1 | /* Copyright (C) 2016-2018 Free Software Foundation, Inc. |
2 | This file is part of the GNU C Library. |
3 | |
4 | The GNU C Library is free software; you can redistribute it and/or |
5 | modify it under the terms of the GNU Lesser General Public |
6 | License as published by the Free Software Foundation; either |
7 | version 2.1 of the License, or (at your option) any later version. |
8 | |
9 | The GNU C Library is distributed in the hope that it will be useful, |
10 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
12 | Lesser General Public License for more details. |
13 | |
14 | You should have received a copy of the GNU Lesser General Public |
15 | License along with the GNU C Library; if not, see |
16 | <http://www.gnu.org/licenses/>. */ |
17 | |
18 | /* |
19 | * Copyright (c) 1985, 1989, 1993 |
20 | * The Regents of the University of California. All rights reserved. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the above copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 4. Neither the name of the University nor the names of its contributors |
31 | * may be used to endorse or promote products derived from this software |
32 | * without specific prior written permission. |
33 | * |
34 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
35 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
36 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
37 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
38 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
39 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
40 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
41 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
42 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
43 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
44 | * SUCH DAMAGE. |
45 | */ |
46 | |
47 | /* |
48 | * Portions Copyright (c) 1993 by Digital Equipment Corporation. |
49 | * |
50 | * Permission to use, copy, modify, and distribute this software for any |
51 | * purpose with or without fee is hereby granted, provided that the above |
52 | * copyright notice and this permission notice appear in all copies, and that |
53 | * the name of Digital Equipment Corporation not be used in advertising or |
54 | * publicity pertaining to distribution of the document or software without |
55 | * specific, written prior permission. |
56 | * |
57 | * THE SOFTWARE IS PROVIDED "AS IS" AND DIGITAL EQUIPMENT CORP. DISCLAIMS ALL |
58 | * WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES |
59 | * OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL DIGITAL EQUIPMENT |
60 | * CORPORATION BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL |
61 | * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR |
62 | * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS |
63 | * ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS |
64 | * SOFTWARE. |
65 | */ |
66 | |
67 | /* |
68 | * Portions Copyright (c) 1996-1999 by Internet Software Consortium. |
69 | * |
70 | * Permission to use, copy, modify, and distribute this software for any |
71 | * purpose with or without fee is hereby granted, provided that the above |
72 | * copyright notice and this permission notice appear in all copies. |
73 | * |
74 | * THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE CONSORTIUM DISCLAIMS |
75 | * ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES |
76 | * OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE |
77 | * CONSORTIUM BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL |
78 | * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR |
79 | * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS |
80 | * ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS |
81 | * SOFTWARE. |
82 | */ |
83 | |
84 | /* |
85 | * Send query to name server and wait for reply. |
86 | */ |
87 | |
88 | #include <assert.h> |
89 | #include <sys/types.h> |
90 | #include <sys/param.h> |
91 | #include <sys/time.h> |
92 | #include <sys/socket.h> |
93 | #include <sys/uio.h> |
94 | #include <sys/poll.h> |
95 | |
96 | #include <netinet/in.h> |
97 | #include <arpa/nameser.h> |
98 | #include <arpa/inet.h> |
99 | #include <sys/ioctl.h> |
100 | |
101 | #include <errno.h> |
102 | #include <fcntl.h> |
103 | #include <netdb.h> |
104 | #include <resolv/resolv-internal.h> |
105 | #include <resolv/resolv_context.h> |
106 | #include <signal.h> |
107 | #include <stdlib.h> |
108 | #include <string.h> |
109 | #include <unistd.h> |
110 | #include <kernel-features.h> |
111 | #include <libc-diag.h> |
112 | #include <hp-timing.h> |
113 | |
114 | #if PACKETSZ > 65536 |
115 | #define MAXPACKET PACKETSZ |
116 | #else |
117 | #define MAXPACKET 65536 |
118 | #endif |
119 | |
120 | /* From ev_streams.c. */ |
121 | |
122 | static inline void |
123 | __attribute ((always_inline)) |
124 | evConsIovec(void *buf, size_t cnt, struct iovec *vec) { |
125 | memset(vec, 0xf5, sizeof (*vec)); |
126 | vec->iov_base = buf; |
127 | vec->iov_len = cnt; |
128 | } |
129 | |
130 | /* From ev_timers.c. */ |
131 | |
132 | #define BILLION 1000000000 |
133 | |
134 | static inline void |
135 | evConsTime(struct timespec *res, time_t sec, long nsec) { |
136 | res->tv_sec = sec; |
137 | res->tv_nsec = nsec; |
138 | } |
139 | |
140 | static inline void |
141 | evAddTime(struct timespec *res, const struct timespec *addend1, |
142 | const struct timespec *addend2) { |
143 | res->tv_sec = addend1->tv_sec + addend2->tv_sec; |
144 | res->tv_nsec = addend1->tv_nsec + addend2->tv_nsec; |
145 | if (res->tv_nsec >= BILLION) { |
146 | res->tv_sec++; |
147 | res->tv_nsec -= BILLION; |
148 | } |
149 | } |
150 | |
151 | static inline void |
152 | evSubTime(struct timespec *res, const struct timespec *minuend, |
153 | const struct timespec *subtrahend) { |
154 | res->tv_sec = minuend->tv_sec - subtrahend->tv_sec; |
155 | if (minuend->tv_nsec >= subtrahend->tv_nsec) |
156 | res->tv_nsec = minuend->tv_nsec - subtrahend->tv_nsec; |
157 | else { |
158 | res->tv_nsec = (BILLION |
159 | - subtrahend->tv_nsec + minuend->tv_nsec); |
160 | res->tv_sec--; |
161 | } |
162 | } |
163 | |
164 | static int |
165 | evCmpTime(struct timespec a, struct timespec b) { |
166 | long x = a.tv_sec - b.tv_sec; |
167 | |
168 | if (x == 0L) |
169 | x = a.tv_nsec - b.tv_nsec; |
170 | return (x < 0L ? (-1) : x > 0L ? (1) : (0)); |
171 | } |
172 | |
173 | static void |
174 | evNowTime(struct timespec *res) { |
