| 1 | /* memmove/memcpy/mempcpy with unaligned load/store and rep movsb |
| 2 | Copyright (C) 2016-2018 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <http://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | /* memmove/memcpy/mempcpy is implemented as: |
| 20 | 1. Use overlapping load and store to avoid branch. |
| 21 | 2. Load all sources into registers and store them together to avoid |
| 22 | possible address overlap between source and destination. |
| 23 | 3. If size is 8 * VEC_SIZE or less, load all sources into registers |
| 24 | and store them together. |
| 25 | 4. If address of destination > address of source, backward copy |
| 26 | 4 * VEC_SIZE at a time with unaligned load and aligned store. |
| 27 | Load the first 4 * VEC and last VEC before the loop and store |
| 28 | them after the loop to support overlapping addresses. |
| 29 | 5. Otherwise, forward copy 4 * VEC_SIZE at a time with unaligned |
| 30 | load and aligned store. Load the last 4 * VEC and first VEC |
| 31 | before the loop and store them after the loop to support |
| 32 | overlapping addresses. |
| 33 | 6. If size >= __x86_shared_non_temporal_threshold and there is no |
| 34 | overlap between destination and source, use non-temporal store |
| 35 | instead of aligned store. */ |
| 36 | |
| 37 | #include <sysdep.h> |
| 38 | |
| 39 | #ifndef MEMCPY_SYMBOL |
| 40 | # define MEMCPY_SYMBOL(p,s) MEMMOVE_SYMBOL(p, s) |
| 41 | #endif |
| 42 | |
| 43 | #ifndef MEMPCPY_SYMBOL |
| 44 | # define MEMPCPY_SYMBOL(p,s) MEMMOVE_SYMBOL(p, s) |
| 45 | #endif |
| 46 | |
| 47 | #ifndef MEMMOVE_CHK_SYMBOL |
| 48 | # define MEMMOVE_CHK_SYMBOL(p,s) MEMMOVE_SYMBOL(p, s) |
| 49 | #endif |
| 50 | |
| 51 | #ifndef VZEROUPPER |
| 52 | # if VEC_SIZE > 16 |
| 53 | # define VZEROUPPER vzeroupper |
| 54 | # else |
| 55 | # define VZEROUPPER |
| 56 | # endif |
| 57 | #endif |
| 58 | |
| 59 | /* Threshold to use Enhanced REP MOVSB. Since there is overhead to set |
| 60 | up REP MOVSB operation, REP MOVSB isn't faster on short data. The |
| 61 | memcpy micro benchmark in glibc shows that 2KB is the approximate |
| 62 | value above which REP MOVSB becomes faster than SSE2 optimization |
| 63 | on processors with Enhanced REP MOVSB. Since larger register size |
| 64 | can move more data with a single load and store, the threshold is |
| 65 | higher with larger register size. */ |
| 66 | #ifndef REP_MOVSB_THRESHOLD |
| 67 | # define REP_MOVSB_THRESHOLD (2048 * (VEC_SIZE / 16)) |
| 68 | #endif |
| 69 | |
| 70 | #ifndef PREFETCH |
