |
1113 | } |
1114 | while (atomic_compare_and_exchange_bool_acq (&cmdp->error, error, -1)); |
1115 | } |
1116 | |
1117 | int |
1118 | attribute_hidden |
1119 | __nptl_setxid (struct xid_command *cmdp) |
1120 | { |
1121 | int signalled; |
1122 | int result; |
1123 | lll_lock (stack_cache_lock, LLL_PRIVATE); |
1124 | |
1125 | __xidcmd = cmdp; |
1126 | cmdp->cntr = 0; |
1127 | cmdp->error = -1; |
1128 | |
1129 | struct pthread *self = THREAD_SELF; |
1130 | |
1131 | /* Iterate over the list with system-allocated threads first. */ |
1132 | list_t *runp; |
1133 | list_for_each (runp, &stack_used) |
1134 | { |
1135 | struct pthread *t = list_entry (runp, struct pthread, list); |
1136 | if (t == self) |
1137 | continue; |
1138 | |
1139 | setxid_mark_thread (cmdp, t); |
1140 | } |
1141 | |
1142 | /* Now the list with threads using user-allocated stacks. */ |
1143 | list_for_each (runp, &__stack_user) |
1144 | { |
1145 | struct pthread *t = list_entry (runp, struct pthread, list); |
1146 | if (t == self) |
1147 | continue; |
1148 | |
1149 | setxid_mark_thread (cmdp, t); |
1150 | } |
1151 | |
1152 | /* Iterate until we don't succeed in signalling anyone. That means |
1153 | we have gotten all running threads, and their children will be |
1154 | automatically correct once started. */ |
1155 | do |
1156 | { |
1157 | signalled = 0; |
1158 | |
1159 | list_for_each (runp, &stack_used) |
1160 | { |
1161 | struct pthread *t = list_entry (runp, struct pthread, list); |
1162 | if (t == self) |
1163 | continue; |
1164 | |
1165 | signalled += setxid_signal_thread (cmdp, t); |
1166 | } |
1167 | |
1168 | list_for_each (runp, &__stack_user) |
1169 | { |
1170 | struct pthread *t = list_entry (runp, struct pthread, list); |
1171 | if (t == self) |
1172 | continue; |
1173 | |
1174 | signalled += setxid_signal_thread (cmdp, t); |
1175 | } |
1176 | |
1177 | int cur = cmdp->cntr; |
1178 | while (cur != 0) |
1179 | { |
1180 | futex_wait_simple ((unsigned int *) &cmdp->cntr, cur, |
1181 | FUTEX_PRIVATE); |
1182 | cur = cmdp->cntr; |
1183 | } |
1184 | } |
1185 | while (signalled != 0); |
1186 | |
1187 | /* Clean up flags, so that no thread blocks during exit waiting |
1188 | for a signal which will never come. */ |
1189 | list_for_each (runp, &stack_used) |
1190 | { |
1191 | struct pthread *t = list_entry (runp, struct pthread, list); |
1192 | if (t == self) |
1193 | continue; |
1194 | |
1195 | setxid_unmark_thread (cmdp, t); |
1196 | } |
1197 | |
1198 | list_for_each (runp, &__stack_user) |
1199 | { |
1200 | struct pthread *t = list_entry (runp, struct pthread, list); |
1201 | if (t == self) |
1202 | continue; |
1203 | |
1204 | setxid_unmark_thread (cmdp, t); |
1205 | } |
1206 | |
1207 | /* This must be last, otherwise the current thread might not have |
1208 | permissions to send SIGSETXID syscall to the other threads. */ |
1209 | INTERNAL_SYSCALL_DECL (err); |
1210 | result = INTERNAL_SYSCALL_NCS (cmdp->syscall_no, err, 3, |
1211 | cmdp->id[0], cmdp->id[1], cmdp->id[2]); |
1212 | int error = 0; |
1213 | if (__glibc_unlikely (INTERNAL_SYSCALL_ERROR_P (result, err))) |
1214 | { |
1215 | error = INTERNAL_SYSCALL_ERRNO (result, err); |
1216 | __set_errno (error); |
1217 | result = -1; |
1218 | } |
1219 | __nptl_setxid_error (cmdp, error); |
1220 | |
1221 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
1222 | return result; |
1223 | } |
1224 | #endif /* SIGSETXID. */ |
1225 | |
1226 | |