175 | struct timeval now; |
176 | |
177 | if (gettimeofday(&now, NULL) < 0) |
178 | evConsTime(res, 0, 0); |
179 | else |
180 | TIMEVAL_TO_TIMESPEC (&now, res); |
181 | } |
182 | |
183 | |
184 | #define EXT(res) ((res)->_u._ext) |
185 | |
186 | /* Forward. */ |
187 | |
188 | static struct sockaddr *get_nsaddr (res_state, unsigned int); |
189 | static int send_vc(res_state, const u_char *, int, |
190 | const u_char *, int, |
191 | u_char **, int *, int *, int, u_char **, |
192 | u_char **, int *, int *, int *); |
193 | static int send_dg(res_state, const u_char *, int, |
194 | const u_char *, int, |
195 | u_char **, int *, int *, int, |
196 | int *, int *, u_char **, |
197 | u_char **, int *, int *, int *); |
198 | static int sock_eq(struct sockaddr_in6 *, struct sockaddr_in6 *); |
199 | |
200 | /* Public. */ |
201 | |
202 | /* int |
203 | * res_isourserver(ina) |
204 | * looks up "ina" in _res.ns_addr_list[] |
205 | * returns: |
206 | * 0 : not found |
207 | * >0 : found |
208 | * author: |
209 | * paul vixie, 29may94 |
210 | */ |
211 | int |
212 | res_ourserver_p(const res_state statp, const struct sockaddr_in6 *inp) |
213 | { |
214 | int ns; |
215 | |
216 | if (inp->sin6_family == AF_INET) { |
217 | struct sockaddr_in *in4p = (struct sockaddr_in *) inp; |
218 | in_port_t port = in4p->sin_port; |
219 | in_addr_t addr = in4p->sin_addr.s_addr; |
220 | |
221 | for (ns = 0; ns < statp->nscount; ns++) { |
222 | const struct sockaddr_in *srv = |
223 | (struct sockaddr_in *) get_nsaddr (statp, ns); |
224 | |
225 | if ((srv->sin_family == AF_INET) && |
226 | (srv->sin_port == port) && |
227 | (srv->sin_addr.s_addr == INADDR_ANY || |
228 | srv->sin_addr.s_addr == addr)) |
229 | return (1); |
230 | } |
231 | } else if (inp->sin6_family == AF_INET6) { |
232 | for (ns = 0; ns < statp->nscount; ns++) { |
233 | const struct sockaddr_in6 *srv |
234 | = (struct sockaddr_in6 *) get_nsaddr (statp, ns); |
235 | if ((srv->sin6_family == AF_INET6) && |
236 | (srv->sin6_port == inp->sin6_port) && |
237 | !(memcmp(&srv->sin6_addr, &in6addr_any, |
238 | sizeof (struct in6_addr)) && |
239 | memcmp(&srv->sin6_addr, &inp->sin6_addr, |
240 | sizeof (struct in6_addr)))) |
241 | return (1); |
242 | } |
243 | } |
244 | return (0); |
245 | } |
246 | |
247 | int |
248 | res_isourserver (const struct sockaddr_in *inp) |
249 | { |
250 | return res_ourserver_p (&_res, (const struct sockaddr_in6 *) inp); |
251 | } |
252 | |
253 | /* int |
254 | * res_nameinquery(name, type, class, buf, eom) |
255 | * look for (name,type,class) in the query section of packet (buf,eom) |
256 | * requires: |
257 | * buf + HFIXEDSZ <= eom |
258 | * returns: |
259 | * -1 : format error |
260 | * 0 : not found |
261 | * >0 : found |
262 | * author: |
263 | * paul vixie, 29may94 |
264 | */ |
265 | int |
266 | res_nameinquery(const char *name, int type, int class, |
267 | const u_char *buf, const u_char *eom) |
268 | { |
269 | const u_char *cp = buf + HFIXEDSZ; |
270 | int qdcount = ntohs(((HEADER*)buf)->qdcount); |
271 | |
272 | while (qdcount-- > 0) { |
273 | char tname[MAXDNAME+1]; |
274 | int n, ttype, tclass; |
275 | |
276 | n = dn_expand(buf, eom, cp, tname, sizeof tname); |
277 | if (n < 0) |
278 | return (-1); |
279 | cp += n; |
280 | if (cp + 2 * INT16SZ > eom) |
281 | return (-1); |
282 | NS_GET16(ttype, cp); |
283 | NS_GET16(tclass, cp); |
284 | if (ttype == type && tclass == class && |
285 | ns_samename(tname, name) == 1) |
286 | return (1); |
287 | } |
288 | return (0); |
289 | } |
290 | libresolv_hidden_def (res_nameinquery) |
291 | |
292 | /* Returns a shift value for the name server index. Used to implement |
293 | RES_ROTATE. */ |
294 | static unsigned int |
295 | nameserver_offset (struct __res_state *statp) |
296 | { |
297 | /* If we only have one name server or rotation is disabled, return |
298 | offset 0 (no rotation). */ |
299 | unsigned int nscount = statp->nscount; |
300 | if (nscount <= 1 || !(statp->options & RES_ROTATE)) |
301 | return 0; |
302 | |
303 | /* Global offset. The lowest bit indicates whether the offset has |
304 | been initialized with a random value. Use relaxed MO to access |
305 | global_offset because all we need is a sequence of roughly |
306 | sequential value. */ |
307 | static unsigned int global_offset; |
308 | unsigned int offset = atomic_fetch_add_relaxed (&global_offset, 2); |
309 | if ((offset & 1) == 0) |
310 | { |
311 | /* Initialization is required. */ |
312 | #if HP_TIMING_AVAIL |
313 | uint64_t ticks; |
314 | HP_TIMING_NOW (ticks); |
315 | offset = ticks; |
316 | #else |
317 | struct timeval tv; |
318 | __gettimeofday (&tv, NULL); |
319 | offset = ((tv.tv_sec << 8) ^ tv.tv_usec); |
320 | #endif |
321 | /* The lowest bit is the most random. Preserve it. */ |
322 | offset <<= 1; |
323 | |
324 | /* Store the new starting value. atomic_fetch_add_relaxed |
325 | returns the old value, so emulate that by storing the new |
326 | (incremented) value. Concurrent initialization with |
327 | different random values is harmless. */ |
328 | atomic_store_relaxed (&global_offset, (offset | 1) + 2); |
329 | } |
330 | |
331 | /* Remove the initialization bit. */ |
332 | offset >>= 1; |
333 | |
334 | /* Avoid the division in the most common cases. */ |
335 | switch (nscount) |
336 | { |
337 | case 2: |
338 | return offset & 1; |
339 | case 3: |
340 | return offset % 3; |
341 | case 4: |
342 | return offset & 3; |
343 | default: |
344 | return offset % nscount; |
345 | } |
346 | } |
347 | |
348 | /* int |
349 | * res_queriesmatch(buf1, eom1, buf2, eom2) |
350 | * is there a 1:1 mapping of (name,type,class) |
351 | * in (buf1,eom1) and (buf2,eom2)? |
352 | * returns: |
353 | * -1 : format error |
354 | * 0 : not a 1:1 mapping |
355 | * >0 : is a 1:1 mapping |
356 | * author: |
357 | * paul vixie, 29may94 |
358 | */ |
359 | int |
360 | res_queriesmatch(const u_char *buf1, const u_char *eom1, |
361 | const u_char *buf2, const u_char *eom2) |
362 | { |
363 | if (buf1 + HFIXEDSZ > eom1 || buf2 + HFIXEDSZ > eom2) |
364 | return (-1); |
365 | |
366 | /* |
367 | * Only header section present in replies to |
368 | * dynamic update packets. |
369 | */ |
370 | if ((((HEADER *)buf1)->opcode == ns_o_update) && |
371 | (((HEADER *)buf2)->opcode == ns_o_update)) |
372 | return (1); |
373 | |
374 | /* Note that we initially do not convert QDCOUNT to the host byte |
375 | order. We can compare it with the second buffer's QDCOUNT |