| 71 | # define PREFETCH(addr) prefetcht0 addr |
| 72 | #endif |
| 73 | |
| 74 | /* Assume 64-byte prefetch size. */ |
| 75 | #ifndef PREFETCH_SIZE |
| 76 | # define PREFETCH_SIZE 64 |
| 77 | #endif |
| 78 | |
| 79 | #define PREFETCHED_LOAD_SIZE (VEC_SIZE * 4) |
| 80 | |
| 81 | #if PREFETCH_SIZE == 64 |
| 82 | # if PREFETCHED_LOAD_SIZE == PREFETCH_SIZE |
| 83 | # define PREFETCH_ONE_SET(dir, base, offset) \ |
| 84 | PREFETCH ((offset)base) |
| 85 | # elif PREFETCHED_LOAD_SIZE == 2 * PREFETCH_SIZE |
| 86 | # define PREFETCH_ONE_SET(dir, base, offset) \ |
| 87 | PREFETCH ((offset)base); \ |
| 88 | PREFETCH ((offset + dir * PREFETCH_SIZE)base) |
| 89 | # elif PREFETCHED_LOAD_SIZE == 4 * PREFETCH_SIZE |
| 90 | # define PREFETCH_ONE_SET(dir, base, offset) \ |
| 91 | PREFETCH ((offset)base); \ |
| 92 | PREFETCH ((offset + dir * PREFETCH_SIZE)base); \ |
| 93 | PREFETCH ((offset + dir * PREFETCH_SIZE)base); \ |
| 94 | PREFETCH ((offset + dir * PREFETCH_SIZE * 2)base); \ |
| 95 | PREFETCH ((offset + dir * PREFETCH_SIZE * 3)base) |
| 96 | # else |
| 97 | # error Unsupported PREFETCHED_LOAD_SIZE! |
| 98 | # endif |
| 99 | #else |
| 100 | # error Unsupported PREFETCH_SIZE! |
| 101 | #endif |
| 102 | |
| 103 | #ifndef SECTION |
| 104 | # error SECTION is not defined! |
| 105 | #endif |
| 106 | |
| 107 | .section SECTION(.text),"ax" ,@progbits |
| 108 | #if defined SHARED && IS_IN (libc) |
| 109 | ENTRY (MEMMOVE_CHK_SYMBOL (__mempcpy_chk, unaligned)) |
| 110 | cmpq %rdx, %rcx |
| 111 | jb HIDDEN_JUMPTARGET (__chk_fail) |
| 112 | END (MEMMOVE_CHK_SYMBOL (__mempcpy_chk, unaligned)) |
| 113 | #endif |
| 114 | |
| 115 | ENTRY (MEMPCPY_SYMBOL (__mempcpy, unaligned)) |
| 116 | movq %rdi, %rax |
| 117 | addq %rdx, %rax |
| 118 | jmp L(start) |
| 119 | END (MEMPCPY_SYMBOL (__mempcpy, unaligned)) |
| 120 | |
| 121 | #if defined SHARED && IS_IN (libc) |
| 122 | ENTRY (MEMMOVE_CHK_SYMBOL (__memmove_chk, unaligned)) |
| 123 | cmpq %rdx, %rcx |
| 124 | jb HIDDEN_JUMPTARGET (__chk_fail) |
| 125 | END (MEMMOVE_CHK_SYMBOL (__memmove_chk, unaligned)) |
| 126 | #endif |
| 127 | |
| 128 | ENTRY (MEMMOVE_SYMBOL (__memmove, unaligned)) |
| 129 | movq %rdi, %rax |
| 130 | L(start): |
| 131 | cmpq $VEC_SIZE, %rdx |
| 132 | jb L(less_vec) |
| 133 | cmpq $(VEC_SIZE * 2), %rdx |
| 134 | ja L(more_2x_vec) |
| 135 | #if !defined USE_MULTIARCH || !IS_IN (libc) |
| 136 | L(last_2x_vec): |
| 137 | #endif |
| 138 | /* From VEC and to 2 * VEC. No branch when size == VEC_SIZE. */ |
| 139 | VMOVU (%rsi), %VEC(0) |
