| 1 | /* Compute cosine of argument. |
| 2 | Copyright (C) 2017-2018 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <http://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <errno.h> |
| 20 | #include <math.h> |
| 21 | #include <math_private.h> |
| 22 | #include <libm-alias-float.h> |
| 23 | #include "s_sincosf.h" |
| 24 | |
| 25 | #ifndef COSF |
| 26 | # define COSF_FUNC __cosf |
| 27 | #else |
| 28 | # define COSF_FUNC COSF |
| 29 | #endif |
| 30 | |
| 31 | float |
| 32 | COSF_FUNC (float x) |
| 33 | { |
| 34 | double theta = x; |
| 35 | double abstheta = fabs (theta); |
| 36 | if (isless (abstheta, M_PI_4)) |
| 37 | { |
| 38 | double cx; |
| 39 | if (abstheta >= 0x1p-5) |
| 40 | { |
| 41 | const double theta2 = theta * theta; |
| 42 | /* Chebyshev polynomial of the form for cos: |
| 43 | * 1 + x^2 (C0 + x^2 (C1 + x^2 (C2 + x^2 (C3 + x^2 * C4)))). */ |
| 44 | cx = C3 + theta2 * C4; |
| 45 | cx = C2 + theta2 * cx; |
| 46 | cx = C1 + theta2 * cx; |
| 47 | cx = C0 + theta2 * cx; |
| 48 | cx = 1. + theta2 * cx; |
| 49 | return cx; |
| 50 | } |
| 51 | else if (abstheta >= 0x1p-27) |
| 52 | { |
| 53 | /* A simpler Chebyshev approximation is close enough for this range: |
| 54 | * 1 + x^2 (CC0 + x^3 * CC1). */ |
| 55 | const double theta2 = theta * theta; |
| 56 | cx = CC0 + theta * theta2 * CC1; |
| 57 | cx = 1.0 + theta2 * cx; |
| 58 | return cx; |
| 59 | } |
| 60 | else |
| 61 | { |
| 62 | /* For small enough |theta|, this is close enough. */ |
| 63 | return 1.0 - abstheta; |
| 64 | } |
| 65 | } |
| 66 | else /* |theta| >= Pi/4. */ |
| 67 | { |
| 68 | if (isless (abstheta, 9 * M_PI_4)) |
| 69 | { |
| 70 | /* There are cases where FE_UPWARD rounding mode can |
| 71 | produce a result of abstheta * inv_PI_4 == 9, |
| 72 | where abstheta < 9pi/4, so the domain for |
| 73 | pio2_table must go to 5 (9 / 2 + 1). */ |
| 74 | unsigned int n = (abstheta * inv_PI_4) + 1; |
| 75 | theta = abstheta - pio2_table[n / 2]; |
| 76 | return reduced_cos (theta, n); |
| 77 | } |
| 78 | else if (isless (abstheta, INFINITY)) |
| 79 | { |
| 80 | if (abstheta < 0x1p+23) |
| 81 | { |
| 82 | unsigned int n = ((unsigned int) (abstheta * inv_PI_4)) + 1; |
| 83 | double x = n / 2; |
| 84 | theta = (abstheta - x * PI_2_hi) - x * PI_2_lo; |
| 85 | /* Argument reduction needed. */ |
| 86 | return reduced_cos (theta, n); |
| 87 | } |
| 88 | else /* |theta| >= 2^23. */ |
| 89 | { |
| 90 | x = fabsf (x); |
| 91 | int exponent; |
| 92 | GET_FLOAT_WORD (exponent, x); |
| 93 | exponent = (exponent >> FLOAT_EXPONENT_SHIFT) |
| 94 | - FLOAT_EXPONENT_BIAS; |
| 95 | exponent += 3; |
| 96 | exponent /= 28; |
| 97 | double a = invpio4_table[exponent] * x; |
| 98 | double b = invpio4_table[exponent + 1] * x; |
| 99 | double c = invpio4_table[exponent + 2] * x; |
| 100 | double d = invpio4_table[exponent + 3] * x; |
| 101 | uint64_t l = a; |
| 102 | l &= ~0x7; |
| 103 | a -= l; |
| 104 | double e = a + b; |
| 105 | l = e; |
| 106 | e = a - l; |
| 107 | if (l & 1) |
| 108 | { |
| 109 | e -= 1.0; |
| 110 | e += b; |
| 111 | e += c; |
| 112 | e += d; |
| 113 | e *= M_PI_4; |
| 114 | return reduced_cos (e, l + 1); |
| 115 | } |
| 116 | else |
| 117 | { |
| 118 | e += b; |
| 119 | e += c; |
| 120 | e += d; |
| 121 | if (e <= 1.0) |
| 122 | { |
| 123 | e *= M_PI_4; |
| 124 | return reduced_cos (e, l + 1); |
| 125 | } |
| 126 | else |
| 127 | { |
| 128 | l++; |
| 129 | e -= 2.0; |
| 130 | e *= M_PI_4; |
| 131 | return reduced_cos (e, l + 1); |
| 132 | } |
| 133 | } |
| 134 | } |
| 135 | } |
| 136 | else |
| 137 | { |
| 138 | int32_t ix; |
| 139 | GET_FLOAT_WORD (ix, abstheta); |
| 140 | /* cos(Inf or NaN) is NaN. */ |
| 141 | if (ix == 0x7f800000) /* Inf. */ |
| 142 | __set_errno (EDOM); |
| 143 | return x - x; |
| 144 | } |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | #ifndef COSF |
| 149 | libm_alias_float (__cos, cos) |
| 150 | #endif |
| 151 | |