376 | value without doing this. */ |
377 | int qdcount = ((HEADER*)buf1)->qdcount; |
378 | if (qdcount != ((HEADER*)buf2)->qdcount) |
379 | return (0); |
380 | |
381 | qdcount = htons (qdcount); |
382 | const u_char *cp = buf1 + HFIXEDSZ; |
383 | |
384 | while (qdcount-- > 0) { |
385 | char tname[MAXDNAME+1]; |
386 | int n, ttype, tclass; |
387 | |
388 | n = dn_expand(buf1, eom1, cp, tname, sizeof tname); |
389 | if (n < 0) |
390 | return (-1); |
391 | cp += n; |
392 | if (cp + 2 * INT16SZ > eom1) |
393 | return (-1); |
394 | NS_GET16(ttype, cp); |
395 | NS_GET16(tclass, cp); |
396 | if (!res_nameinquery(tname, ttype, tclass, buf2, eom2)) |
397 | return (0); |
398 | } |
399 | return (1); |
400 | } |
401 | libresolv_hidden_def (res_queriesmatch) |
402 | |
403 | int |
404 | __res_context_send (struct resolv_context *ctx, |
405 | const unsigned char *buf, int buflen, |
406 | const unsigned char *buf2, int buflen2, |
407 | unsigned char *ans, int anssiz, |
408 | unsigned char **ansp, unsigned char **ansp2, |
409 | int *nansp2, int *resplen2, int *ansp2_malloced) |
410 | { |
411 | struct __res_state *statp = ctx->resp; |
412 | int gotsomewhere, terrno, try, v_circuit, resplen, n; |
413 | |
414 | if (statp->nscount == 0) { |
415 | __set_errno (ESRCH); |
416 | return (-1); |
417 | } |
418 | |
419 | if (anssiz < (buf2 == NULL ? 1 : 2) * HFIXEDSZ) { |
420 | __set_errno (EINVAL); |
421 | return (-1); |
422 | } |
423 | |
424 | v_circuit = ((statp->options & RES_USEVC) |
425 | || buflen > PACKETSZ |
426 | || buflen2 > PACKETSZ); |
427 | gotsomewhere = 0; |
428 | terrno = ETIMEDOUT; |
429 | |
430 | /* |
431 | * If the ns_addr_list in the resolver context has changed, then |
432 | * invalidate our cached copy and the associated timing data. |
433 | */ |
434 | if (EXT(statp).nscount != 0) { |
435 | int needclose = 0; |
436 | |
437 | if (EXT(statp).nscount != statp->nscount) |
438 | needclose++; |
439 | else |
440 | for (unsigned int ns = 0; ns < statp->nscount; ns++) { |
441 | if (statp->nsaddr_list[ns].sin_family != 0 |
442 | && !sock_eq((struct sockaddr_in6 *) |
443 | &statp->nsaddr_list[ns], |
444 | EXT(statp).nsaddrs[ns])) |
445 | { |
446 | needclose++; |
447 | break; |
448 | } |
449 | } |
450 | if (needclose) { |
451 | __res_iclose(statp, false); |
452 | EXT(statp).nscount = 0; |
453 | } |
454 | } |
455 | |
456 | /* |
457 | * Maybe initialize our private copy of the ns_addr_list. |
458 | */ |
459 | if (EXT(statp).nscount == 0) { |
460 | for (unsigned int ns = 0; ns < statp->nscount; ns++) { |
461 | EXT(statp).nssocks[ns] = -1; |
462 | if (statp->nsaddr_list[ns].sin_family == 0) |
463 | continue; |
464 | if (EXT(statp).nsaddrs[ns] == NULL) |
465 | EXT(statp).nsaddrs[ns] = |
466 | malloc(sizeof (struct sockaddr_in6)); |
467 | if (EXT(statp).nsaddrs[ns] != NULL) |
468 | memset (mempcpy(EXT(statp).nsaddrs[ns], |
469 | &statp->nsaddr_list[ns], |
470 | sizeof (struct sockaddr_in)), |
471 | '\0', |
472 | sizeof (struct sockaddr_in6) |
473 | - sizeof (struct sockaddr_in)); |
474 | } |
475 | EXT(statp).nscount = statp->nscount; |
476 | } |
477 | |
478 | /* Name server index offset. Used to implement |
479 | RES_ROTATE. */ |
480 | unsigned int ns_offset = nameserver_offset (statp); |
481 | |
482 | /* |
483 | * Send request, RETRY times, or until successful. |
484 | */ |
485 | for (try = 0; try < statp->retry; try++) { |
486 | for (unsigned ns_shift = 0; ns_shift < statp->nscount; ns_shift++) |
487 | { |
488 | /* The actual name server index. This implements |
489 | RES_ROTATE. */ |
490 | unsigned int ns = ns_shift + ns_offset; |
491 | if (ns >= statp->nscount) |
492 | ns -= statp->nscount; |
493 | |
494 | same_ns: |
495 | if (__glibc_unlikely (v_circuit)) { |
496 | /* Use VC; at most one attempt per server. */ |
497 | try = statp->retry; |
498 | n = send_vc(statp, buf, buflen, buf2, buflen2, |
499 | &ans, &anssiz, &terrno, |
500 | ns, ansp, ansp2, nansp2, resplen2, |
501 | ansp2_malloced); |
502 | if (n < 0) |
503 | return (-1); |
504 | if (n == 0 && (buf2 == NULL || *resplen2 == 0)) |
505 | goto next_ns; |
506 | } else { |
507 | /* Use datagrams. */ |
508 | n = send_dg(statp, buf, buflen, buf2, buflen2, |
509 | &ans, &anssiz, &terrno, |
510 | ns, &v_circuit, &gotsomewhere, ansp, |
511 | ansp2, nansp2, resplen2, ansp2_malloced); |
512 | if (n < 0) |
513 | return (-1); |
514 | if (n == 0 && (buf2 == NULL || *resplen2 == 0)) |
515 | goto next_ns; |
516 | if (v_circuit) |
517 | // XXX Check whether both requests failed or |
518 | // XXX whether one has been answered successfully |
519 | goto same_ns; |
520 | } |
521 | |
522 | resplen = n; |
523 | |
524 | /* |
525 | * If we have temporarily opened a virtual circuit, |
526 | * or if we haven't been asked to keep a socket open, |
527 | * close the socket. |
528 | */ |
529 | if ((v_circuit && (statp->options & RES_USEVC) == 0) || |
530 | (statp->options & RES_STAYOPEN) == 0) { |
531 | __res_iclose(statp, false); |
532 | } |
533 | return (resplen); |
534 | next_ns: ; |
535 | } /*foreach ns*/ |
536 | } /*foreach retry*/ |
537 | __res_iclose(statp, false); |
538 | if (!v_circuit) { |
539 | if (!gotsomewhere) |
540 | __set_errno (ECONNREFUSED); /* no nameservers found */ |
541 | else |
542 | __set_errno (ETIMEDOUT); /* no answer obtained */ |
543 | } else |
544 | __set_errno (terrno); |
545 | return (-1); |
546 | } |
547 | |
548 | /* Common part of res_nsend and res_send. */ |
549 | static int |
550 | context_send_common (struct resolv_context *ctx, |
551 | const unsigned char *buf, int buflen, |
552 | unsigned char *ans, int anssiz) |
553 | { |
554 | if (ctx == NULL) |
555 | { |
556 | RES_SET_H_ERRNO (&_res, NETDB_INTERNAL); |
557 | return -1; |
558 | } |
559 | int result = __res_context_send (ctx, buf, buflen, NULL, 0, ans, anssiz, |
560 | NULL, NULL, NULL, NULL, NULL); |
561 | __resolv_context_put (ctx); |
562 | return result; |
563 | } |
564 | |
565 | int |
566 | res_nsend (res_state statp, const unsigned char *buf, int buflen, |
567 | unsigned char *ans, int anssiz) |
568 | { |
569 | return context_send_common |
570 | (__resolv_context_get_override (statp), buf, buflen, ans, anssiz); |
571 | } |
572 | |
573 | int |
574 | res_send (const unsigned char *buf, int buflen, unsigned char *ans, int anssiz) |
575 | { |
576 | return context_send_common |
577 | (__resolv_context_get (), buf, buflen, ans, anssiz); |
578 | } |
579 | |
580 | /* Private */ |
581 | |
582 | static struct sockaddr * |