1227 | static inline void __attribute__((always_inline)) |
1228 | init_one_static_tls (struct pthread *curp, struct link_map *map) |
1229 | { |
1230 | # if TLS_TCB_AT_TP |
1231 | void *dest = (char *) curp - map->l_tls_offset; |
1232 | # elif TLS_DTV_AT_TP |
1233 | void *dest = (char *) curp + map->l_tls_offset + TLS_PRE_TCB_SIZE; |
1234 | # else |
1235 | # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined" |
1236 | # endif |
1237 | |
1238 | /* Initialize the memory. */ |
1239 | memset (__mempcpy (dest, map->l_tls_initimage, map->l_tls_initimage_size), |
1240 | '\0', map->l_tls_blocksize - map->l_tls_initimage_size); |
1241 | } |
1242 | |
1243 | void |
1244 | attribute_hidden |
1245 | __pthread_init_static_tls (struct link_map *map) |
1246 | { |
1247 | lll_lock (stack_cache_lock, LLL_PRIVATE); |
1248 | |
1249 | /* Iterate over the list with system-allocated threads first. */ |
1250 | list_t *runp; |
1251 | list_for_each (runp, &stack_used) |
1252 | init_one_static_tls (list_entry (runp, struct pthread, list), map); |
1253 | |
1254 | /* Now the list with threads using user-allocated stacks. */ |
1255 | list_for_each (runp, &__stack_user) |
1256 | init_one_static_tls (list_entry (runp, struct pthread, list), map); |
1257 | |
1258 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
1259 | } |
1260 | |
1261 | |
1262 | void |
1263 | attribute_hidden |
1264 | __wait_lookup_done (void) |
1265 | { |
1266 | lll_lock (stack_cache_lock, LLL_PRIVATE); |
1267 | |
1268 | struct pthread *self = THREAD_SELF; |
1269 | |
1270 | /* Iterate over the list with system-allocated threads first. */ |
1271 | list_t *runp; |
1272 | list_for_each (runp, &stack_used) |
1273 | { |
1274 | struct pthread *t = list_entry (runp, struct pthread, list); |
1275 | if (t == self || t->header.gscope_flag == THREAD_GSCOPE_FLAG_UNUSED) |
1276 | continue; |
1277 | |
1278 | int *const gscope_flagp = &t->header.gscope_flag; |
1279 | |
1280 | /* We have to wait until this thread is done with the global |
1281 | scope. First tell the thread that we are waiting and |
1282 | possibly have to be woken. */ |
1283 | if (atomic_compare_and_exchange_bool_acq (gscope_flagp, |
1284 | THREAD_GSCOPE_FLAG_WAIT, |
1285 | THREAD_GSCOPE_FLAG_USED)) |
1286 | continue; |
1287 | |
1288 | do |
1289 | futex_wait_simple ((unsigned int *) gscope_flagp, |
1290 | THREAD_GSCOPE_FLAG_WAIT, FUTEX_PRIVATE); |
1291 | while (*gscope_flagp == THREAD_GSCOPE_FLAG_WAIT); |
1292 | } |
1293 | |
1294 | /* Now the list with threads using user-allocated stacks. */ |
1295 | list_for_each (runp, &__stack_user) |
1296 | { |
1297 | struct pthread *t = list_entry (runp, struct pthread, list); |
1298 | if (t == self || t->header.gscope_flag == THREAD_GSCOPE_FLAG_UNUSED) |
1299 | continue; |
1300 | |
1301 | int *const gscope_flagp = &t->header.gscope_flag; |
1302 | |
1303 | /* We have to wait until this thread is done with the global |
1304 | scope. First tell the thread that we are waiting and |
1305 | possibly have to be woken. */ |
1306 | if (atomic_compare_and_exchange_bool_acq (gscope_flagp, |
1307 | THREAD_GSCOPE_FLAG_WAIT, |
1308 | THREAD_GSCOPE_FLAG_USED)) |
1309 | continue; |
1310 | |
1311 | do |
1312 | futex_wait_simple ((unsigned int *) gscope_flagp, |
1313 | THREAD_GSCOPE_FLAG_WAIT, FUTEX_PRIVATE); |
1314 | while (*gscope_flagp == THREAD_GSCOPE_FLAG_WAIT); |
1315 | } |
1316 | |
1317 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
1318 | } |
1319 | |