| 140 | VMOVU -VEC_SIZE(%rsi,%rdx), %VEC(1) |
| 141 | VMOVU %VEC(0), (%rdi) |
| 142 | VMOVU %VEC(1), -VEC_SIZE(%rdi,%rdx) |
| 143 | VZEROUPPER |
| 144 | #if !defined USE_MULTIARCH || !IS_IN (libc) |
| 145 | L(nop): |
| 146 | #endif |
| 147 | ret |
| 148 | #if defined USE_MULTIARCH && IS_IN (libc) |
| 149 | END (MEMMOVE_SYMBOL (__memmove, unaligned)) |
| 150 | |
| 151 | # if VEC_SIZE == 16 |
| 152 | ENTRY (__mempcpy_chk_erms) |
| 153 | cmpq %rdx, %rcx |
| 154 | jb HIDDEN_JUMPTARGET (__chk_fail) |
| 155 | END (__mempcpy_chk_erms) |
| 156 | |
| 157 | /* Only used to measure performance of REP MOVSB. */ |
| 158 | ENTRY (__mempcpy_erms) |
| 159 | movq %rdi, %rax |
| 160 | addq %rdx, %rax |
| 161 | jmp L(start_movsb) |
| 162 | END (__mempcpy_erms) |
| 163 | |
| 164 | ENTRY (__memmove_chk_erms) |
| 165 | cmpq %rdx, %rcx |
| 166 | jb HIDDEN_JUMPTARGET (__chk_fail) |
| 167 | END (__memmove_chk_erms) |
| 168 | |
| 169 | ENTRY (__memmove_erms) |
| 170 | movq %rdi, %rax |
| 171 | L(start_movsb): |
| 172 | movq %rdx, %rcx |
| 173 | cmpq %rsi, %rdi |
| 174 | jb 1f |
| 175 | /* Source == destination is less common. */ |
| 176 | je 2f |
| 177 | leaq (%rsi,%rcx), %rdx |
| 178 | cmpq %rdx, %rdi |
| 179 | jb L(movsb_backward) |
| 180 | 1: |
| 181 | rep movsb |
| 182 | 2: |
| 183 | ret |
| 184 | L(movsb_backward): |
| 185 | leaq -1(%rdi,%rcx), %rdi |
| 186 | leaq -1(%rsi,%rcx), %rsi |
| 187 | std |
| 188 | rep movsb |
| 189 | cld |
| 190 | ret |
| 191 | END (__memmove_erms) |
| 192 | strong_alias (__memmove_erms, __memcpy_erms) |
| 193 | strong_alias (__memmove_chk_erms, __memcpy_chk_erms) |
| 194 | # endif |
| 195 | |
| 196 | # ifdef SHARED |
| 197 | ENTRY (MEMMOVE_CHK_SYMBOL (__mempcpy_chk, unaligned_erms)) |
| 198 | cmpq %rdx, %rcx |
| 199 | jb HIDDEN_JUMPTARGET (__chk_fail) |
| 200 | END (MEMMOVE_CHK_SYMBOL (__mempcpy_chk, unaligned_erms)) |
| 201 | # endif |
| 202 | |
| 203 | ENTRY (MEMMOVE_SYMBOL (__mempcpy, unaligned_erms)) |
| 204 | movq %rdi, %rax |
| 205 | addq %rdx, %rax |
| 206 | jmp L(start_erms) |
| 207 | END (MEMMOVE_SYMBOL (__mempcpy, unaligned_erms)) |
| 208 | |
| 209 | # ifdef SHARED |
| 210 | ENTRY (MEMMOVE_CHK_SYMBOL (__memmove_chk, unaligned_erms)) |
| 211 | cmpq %rdx, %rcx |
| 212 | jb HIDDEN_JUMPTARGET (__chk_fail) |
| 213 | END (MEMMOVE_CHK_SYMBOL (__memmove_chk, unaligned_erms)) |
| 214 | # endif |
| 215 | |
| 216 | ENTRY (MEMMOVE_SYMBOL (__memmove, unaligned_erms)) |
| 217 | movq %rdi, %rax |
| 218 | L(start_erms): |
| 219 | cmpq $VEC_SIZE, %rdx |
| 220 | jb L(less_vec) |