583 | get_nsaddr (res_state statp, unsigned int n) |
584 | { |
585 | assert (n < statp->nscount); |
586 | |
587 | if (statp->nsaddr_list[n].sin_family == 0 && EXT(statp).nsaddrs[n] != NULL) |
588 | /* EXT(statp).nsaddrs[n] holds an address that is larger than |
589 | struct sockaddr, and user code did not update |
590 | statp->nsaddr_list[n]. */ |
591 | return (struct sockaddr *) EXT(statp).nsaddrs[n]; |
592 | else |
593 | /* User code updated statp->nsaddr_list[n], or statp->nsaddr_list[n] |
594 | has the same content as EXT(statp).nsaddrs[n]. */ |
595 | return (struct sockaddr *) (void *) &statp->nsaddr_list[n]; |
596 | } |
597 | |
598 | /* Close the resolver structure, assign zero to *RESPLEN2 if RESPLEN2 |
599 | is not NULL, and return zero. */ |
600 | static int |
601 | __attribute__ ((warn_unused_result)) |
602 | close_and_return_error (res_state statp, int *resplen2) |
603 | { |
604 | __res_iclose(statp, false); |
605 | if (resplen2 != NULL) |
606 | *resplen2 = 0; |
607 | return 0; |
608 | } |
609 | |
610 | /* The send_vc function is responsible for sending a DNS query over TCP |
611 | to the nameserver numbered NS from the res_state STATP i.e. |
612 | EXT(statp).nssocks[ns]. The function supports sending both IPv4 and |
613 | IPv6 queries at the same serially on the same socket. |
614 | |
615 | Please note that for TCP there is no way to disable sending both |
616 | queries, unlike UDP, which honours RES_SNGLKUP and RES_SNGLKUPREOP |
617 | and sends the queries serially and waits for the result after each |
618 | sent query. This implementation should be corrected to honour these |
619 | options. |
620 | |
621 | Please also note that for TCP we send both queries over the same |
622 | socket one after another. This technically violates best practice |
623 | since the server is allowed to read the first query, respond, and |
624 | then close the socket (to service another client). If the server |
625 | does this, then the remaining second query in the socket data buffer |
626 | will cause the server to send the client an RST which will arrive |
627 | asynchronously and the client's OS will likely tear down the socket |
628 | receive buffer resulting in a potentially short read and lost |
629 | response data. This will force the client to retry the query again, |
630 | and this process may repeat until all servers and connection resets |
631 | are exhausted and then the query will fail. It's not known if this |
632 | happens with any frequency in real DNS server implementations. This |
633 | implementation should be corrected to use two sockets by default for |
634 | parallel queries. |
635 | |
636 | The query stored in BUF of BUFLEN length is sent first followed by |
637 | the query stored in BUF2 of BUFLEN2 length. Queries are sent |
638 | serially on the same socket. |
639 | |
640 | Answers to the query are stored firstly in *ANSP up to a max of |
641 | *ANSSIZP bytes. If more than *ANSSIZP bytes are needed and ANSCP |
642 | is non-NULL (to indicate that modifying the answer buffer is allowed) |
643 | then malloc is used to allocate a new response buffer and ANSCP and |
644 | ANSP will both point to the new buffer. If more than *ANSSIZP bytes |
645 | are needed but ANSCP is NULL, then as much of the response as |
646 | possible is read into the buffer, but the results will be truncated. |
647 | When truncation happens because of a small answer buffer the DNS |
648 | packets header field TC will bet set to 1, indicating a truncated |
649 | message and the rest of the socket data will be read and discarded. |
650 | |
651 | Answers to the query are stored secondly in *ANSP2 up to a max of |
652 | *ANSSIZP2 bytes, with the actual response length stored in |
653 | *RESPLEN2. If more than *ANSSIZP bytes are needed and ANSP2 |
654 | is non-NULL (required for a second query) then malloc is used to |
655 | allocate a new response buffer, *ANSSIZP2 is set to the new buffer |
656 | size and *ANSP2_MALLOCED is set to 1. |
657 | |
658 | The ANSP2_MALLOCED argument will eventually be removed as the |
659 | change in buffer pointer can be used to detect the buffer has |
660 | changed and that the caller should use free on the new buffer. |
661 | |
662 | Note that the answers may arrive in any order from the server and |
663 | therefore the first and second answer buffers may not correspond to |
664 | the first and second queries. |
665 | |
666 | It is not supported to call this function with a non-NULL ANSP2 |
667 | but a NULL ANSCP. Put another way, you can call send_vc with a |
668 | single unmodifiable buffer or two modifiable buffers, but no other |
669 | combination is supported. |
670 | |
671 | It is the caller's responsibility to free the malloc allocated |
672 | buffers by detecting that the pointers have changed from their |
673 | original values i.e. *ANSCP or *ANSP2 has changed. |
674 | |
675 | If errors are encountered then *TERRNO is set to an appropriate |
676 | errno value and a zero result is returned for a recoverable error, |
677 | and a less-than zero result is returned for a non-recoverable error. |
678 | |
679 | If no errors are encountered then *TERRNO is left unmodified and |
680 | a the length of the first response in bytes is returned. */ |
681 | static int |
682 | send_vc(res_state statp, |
683 | const u_char *buf, int buflen, const u_char *buf2, int buflen2, |
684 | u_char **ansp, int *anssizp, |
685 | int *terrno, int ns, u_char **anscp, u_char **ansp2, int *anssizp2, |
686 | int *resplen2, int *ansp2_malloced) |
687 | { |
688 | const HEADER *hp = (HEADER *) buf; |
689 | const HEADER *hp2 = (HEADER *) buf2; |
690 | HEADER *anhp = (HEADER *) *ansp; |
691 | struct sockaddr *nsap = get_nsaddr (statp, ns); |
692 | int truncating, connreset, n; |
693 | /* On some architectures compiler might emit a warning indicating |
694 | 'resplen' may be used uninitialized. However if buf2 == NULL |
695 | then this code won't be executed; if buf2 != NULL, then first |
696 | time round the loop recvresp1 and recvresp2 will be 0 so this |
697 | code won't be executed but "thisresplenp = &resplen;" followed |
698 | by "*thisresplenp = rlen;" will be executed so that subsequent |
699 | times round the loop resplen has been initialized. So this is |
700 | a false-positive. |
701 | */ |
702 | DIAG_PUSH_NEEDS_COMMENT; |
703 | DIAG_IGNORE_NEEDS_COMMENT (5, "-Wmaybe-uninitialized" ); |
704 | int resplen; |
705 | DIAG_POP_NEEDS_COMMENT; |
706 | struct iovec iov[4]; |
707 | u_short len; |
708 | u_short len2; |
709 | u_char *cp; |
710 | |
711 | connreset = 0; |
712 | same_ns: |
713 | truncating = 0; |
714 | |
715 | /* Are we still talking to whom we want to talk to? */ |
716 | if (statp->_vcsock >= 0 && (statp->_flags & RES_F_VC) != 0) { |
717 | struct sockaddr_in6 peer; |
718 | socklen_t size = sizeof peer; |
719 | |
720 | if (getpeername(statp->_vcsock, |
721 | (struct sockaddr *)&peer, &size) < 0 || |
722 | !sock_eq(&peer, (struct sockaddr_in6 *) nsap)) { |
723 | __res_iclose(statp, false); |
724 | statp->_flags &= ~RES_F_VC; |
725 | } |
726 | } |
727 | |
728 | if (statp->_vcsock < 0 || (statp->_flags & RES_F_VC) == 0) { |
729 | if (statp->_vcsock >= 0) |
730 | __res_iclose(statp, false); |
731 | |
732 | statp->_vcsock = socket |
733 | (nsap->sa_family, SOCK_STREAM | SOCK_CLOEXEC, 0); |
734 | if (statp->_vcsock < 0) { |
735 | *terrno = errno; |
736 | if (resplen2 != NULL) |
737 | *resplen2 = 0; |
738 | return (-1); |
739 | } |
740 | __set_errno (0); |
741 | if (connect(statp->_vcsock, nsap, |
742 | nsap->sa_family == AF_INET |
743 | ? sizeof (struct sockaddr_in) |
744 | : sizeof (struct sockaddr_in6)) < 0) { |
745 | *terrno = errno; |
746 | return close_and_return_error (statp, resplen2); |
747 | } |
748 | statp->_flags |= RES_F_VC; |
749 | } |
750 | |
751 | /* |
752 | * Send length & message |
753 | */ |
754 | len = htons ((u_short) buflen); |
755 | evConsIovec(&len, INT16SZ, &iov[0]); |
756 | evConsIovec((void*)buf, buflen, &iov[1]); |
757 | int niov = 2; |
758 | ssize_t explen = INT16SZ + buflen; |
759 | if (buf2 != NULL) { |
760 | len2 = htons ((u_short) buflen2); |
761 | evConsIovec(&len2, INT16SZ, &iov[2]); |
762 | evConsIovec((void*)buf2, buflen2, &iov[3]); |
763 | niov = 4; |
764 | explen += INT16SZ + buflen2; |
765 | } |
766 | if (TEMP_FAILURE_RETRY (writev(statp->_vcsock, iov, niov)) != explen) { |
767 | *terrno = errno; |
768 | return close_and_return_error (statp, resplen2); |
769 | } |
770 | /* |
771 | * Receive length & response |
772 | */ |
773 | int recvresp1 = 0; |
774 | /* Skip the second response if there is no second query. |
775 | To do that we mark the second response as received. */ |
776 | int recvresp2 = buf2 == NULL; |
777 | uint16_t rlen16; |
778 | read_len: |
779 | cp = (u_char *)&rlen16; |
780 | len = sizeof(rlen16); |
781 | while ((n = TEMP_FAILURE_RETRY (read(statp->_vcsock, cp, |
782 | (int)len))) > 0) { |
783 | cp += n; |
784 | if ((len -= n) <= 0) |
785 | break; |
786 | } |
787 | if (n <= 0) { |
788 | *terrno = errno; |
789 | /* |
790 | * A long running process might get its TCP |
791 | * connection reset if the remote server was |
792 | * restarted. Requery the server instead of |
793 | * trying a new one. When there is only one |
794 | * server, this means that a query might work |
795 | * instead of failing. We only allow one reset |
796 | * per query to prevent looping. |
797 | */ |
798 | if (*terrno == ECONNRESET && !connreset) |
799 | { |
800 | __res_iclose (statp, false); |
801 | connreset = 1; |
802 | goto same_ns; |
803 | } |
804 | return close_and_return_error (statp, resplen2); |
805 | } |
806 | int rlen = ntohs (rlen16); |
807 | |
808 | int *thisanssizp; |
809 | u_char **thisansp; |
810 | int *thisresplenp; |
811 | if ((recvresp1 | recvresp2) == 0 || buf2 == NULL) { |
812 | /* We have not received any responses |
813 | yet or we only have one response to |
814 | receive. */ |
815 | thisanssizp = anssizp; |
816 | thisansp = anscp ?: ansp; |
817 | assert (anscp != NULL || ansp2 == NULL); |
818 | thisresplenp = &resplen; |
819 | } else { |
820 | thisanssizp = anssizp2; |
821 | thisansp = ansp2; |
822 | thisresplenp = resplen2; |
823 | } |
824 | anhp = (HEADER *) *thisansp; |
825 | |
826 | *thisresplenp = rlen; |
827 | /* Is the answer buffer too small? */ |
828 | if (*thisanssizp < rlen) { |
829 | /* If the current buffer is not the the static |
830 | user-supplied buffer then we can reallocate |
831 | it. */ |
832 | if (thisansp != NULL && thisansp != ansp) { |
833 | /* Always allocate MAXPACKET, callers expect |
834 | this specific size. */ |
835 | u_char *newp = malloc (MAXPACKET); |
836 | if (newp == NULL) |
837 | { |
838 | *terrno = ENOMEM; |
839 | return close_and_return_error (statp, resplen2); |
840 | } |
841 | *thisanssizp = MAXPACKET; |
842 | *thisansp = newp; |
843 | if (thisansp == ansp2) |
844 | *ansp2_malloced = 1; |
845 | anhp = (HEADER *) newp; |
846 | /* A uint16_t can't be larger than MAXPACKET |
847 | thus it's safe to allocate MAXPACKET but |
848 | read RLEN bytes instead. */ |
849 | len = rlen; |
850 | } else { |
851 | truncating = 1; |
852 | len = *thisanssizp; |
853 | } |
854 | } else |
855 | len = rlen; |
856 | |
857 | if (__glibc_unlikely (len < HFIXEDSZ)) { |
858 | /* |
859 | * Undersized message. |
860 | */ |
861 | *terrno = EMSGSIZE; |
862 | return close_and_return_error (statp, resplen2); |
863 | } |
864 | |
865 | cp = *thisansp; |
866 | while (len != 0 && (n = read(statp->_vcsock, (char *)cp, (int)len)) > 0){ |
867 | cp += n; |
868 | len -= n; |
869 | } |
870 | if (__glibc_unlikely (n <= 0)) { |
871 | *terrno = errno; |
872 | return close_and_return_error (statp, resplen2); |
873 | } |
874 | if (__glibc_unlikely (truncating)) { |
875 | /* |
876 | * Flush rest of answer so connection stays in synch. |
877 | */ |
878 | anhp->tc = 1; |
879 | len = rlen - *thisanssizp; |
880 | while (len != 0) { |
881 | char junk[PACKETSZ]; |
882 | |
883 | n = read(statp->_vcsock, junk, |
884 | (len > sizeof junk) ? sizeof junk : len); |
885 | if (n > 0) |
886 | len -= n; |
887 | else |
888 | break; |
889 | } |
890 | } |
891 | /* |
892 | * If the calling application has bailed out of |
893 | * a previous call and failed to arrange to have |
894 | * the circuit closed or the server has got |
895 | * itself confused, then drop the packet and |
896 | * wait for the correct one. |
897 | */ |
898 | if ((recvresp1 || hp->id != anhp->id) |
899 | && (recvresp2 || hp2->id != anhp->id)) |
900 | goto read_len; |
901 | |
902 | /* Mark which reply we received. */ |
903 | if (recvresp1 == 0 && hp->id == anhp->id) |
904 | recvresp1 = 1; |
905 | else |
906 | recvresp2 = 1; |
907 | /* Repeat waiting if we have a second answer to arrive. */ |
908 | if ((recvresp1 & recvresp2) == 0) |
909 | goto read_len; |
910 | |
911 | /* |
912 | * All is well, or the error is fatal. Signal that the |