| 221 | cmpq $(VEC_SIZE * 2), %rdx |
| 222 | ja L(movsb_more_2x_vec) |
| 223 | L(last_2x_vec): |
| 224 | /* From VEC and to 2 * VEC. No branch when size == VEC_SIZE. */ |
| 225 | VMOVU (%rsi), %VEC(0) |
| 226 | VMOVU -VEC_SIZE(%rsi,%rdx), %VEC(1) |
| 227 | VMOVU %VEC(0), (%rdi) |
| 228 | VMOVU %VEC(1), -VEC_SIZE(%rdi,%rdx) |
| 229 | L(return): |
| 230 | VZEROUPPER |
| 231 | ret |
| 232 | |
| 233 | L(movsb): |
| 234 | cmpq __x86_shared_non_temporal_threshold(%rip), %rdx |
| 235 | jae L(more_8x_vec) |
| 236 | cmpq %rsi, %rdi |
| 237 | jb 1f |
| 238 | /* Source == destination is less common. */ |
| 239 | je L(nop) |
| 240 | leaq (%rsi,%rdx), %r9 |
| 241 | cmpq %r9, %rdi |
| 242 | /* Avoid slow backward REP MOVSB. */ |
| 243 | # if REP_MOVSB_THRESHOLD <= (VEC_SIZE * 8) |
| 244 | # error Unsupported REP_MOVSB_THRESHOLD and VEC_SIZE! |
| 245 | # endif |
| 246 | jb L(more_8x_vec_backward) |
| 247 | 1: |
| 248 | movq %rdx, %rcx |
| 249 | rep movsb |
| 250 | L(nop): |
| 251 | ret |
| 252 | #endif |
| 253 | |
| 254 | L(less_vec): |
| 255 | /* Less than 1 VEC. */ |
| 256 | #if VEC_SIZE != 16 && VEC_SIZE != 32 && VEC_SIZE != 64 |
| 257 | # error Unsupported VEC_SIZE! |
| 258 | #endif |
| 259 | #if VEC_SIZE > 32 |
| 260 | cmpb $32, %dl |
| 261 | jae L(between_32_63) |
| 262 | #endif |
| 263 | #if VEC_SIZE > 16 |
| 264 | cmpb $16, %dl |
| 265 | jae L(between_16_31) |
| 266 | #endif |
| 267 | cmpb $8, %dl |
| 268 | jae L(between_8_15) |
| 269 | cmpb $4, %dl |
| 270 | jae L(between_4_7) |
| 271 | cmpb $1, %dl |
| 272 | ja L(between_2_3) |
| 273 | jb 1f |
| 274 | movzbl (%rsi), %ecx |
| 275 | movb %cl, (%rdi) |
| 276 | 1: |
| 277 | ret |
| 278 | #if VEC_SIZE > 32 |
| 279 | L(between_32_63): |
| 280 | /* From 32 to 63. No branch when size == 32. */ |
| 281 | vmovdqu (%rsi), %ymm0 |
| 282 | vmovdqu -32(%rsi,%rdx), %ymm1 |
| 283 | vmovdqu %ymm0, (%rdi) |
| 284 | vmovdqu %ymm1, -32(%rdi,%rdx) |
| 285 | VZEROUPPER |
| 286 | ret |
| 287 | #endif |
| 288 | #if VEC_SIZE > 16 |
| 289 | /* From 16 to 31. No branch when size == 16. */ |
| 290 | L(between_16_31): |
| 291 | vmovdqu (%rsi), %xmm0 |
| 292 | vmovdqu -16(%rsi,%rdx), %xmm1 |
| 293 | vmovdqu %xmm0, (%rdi) |
| 294 | vmovdqu %xmm1, -16(%rdi,%rdx) |
| 295 | ret |
| 296 | #endif |
| 297 | L(between_8_15): |
| 298 | /* From 8 to 15. No branch when size == 8. */ |
| 299 | movq -8(%rsi,%rdx), %rcx |
| 300 | movq (%rsi), %rsi |
| 301 | movq %rcx, -8(%rdi,%rdx) |
| 302 | movq %rsi, (%rdi) |
| 303 | ret |
| 304 | L(between_4_7): |