913 | * next nameserver ought not be tried. |
914 | */ |
915 | return resplen; |
916 | } |
917 | |
918 | static int |
919 | reopen (res_state statp, int *terrno, int ns) |
920 | { |
921 | if (EXT(statp).nssocks[ns] == -1) { |
922 | struct sockaddr *nsap = get_nsaddr (statp, ns); |
923 | socklen_t slen; |
924 | |
925 | /* only try IPv6 if IPv6 NS and if not failed before */ |
926 | if (nsap->sa_family == AF_INET6 && !statp->ipv6_unavail) { |
927 | EXT(statp).nssocks[ns] = socket |
928 | (PF_INET6, |
929 | SOCK_DGRAM | SOCK_NONBLOCK | SOCK_CLOEXEC, 0); |
930 | if (EXT(statp).nssocks[ns] < 0) |
931 | statp->ipv6_unavail = errno == EAFNOSUPPORT; |
932 | slen = sizeof (struct sockaddr_in6); |
933 | } else if (nsap->sa_family == AF_INET) { |
934 | EXT(statp).nssocks[ns] = socket |
935 | (PF_INET, |
936 | SOCK_DGRAM | SOCK_NONBLOCK | SOCK_CLOEXEC, 0); |
937 | slen = sizeof (struct sockaddr_in); |
938 | } |
939 | if (EXT(statp).nssocks[ns] < 0) { |
940 | *terrno = errno; |
941 | return (-1); |
942 | } |
943 | |
944 | /* |
945 | * On a 4.3BSD+ machine (client and server, |
946 | * actually), sending to a nameserver datagram |
947 | * port with no nameserver will cause an |
948 | * ICMP port unreachable message to be returned. |
949 | * If our datagram socket is "connected" to the |
950 | * server, we get an ECONNREFUSED error on the next |
951 | * socket operation, and select returns if the |
952 | * error message is received. We can thus detect |
953 | * the absence of a nameserver without timing out. |
954 | */ |
955 | /* With GCC 5.3 when compiling with -Os the compiler |
956 | emits a warning that slen may be used uninitialized, |
957 | but that is never true. Both slen and |
958 | EXT(statp).nssocks[ns] are initialized together or |
959 | the function return -1 before control flow reaches |
960 | the call to connect with slen. */ |
961 | DIAG_PUSH_NEEDS_COMMENT; |
962 | DIAG_IGNORE_Os_NEEDS_COMMENT (5, "-Wmaybe-uninitialized" ); |
963 | if (connect(EXT(statp).nssocks[ns], nsap, slen) < 0) { |
964 | DIAG_POP_NEEDS_COMMENT; |
965 | __res_iclose(statp, false); |
966 | return (0); |
967 | } |
968 | } |
969 | |
970 | return 1; |
971 | } |
972 | |
973 | /* The send_dg function is responsible for sending a DNS query over UDP |
974 | to the nameserver numbered NS from the res_state STATP i.e. |
975 | EXT(statp).nssocks[ns]. The function supports IPv4 and IPv6 queries |
976 | along with the ability to send the query in parallel for both stacks |
977 | (default) or serially (RES_SINGLKUP). It also supports serial lookup |
978 | with a close and reopen of the socket used to talk to the server |
979 | (RES_SNGLKUPREOP) to work around broken name servers. |
980 | |
981 | The query stored in BUF of BUFLEN length is sent first followed by |
982 | the query stored in BUF2 of BUFLEN2 length. Queries are sent |
983 | in parallel (default) or serially (RES_SINGLKUP or RES_SNGLKUPREOP). |
984 | |
985 | Answers to the query are stored firstly in *ANSP up to a max of |
986 | *ANSSIZP bytes. If more than *ANSSIZP bytes are needed and ANSCP |
987 | is non-NULL (to indicate that modifying the answer buffer is allowed) |
988 | then malloc is used to allocate a new response buffer and ANSCP and |
989 | ANSP will both point to the new buffer. If more than *ANSSIZP bytes |
990 | are needed but ANSCP is NULL, then as much of the response as |
991 | possible is read into the buffer, but the results will be truncated. |
992 | When truncation happens because of a small answer buffer the DNS |
993 | packets header field TC will bet set to 1, indicating a truncated |
994 | message, while the rest of the UDP packet is discarded. |
995 | |
996 | Answers to the query are stored secondly in *ANSP2 up to a max of |
997 | *ANSSIZP2 bytes, with the actual response length stored in |
998 | *RESPLEN2. If more than *ANSSIZP bytes are needed and ANSP2 |
999 | is non-NULL (required for a second query) then malloc is used to |
1000 | allocate a new response buffer, *ANSSIZP2 is set to the new buffer |
1001 | size and *ANSP2_MALLOCED is set to 1. |
1002 | |
1003 | The ANSP2_MALLOCED argument will eventually be removed as the |
1004 | change in buffer pointer can be used to detect the buffer has |
1005 | changed and that the caller should use free on the new buffer. |
1006 | |
1007 | Note that the answers may arrive in any order from the server and |
1008 | therefore the first and second answer buffers may not correspond to |
1009 | the first and second queries. |
1010 | |
1011 | It is not supported to call this function with a non-NULL ANSP2 |
1012 | but a NULL ANSCP. Put another way, you can call send_vc with a |
1013 | single unmodifiable buffer or two modifiable buffers, but no other |
1014 | combination is supported. |
1015 | |
1016 | It is the caller's responsibility to free the malloc allocated |
1017 | buffers by detecting that the pointers have changed from their |
1018 | original values i.e. *ANSCP or *ANSP2 has changed. |
1019 | |
1020 | If an answer is truncated because of UDP datagram DNS limits then |
1021 | *V_CIRCUIT is set to 1 and the return value non-zero to indicate to |
1022 | the caller to retry with TCP. The value *GOTSOMEWHERE is set to 1 |
1023 | if any progress was made reading a response from the nameserver and |
1024 | is used by the caller to distinguish between ECONNREFUSED and |
1025 | ETIMEDOUT (the latter if *GOTSOMEWHERE is 1). |
1026 | |
1027 | If errors are encountered then *TERRNO is set to an appropriate |
1028 | errno value and a zero result is returned for a recoverable error, |
1029 | and a less-than zero result is returned for a non-recoverable error. |
1030 | |
1031 | If no errors are encountered then *TERRNO is left unmodified and |
1032 | a the length of the first response in bytes is returned. */ |
1033 | static int |
1034 | send_dg(res_state statp, |
1035 | const u_char *buf, int buflen, const u_char *buf2, int buflen2, |
1036 | u_char **ansp, int *anssizp, |
1037 | int *terrno, int ns, int *v_circuit, int *gotsomewhere, u_char **anscp, |
1038 | u_char **ansp2, int *anssizp2, int *resplen2, int *ansp2_malloced) |
1039 | { |
1040 | const HEADER *hp = (HEADER *) buf; |
1041 | const HEADER *hp2 = (HEADER *) buf2; |
1042 | struct timespec now, timeout, finish; |
1043 | struct pollfd pfd[1]; |
1044 | int ptimeout; |
1045 | struct sockaddr_in6 from; |
1046 | int resplen = 0; |
1047 | int n; |
1048 | |
1049 | /* |
1050 | * Compute time for the total operation. |
1051 | */ |
1052 | int seconds = (statp->retrans << ns); |
1053 | if (ns > 0) |
1054 | seconds /= statp->nscount; |
1055 | if (seconds <= 0) |
1056 | seconds = 1; |
1057 | bool single_request_reopen = (statp->options & RES_SNGLKUPREOP) != 0; |
1058 | bool single_request = (((statp->options & RES_SNGLKUP) != 0) |
1059 | | single_request_reopen); |
1060 | int save_gotsomewhere = *gotsomewhere; |
1061 | |
1062 | int retval; |
1063 | retry_reopen: |
1064 | retval = reopen (statp, terrno, ns); |
1065 | if (retval <= 0) |
1066 | { |
1067 | if (resplen2 != NULL) |
1068 | *resplen2 = 0; |
1069 | return retval; |
1070 | } |
1071 | retry: |
1072 | evNowTime(&now); |
1073 | evConsTime(&timeout, seconds, 0); |
1074 | evAddTime(&finish, &now, &timeout); |
1075 | int need_recompute = 0; |
1076 | int nwritten = 0; |
1077 | int recvresp1 = 0; |
1078 | /* Skip the second response if there is no second query. |
1079 | To do that we mark the second response as received. */ |
1080 | int recvresp2 = buf2 == NULL; |
1081 | pfd[0].fd = EXT(statp).nssocks[ns]; |
1082 | pfd[0].events = POLLOUT; |
1083 | wait: |
1084 | if (need_recompute) { |
1085 | recompute_resend: |
1086 | evNowTime(&now); |
1087 | if (evCmpTime(finish, now) <= 0) { |
1088 | poll_err_out: |
1089 | return close_and_return_error (statp, resplen2); |
1090 | } |
1091 | evSubTime(&timeout, &finish, &now); |
1092 | need_recompute = 0; |
1093 | } |
1094 | /* Convert struct timespec in milliseconds. */ |
1095 | ptimeout = timeout.tv_sec * 1000 + timeout.tv_nsec / 1000000; |
1096 | |
1097 | n = 0; |
1098 | if (nwritten == 0) |
1099 | n = __poll (pfd, 1, 0); |
1100 | if (__glibc_unlikely (n == 0)) { |
1101 | n = __poll (pfd, 1, ptimeout); |
1102 | need_recompute = 1; |
1103 | } |
1104 | if (n == 0) { |
1105 | if (resplen > 1 && (recvresp1 || (buf2 != NULL && recvresp2))) |
1106 | { |
1107 | /* There are quite a few broken name servers out |
1108 | there which don't handle two outstanding |
1109 | requests from the same source. There are also |
1110 | broken firewall settings. If we time out after |
1111 | having received one answer switch to the mode |
1112 | where we send the second request only once we |
1113 | have received the first answer. */ |
1114 | if (!single_request) |
1115 | { |
1116 | statp->options |= RES_SNGLKUP; |
1117 | single_request = true; |
1118 | *gotsomewhere = save_gotsomewhere; |
1119 | goto retry; |
1120 | } |
1121 | else if (!single_request_reopen) |
1122 | { |
1123 | statp->options |= RES_SNGLKUPREOP; |
1124 | single_request_reopen = true; |
1125 | *gotsomewhere = save_gotsomewhere; |
1126 | __res_iclose (statp, false); |
1127 | goto retry_reopen; |
1128 | } |
1129 | |
1130 | *resplen2 = 1; |
1131 | return resplen; |
1132 | } |
1133 | |
1134 | *gotsomewhere = 1; |
1135 | if (resplen2 != NULL) |
1136 | *resplen2 = 0; |
1137 | return 0; |
1138 | } |
1139 | if (n < 0) { |
1140 | if (errno == EINTR) |
1141 | goto recompute_resend; |
1142 | |
1143 | goto poll_err_out; |
1144 | } |
1145 | __set_errno (0); |
1146 | if (pfd[0].revents & POLLOUT) { |
1147 | #ifndef __ASSUME_SENDMMSG |
1148 | static int have_sendmmsg; |
1149 | #else |
1150 | # define have_sendmmsg 1 |
1151 | #endif |
1152 | if (have_sendmmsg >= 0 && nwritten == 0 && buf2 != NULL |
1153 | && !single_request) |
1154 | { |
1155 | struct iovec iov[2]; |
1156 | struct mmsghdr reqs[2]; |
1157 | reqs[0].msg_hdr.msg_name = NULL; |
1158 | reqs[0].msg_hdr.msg_namelen = 0; |
1159 | reqs[0].msg_hdr.msg_iov = &iov[0]; |
1160 | reqs[0].msg_hdr.msg_iovlen = 1; |
1161 | iov[0].iov_base = (void *) buf; |
1162 | iov[0].iov_len = buflen; |
1163 | reqs[0].msg_hdr.msg_control = NULL; |
1164 | reqs[0].msg_hdr.msg_controllen = 0; |
1165 | |
1166 | reqs[1].msg_hdr.msg_name = NULL; |
1167 | reqs[1].msg_hdr.msg_namelen = 0; |
1168 | reqs[1].msg_hdr.msg_iov = &iov[1]; |
1169 | reqs[1].msg_hdr.msg_iovlen = 1; |
1170 | iov[1].iov_base = (void *) buf2; |
1171 | iov[1].iov_len = buflen2; |
1172 | reqs[1].msg_hdr.msg_control = NULL; |
1173 | reqs[1].msg_hdr.msg_controllen = 0; |
1174 | |
1175 | int ndg = __sendmmsg (pfd[0].fd, reqs, 2, MSG_NOSIGNAL); |
1176 | if (__glibc_likely (ndg == 2)) |
1177 | { |
1178 | if (reqs[0].msg_len != buflen |
1179 | || reqs[1].msg_len != buflen2) |
1180 | goto fail_sendmmsg; |
1181 | |
1182 | pfd[0].events = POLLIN; |
1183 | nwritten += 2; |
1184 | } |
1185 | else if (ndg == 1 && reqs[0].msg_len == buflen) |
1186 | goto just_one; |
1187 | else if (ndg < 0 && (errno == EINTR || errno == EAGAIN)) |
1188 | goto recompute_resend; |
1189 | else |
1190 | { |
1191 | #ifndef __ASSUME_SENDMMSG |
1192 | if (__glibc_unlikely (have_sendmmsg == 0)) |
1193 | { |
1194 | if (ndg < 0 && errno == ENOSYS) |
1195 | { |
1196 | have_sendmmsg = -1; |
1197 | goto try_send; |
1198 | } |
1199 | have_sendmmsg = 1; |
1200 | } |
1201 | #endif |
1202 | |
1203 | fail_sendmmsg: |
1204 | return close_and_return_error (statp, resplen2); |
1205 | } |
1206 | } |
1207 | else |
1208 | { |
1209 | ssize_t sr; |
1210 | #ifndef __ASSUME_SENDMMSG |
1211 | try_send: |
1212 | #endif |
1213 | if (nwritten != 0) |
1214 | sr = send (pfd[0].fd, buf2, buflen2, MSG_NOSIGNAL); |
1215 | else |
1216 | sr = send (pfd[0].fd, buf, buflen, MSG_NOSIGNAL); |
1217 | |
1218 | if (sr != (nwritten != 0 ? buflen2 : buflen)) { |
1219 | if (errno == EINTR || errno == EAGAIN) |
1220 | goto recompute_resend; |
1221 | return close_and_return_error (statp, resplen2); |
1222 | } |
1223 | just_one: |
1224 | if (nwritten != 0 || buf2 == NULL || single_request) |
1225 | pfd[0].events = POLLIN; |
1226 | else |
1227 | pfd[0].events = POLLIN | POLLOUT; |
1228 | ++nwritten; |
1229 | } |
1230 | goto wait; |
1231 | } else if (pfd[0].revents & POLLIN) { |
1232 | int *thisanssizp; |
1233 | u_char **thisansp; |
1234 | int *thisresplenp; |
1235 | |
1236 | if ((recvresp1 | recvresp2) == 0 || buf2 == NULL) { |
1237 | /* We have not received any responses |
1238 | yet or we only have one response to |
1239 | receive. */ |
1240 | thisanssizp = anssizp; |
1241 | thisansp = anscp ?: ansp; |
1242 | assert (anscp != NULL || ansp2 == NULL); |
1243 | thisresplenp = &resplen; |
1244 | } else { |
1245 | thisanssizp = anssizp2; |
1246 | thisansp = ansp2; |
1247 | thisresplenp = resplen2; |
1248 | } |
1249 | |
1250 | if (*thisanssizp < MAXPACKET |
1251 | /* If the current buffer is not the the static |