| 305 | /* From 4 to 7. No branch when size == 4. */ |
| 306 | movl -4(%rsi,%rdx), %ecx |
| 307 | movl (%rsi), %esi |
| 308 | movl %ecx, -4(%rdi,%rdx) |
| 309 | movl %esi, (%rdi) |
| 310 | ret |
| 311 | L(between_2_3): |
| 312 | /* From 2 to 3. No branch when size == 2. */ |
| 313 | movzwl -2(%rsi,%rdx), %ecx |
| 314 | movzwl (%rsi), %esi |
| 315 | movw %cx, -2(%rdi,%rdx) |
| 316 | movw %si, (%rdi) |
| 317 | ret |
| 318 | |
| 319 | #if defined USE_MULTIARCH && IS_IN (libc) |
| 320 | L(movsb_more_2x_vec): |
| 321 | cmpq $REP_MOVSB_THRESHOLD, %rdx |
| 322 | ja L(movsb) |
| 323 | #endif |
| 324 | L(more_2x_vec): |
| 325 | /* More than 2 * VEC and there may be overlap between destination |
| 326 | and source. */ |
| 327 | cmpq $(VEC_SIZE * 8), %rdx |
| 328 | ja L(more_8x_vec) |
| 329 | cmpq $(VEC_SIZE * 4), %rdx |
| 330 | jb L(last_4x_vec) |
| 331 | /* Copy from 4 * VEC to 8 * VEC, inclusively. */ |
| 332 | VMOVU (%rsi), %VEC(0) |
| 333 | VMOVU VEC_SIZE(%rsi), %VEC(1) |
| 334 | VMOVU (VEC_SIZE * 2)(%rsi), %VEC(2) |
| 335 | VMOVU (VEC_SIZE * 3)(%rsi), %VEC(3) |
| 336 | VMOVU -VEC_SIZE(%rsi,%rdx), %VEC(4) |
| 337 | VMOVU -(VEC_SIZE * 2)(%rsi,%rdx), %VEC(5) |
| 338 | VMOVU -(VEC_SIZE * 3)(%rsi,%rdx), %VEC(6) |
| 339 | VMOVU -(VEC_SIZE * 4)(%rsi,%rdx), %VEC(7) |
| 340 | VMOVU %VEC(0), (%rdi) |
| 341 | VMOVU %VEC(1), VEC_SIZE(%rdi) |
| 342 | VMOVU %VEC(2), (VEC_SIZE * 2)(%rdi) |
| 343 | VMOVU %VEC(3), (VEC_SIZE * 3)(%rdi) |
| 344 | VMOVU %VEC(4), -VEC_SIZE(%rdi,%rdx) |
| 345 | VMOVU %VEC(5), -(VEC_SIZE * 2)(%rdi,%rdx) |
| 346 | VMOVU %VEC(6), -(VEC_SIZE * 3)(%rdi,%rdx) |
| 347 | VMOVU %VEC(7), -(VEC_SIZE * 4)(%rdi,%rdx) |
| 348 | VZEROUPPER |
| 349 | ret |
| 350 | L(last_4x_vec): |
| 351 | /* Copy from 2 * VEC to 4 * VEC. */ |
| 352 | VMOVU (%rsi), %VEC(0) |
| 353 | VMOVU VEC_SIZE(%rsi), %VEC(1) |
| 354 | VMOVU -VEC_SIZE(%rsi,%rdx), %VEC(2) |
| 355 | VMOVU -(VEC_SIZE * 2)(%rsi,%rdx), %VEC(3) |
| 356 | VMOVU %VEC(0), (%rdi) |
| 357 | VMOVU %VEC(1), VEC_SIZE(%rdi) |
| 358 | VMOVU %VEC(2), -VEC_SIZE(%rdi,%rdx) |
| 359 | VMOVU %VEC(3), -(VEC_SIZE * 2)(%rdi,%rdx) |
| 360 | VZEROUPPER |
| 361 | ret |
| 362 | |
| 363 | L(more_8x_vec): |
| 364 | cmpq %rsi, %rdi |
| 365 | ja L(more_8x_vec_backward) |
| 366 | /* Source == destination is less common. */ |
| 367 | je L(nop) |
| 368 | /* Load the first VEC and last 4 * VEC to support overlapping |
| 369 | addresses. */ |
| 370 | VMOVU (%rsi), %VEC(4) |
| 371 | VMOVU -VEC_SIZE(%rsi, %rdx), %VEC(5) |
| 372 | VMOVU -(VEC_SIZE * 2)(%rsi, %rdx), %VEC(6) |
| 373 | VMOVU -(VEC_SIZE * 3)(%rsi, %rdx), %VEC(7) |
| 374 | VMOVU -(VEC_SIZE * 4)(%rsi, %rdx), %VEC(8) |
| 375 | /* Save start and stop of the destination buffer. */ |
| 376 | movq %rdi, %r11 |
| 377 | leaq -VEC_SIZE(%rdi, %rdx), %rcx |
| 378 | /* Align destination for aligned stores in the loop. Compute |
| 379 | how much destination is misaligned. */ |
| 380 | movq %rdi, %r8 |
| 381 | andq $(VEC_SIZE - 1), %r8 |
| 382 | /* Get the negative of offset for alignment. */ |
| 383 | subq $VEC_SIZE, %r8 |
| 384 | /* Adjust source. */ |
| 385 | subq %r8, %rsi |
| 386 | /* Adjust destination which should be aligned now. */ |
| 387 | subq %r8, %rdi |
| 388 | /* Adjust length. */ |
| 389 | addq %r8, %rdx |
| 390 | #if (defined USE_MULTIARCH || VEC_SIZE == 16) && IS_IN (libc) |
| 391 | /* Check non-temporal store threshold. */ |
| 392 | cmpq __x86_shared_non_temporal_threshold(%rip), %rdx |
| 393 | ja L(large_forward) |
| 394 | #endif |
| 395 | L(loop_4x_vec_forward): |
| 396 | /* Copy 4 * VEC a time forward. */ |
| 397 | VMOVU (%rsi), %VEC(0) |
| 398 | VMOVU VEC_SIZE(%rsi), %VEC(1) |
| 399 | VMOVU (VEC_SIZE * 2)(%rsi), %VEC(2) |
| 400 | VMOVU (VEC_SIZE * 3)(%rsi), %VEC(3) |
| 401 | addq $(VEC_SIZE * 4), %rsi |
| 402 | subq $(VEC_SIZE * 4), %rdx |
| 403 | VMOVA %VEC(0), (%rdi) |
| 404 | VMOVA %VEC(1), VEC_SIZE(%rdi) |
| 405 | VMOVA %VEC(2), (VEC_SIZE * 2)(%rdi) |
| 406 | VMOVA %VEC(3), (VEC_SIZE * 3)(%rdi) |
| 407 | addq $(VEC_SIZE * 4), %rdi |
| 408 | cmpq $(VEC_SIZE * 4), %rdx |
| 409 | ja L(loop_4x_vec_forward) |
| 410 | /* Store the last 4 * VEC. */ |
| 411 | VMOVU %VEC(5), (%rcx) |
| 412 | VMOVU %VEC(6), -VEC_SIZE(%rcx) |
| 413 | VMOVU %VEC(7), -(VEC_SIZE * 2)(%rcx) |
| 414 | VMOVU %VEC(8), -(VEC_SIZE * 3)(%rcx) |
| 415 | /* Store the first VEC. */ |
| 416 | VMOVU %VEC(4), (%r11) |
| 417 | VZEROUPPER |
| 418 | ret |
| 419 | |
| 420 | L(more_8x_vec_backward): |
| 421 | /* Load the first 4 * VEC and last VEC to support overlapping |
| 422 | addresses. */ |
| 423 | VMOVU (%rsi), %VEC(4) |
| 424 | VMOVU VEC_SIZE(%rsi), %VEC(5) |
| 425 | VMOVU (VEC_SIZE * 2)(%rsi), %VEC(6) |
| 426 | VMOVU (VEC_SIZE * 3)(%rsi), %VEC(7) |
| 427 | VMOVU -VEC_SIZE(%rsi,%rdx), %VEC(8) |
| 428 | /* Save stop of the destination buffer. */ |
| 429 | leaq -VEC_SIZE(%rdi, %rdx), %r11 |
| 430 | /* Align destination end for aligned stores in the loop. Compute |
| 431 | how much destination end is misaligned. */ |
| 432 | leaq -VEC_SIZE(%rsi, %rdx), %rcx |
| 433 | movq %r11, %r9 |
| 434 | movq %r11, %r8 |