1252 | user-supplied buffer then we can reallocate |
1253 | it. */ |
1254 | && (thisansp != NULL && thisansp != ansp) |
1255 | #ifdef FIONREAD |
1256 | /* Is the size too small? */ |
1257 | && (ioctl (pfd[0].fd, FIONREAD, thisresplenp) < 0 |
1258 | || *thisanssizp < *thisresplenp) |
1259 | #endif |
1260 | ) { |
1261 | /* Always allocate MAXPACKET, callers expect |
1262 | this specific size. */ |
1263 | u_char *newp = malloc (MAXPACKET); |
1264 | if (newp != NULL) { |
1265 | *thisanssizp = MAXPACKET; |
1266 | *thisansp = newp; |
1267 | if (thisansp == ansp2) |
1268 | *ansp2_malloced = 1; |
1269 | } |
1270 | } |
1271 | /* We could end up with truncation if anscp was NULL |
1272 | (not allowed to change caller's buffer) and the |
1273 | response buffer size is too small. This isn't a |
1274 | reliable way to detect truncation because the ioctl |
1275 | may be an inaccurate report of the UDP message size. |
1276 | Therefore we use this only to issue debug output. |
1277 | To do truncation accurately with UDP we need |
1278 | MSG_TRUNC which is only available on Linux. We |
1279 | can abstract out the Linux-specific feature in the |
1280 | future to detect truncation. */ |
1281 | HEADER *anhp = (HEADER *) *thisansp; |
1282 | socklen_t fromlen = sizeof(struct sockaddr_in6); |
1283 | assert (sizeof(from) <= fromlen); |
1284 | *thisresplenp = recvfrom(pfd[0].fd, (char*)*thisansp, |
1285 | *thisanssizp, 0, |
1286 | (struct sockaddr *)&from, &fromlen); |
1287 | if (__glibc_unlikely (*thisresplenp <= 0)) { |
1288 | if (errno == EINTR || errno == EAGAIN) { |
1289 | need_recompute = 1; |
1290 | goto wait; |
1291 | } |
1292 | return close_and_return_error (statp, resplen2); |
1293 | } |
1294 | *gotsomewhere = 1; |
1295 | if (__glibc_unlikely (*thisresplenp < HFIXEDSZ)) { |
1296 | /* |
1297 | * Undersized message. |
1298 | */ |
1299 | *terrno = EMSGSIZE; |
1300 | return close_and_return_error (statp, resplen2); |
1301 | } |
1302 | if ((recvresp1 || hp->id != anhp->id) |
1303 | && (recvresp2 || hp2->id != anhp->id)) { |
1304 | /* |
1305 | * response from old query, ignore it. |
1306 | * XXX - potential security hazard could |
1307 | * be detected here. |
1308 | */ |
1309 | goto wait; |
1310 | } |
1311 | if (!(statp->options & RES_INSECURE1) && |
1312 | !res_ourserver_p(statp, &from)) { |
1313 | /* |
1314 | * response from wrong server? ignore it. |
1315 | * XXX - potential security hazard could |
1316 | * be detected here. |
1317 | */ |
1318 | goto wait; |
1319 | } |
1320 | if (!(statp->options & RES_INSECURE2) |
1321 | && (recvresp1 || !res_queriesmatch(buf, buf + buflen, |
1322 | *thisansp, |
1323 | *thisansp |
1324 | + *thisanssizp)) |
1325 | && (recvresp2 || !res_queriesmatch(buf2, buf2 + buflen2, |
1326 | *thisansp, |
1327 | *thisansp |
1328 | + *thisanssizp))) { |
1329 | /* |
1330 | * response contains wrong query? ignore it. |
1331 | * XXX - potential security hazard could |
1332 | * be detected here. |
1333 | */ |
1334 | goto wait; |
1335 | } |
1336 | if (anhp->rcode == SERVFAIL || |
1337 | anhp->rcode == NOTIMP || |
1338 | anhp->rcode == REFUSED) { |
1339 | next_ns: |
1340 | if (recvresp1 || (buf2 != NULL && recvresp2)) { |
1341 | *resplen2 = 0; |
1342 | return resplen; |
1343 | } |
1344 | if (buf2 != NULL) |
1345 | { |
1346 | /* No data from the first reply. */ |
1347 | resplen = 0; |
1348 | /* We are waiting for a possible second reply. */ |
1349 | if (hp->id == anhp->id) |
1350 | recvresp1 = 1; |
1351 | else |
1352 | recvresp2 = 1; |
1353 | |
1354 | goto wait; |
1355 | } |
1356 | |
1357 | /* don't retry if called from dig */ |
1358 | if (!statp->pfcode) |
1359 | return close_and_return_error (statp, resplen2); |
1360 | __res_iclose(statp, false); |
1361 | } |
1362 | if (anhp->rcode == NOERROR && anhp->ancount == 0 |
1363 | && anhp->aa == 0 && anhp->ra == 0 && anhp->arcount == 0) { |
1364 | goto next_ns; |
1365 | } |
1366 | if (!(statp->options & RES_IGNTC) && anhp->tc) { |
1367 | /* |
1368 | * To get the rest of answer, |
1369 | * use TCP with same server. |
1370 | */ |
1371 | *v_circuit = 1; |
1372 | __res_iclose(statp, false); |
1373 | // XXX if we have received one reply we could |
1374 | // XXX use it and not repeat it over TCP... |
1375 | if (resplen2 != NULL) |
1376 | *resplen2 = 0; |
1377 | return (1); |
1378 | } |
1379 | /* Mark which reply we received. */ |
1380 | if (recvresp1 == 0 && hp->id == anhp->id) |
1381 | recvresp1 = 1; |
1382 | else |
1383 | recvresp2 = 1; |
1384 | /* Repeat waiting if we have a second answer to arrive. */ |
1385 | if ((recvresp1 & recvresp2) == 0) { |
1386 | if (single_request) { |
1387 | pfd[0].events = POLLOUT; |
1388 | if (single_request_reopen) { |
1389 | __res_iclose (statp, false); |
1390 | retval = reopen (statp, terrno, ns); |
1391 | if (retval <= 0) |
1392 | { |
1393 | if (resplen2 != NULL) |
1394 | *resplen2 = 0; |
1395 | return retval; |
1396 | } |
1397 | pfd[0].fd = EXT(statp).nssocks[ns]; |
1398 | } |
1399 | } |
1400 | goto wait; |
1401 | } |
1402 | /* All is well. We have received both responses (if |
1403 | two responses were requested). */ |
1404 | return (resplen); |
1405 | } else if (pfd[0].revents & (POLLERR | POLLHUP | POLLNVAL)) |
1406 | /* Something went wrong. We can stop trying. */ |
1407 | return close_and_return_error (statp, resplen2); |
1408 | else { |
1409 | /* poll should not have returned > 0 in this case. */ |
1410 | abort (); |
1411 | } |
1412 | } |
1413 | |
1414 | static int |
1415 | sock_eq(struct sockaddr_in6 *a1, struct sockaddr_in6 *a2) { |
1416 | if (a1->sin6_family == a2->sin6_family) { |
1417 | if (a1->sin6_family == AF_INET) |
1418 | return ((((struct sockaddr_in *)a1)->sin_port == |
1419 | ((struct sockaddr_in *)a2)->sin_port) && |
1420 | (((struct sockaddr_in *)a1)->sin_addr.s_addr == |
1421 | ((struct sockaddr_in *)a2)->sin_addr.s_addr)); |
1422 | else |
1423 | return ((a1->sin6_port == a2->sin6_port) && |
1424 | !memcmp(&a1->sin6_addr, &a2->sin6_addr, |
1425 | sizeof (struct in6_addr))); |
1426 | } |
1427 | if (a1->sin6_family == AF_INET) { |
1428 | struct sockaddr_in6 *sap = a1; |
1429 | a1 = a2; |
1430 | a2 = sap; |
1431 | } /* assumes that AF_INET and AF_INET6 are the only possibilities */ |
1432 | return ((a1->sin6_port == ((struct sockaddr_in *)a2)->sin_port) && |
1433 | IN6_IS_ADDR_V4MAPPED(&a1->sin6_addr) && |
1434 | (a1->sin6_addr.s6_addr32[3] == |
1435 | ((struct sockaddr_in *)a2)->sin_addr.s_addr)); |
1436 | } |
1437 | |