| 435 | andq $(VEC_SIZE - 1), %r8 |
| 436 | /* Adjust source. */ |
| 437 | subq %r8, %rcx |
| 438 | /* Adjust the end of destination which should be aligned now. */ |
| 439 | subq %r8, %r9 |
| 440 | /* Adjust length. */ |
| 441 | subq %r8, %rdx |
| 442 | #if (defined USE_MULTIARCH || VEC_SIZE == 16) && IS_IN (libc) |
| 443 | /* Check non-temporal store threshold. */ |
| 444 | cmpq __x86_shared_non_temporal_threshold(%rip), %rdx |
| 445 | ja L(large_backward) |
| 446 | #endif |
| 447 | L(loop_4x_vec_backward): |
| 448 | /* Copy 4 * VEC a time backward. */ |
| 449 | VMOVU (%rcx), %VEC(0) |
| 450 | VMOVU -VEC_SIZE(%rcx), %VEC(1) |
| 451 | VMOVU -(VEC_SIZE * 2)(%rcx), %VEC(2) |
| 452 | VMOVU -(VEC_SIZE * 3)(%rcx), %VEC(3) |
| 453 | subq $(VEC_SIZE * 4), %rcx |
| 454 | subq $(VEC_SIZE * 4), %rdx |
| 455 | VMOVA %VEC(0), (%r9) |
| 456 | VMOVA %VEC(1), -VEC_SIZE(%r9) |
| 457 | VMOVA %VEC(2), -(VEC_SIZE * 2)(%r9) |
| 458 | VMOVA %VEC(3), -(VEC_SIZE * 3)(%r9) |
| 459 | subq $(VEC_SIZE * 4), %r9 |
| 460 | cmpq $(VEC_SIZE * 4), %rdx |
| 461 | ja L(loop_4x_vec_backward) |
| 462 | /* Store the first 4 * VEC. */ |
| 463 | VMOVU %VEC(4), (%rdi) |
| 464 | VMOVU %VEC(5), VEC_SIZE(%rdi) |
| 465 | VMOVU %VEC(6), (VEC_SIZE * 2)(%rdi) |
| 466 | VMOVU %VEC(7), (VEC_SIZE * 3)(%rdi) |
| 467 | /* Store the last VEC. */ |
| 468 | VMOVU %VEC(8), (%r11) |
| 469 | VZEROUPPER |
| 470 | ret |
| 471 | |
| 472 | #if (defined USE_MULTIARCH || VEC_SIZE == 16) && IS_IN (libc) |
| 473 | L(large_forward): |
| 474 | /* Don't use non-temporal store if there is overlap between |
| 475 | destination and source since destination may be in cache |
| 476 | when source is loaded. */ |
| 477 | leaq (%rdi, %rdx), %r10 |
| 478 | cmpq %r10, %rsi |
| 479 | jb L(loop_4x_vec_forward) |
| 480 | L(loop_large_forward): |
| 481 | /* Copy 4 * VEC a time forward with non-temporal stores. */ |
| 482 | PREFETCH_ONE_SET (1, (%rsi), PREFETCHED_LOAD_SIZE * 2) |
| 483 | PREFETCH_ONE_SET (1, (%rsi), PREFETCHED_LOAD_SIZE * 3) |
| 484 | VMOVU (%rsi), %VEC(0) |
| 485 | VMOVU VEC_SIZE(%rsi), %VEC(1) |
| 486 | VMOVU (VEC_SIZE * 2)(%rsi), %VEC(2) |
| 487 | VMOVU (VEC_SIZE * 3)(%rsi), %VEC(3) |
| 488 | addq $PREFETCHED_LOAD_SIZE, %rsi |
| 489 | subq $PREFETCHED_LOAD_SIZE, %rdx |
| 490 | VMOVNT %VEC(0), (%rdi) |
| 491 | VMOVNT %VEC(1), VEC_SIZE(%rdi) |
| 492 | VMOVNT %VEC(2), (VEC_SIZE * 2)(%rdi) |
| 493 | VMOVNT %VEC(3), (VEC_SIZE * 3)(%rdi) |
| 494 | addq $PREFETCHED_LOAD_SIZE, %rdi |
| 495 | cmpq $PREFETCHED_LOAD_SIZE, %rdx |
| 496 | ja L(loop_large_forward) |
| 497 | sfence |
| 498 | /* Store the last 4 * VEC. */ |
| 499 | VMOVU %VEC(5), (%rcx) |
| 500 | VMOVU %VEC(6), -VEC_SIZE(%rcx) |
| 501 | VMOVU %VEC(7), -(VEC_SIZE * 2)(%rcx) |
| 502 | VMOVU %VEC(8), -(VEC_SIZE * 3)(%rcx) |
| 503 | /* Store the first VEC. */ |
| 504 | VMOVU %VEC(4), (%r11) |
| 505 | VZEROUPPER |
| 506 | ret |
| 507 | |
| 508 | L(large_backward): |
| 509 | /* Don't use non-temporal store if there is overlap between |
| 510 | destination and source since destination may be in cache |
| 511 | when source is loaded. */ |
| 512 | leaq (%rcx, %rdx), %r10 |
| 513 | cmpq %r10, %r9 |
| 514 | jb L(loop_4x_vec_backward) |
| 515 | L(loop_large_backward): |
| 516 | /* Copy 4 * VEC a time backward with non-temporal stores. */ |
| 517 | PREFETCH_ONE_SET (-1, (%rcx), -PREFETCHED_LOAD_SIZE * 2) |
| 518 | PREFETCH_ONE_SET (-1, (%rcx), -PREFETCHED_LOAD_SIZE * 3) |
| 519 | VMOVU (%rcx), %VEC(0) |
| 520 | VMOVU -VEC_SIZE(%rcx), %VEC(1) |
| 521 | VMOVU -(VEC_SIZE * 2)(%rcx), %VEC(2) |
| 522 | VMOVU -(VEC_SIZE * 3)(%rcx), %VEC(3) |
| 523 | subq $PREFETCHED_LOAD_SIZE, %rcx |
| 524 | subq $PREFETCHED_LOAD_SIZE, %rdx |
| 525 | VMOVNT %VEC(0), (%r9) |
| 526 | VMOVNT %VEC(1), -VEC_SIZE(%r9) |
| 527 | VMOVNT %VEC(2), -(VEC_SIZE * 2)(%r9) |
| 528 | VMOVNT %VEC(3), -(VEC_SIZE * 3)(%r9) |
| 529 | subq $PREFETCHED_LOAD_SIZE, %r9 |
| 530 | cmpq $PREFETCHED_LOAD_SIZE, %rdx |
| 531 | ja L(loop_large_backward) |
| 532 | sfence |
| 533 | /* Store the first 4 * VEC. */ |
| 534 | VMOVU %VEC(4), (%rdi) |
| 535 | VMOVU %VEC(5), VEC_SIZE(%rdi) |
| 536 | VMOVU %VEC(6), (VEC_SIZE * 2)(%rdi) |
| 537 | VMOVU %VEC(7), (VEC_SIZE * 3)(%rdi) |
| 538 | /* Store the last VEC. */ |
| 539 | VMOVU %VEC(8), (%r11) |
| 540 | VZEROUPPER |
| 541 | ret |
| 542 | #endif |
| 543 | END (MEMMOVE_SYMBOL (__memmove, unaligned_erms)) |
| 544 | |
| 545 | #if IS_IN (libc) |
| 546 | # ifdef USE_MULTIARCH |
| 547 | strong_alias (MEMMOVE_SYMBOL (__memmove, unaligned_erms), |
| 548 | MEMMOVE_SYMBOL (__memcpy, unaligned_erms)) |
| 549 | # ifdef SHARED |
| 550 | strong_alias (MEMMOVE_SYMBOL (__memmove_chk, unaligned_erms), |
| 551 | MEMMOVE_SYMBOL (__memcpy_chk, unaligned_erms)) |
| 552 | # endif |
| 553 | # endif |
| 554 | # ifdef SHARED |
| 555 | strong_alias (MEMMOVE_CHK_SYMBOL (__memmove_chk, unaligned), |
| 556 | MEMMOVE_CHK_SYMBOL (__memcpy_chk, unaligned)) |
| 557 | # endif |
| 558 | #endif |
| 559 | strong_alias (MEMMOVE_SYMBOL (__memmove, unaligned), |
| 560 | MEMCPY_SYMBOL (__memcpy, unaligned)) |
| 561 | |