| 1 | /* Copyright (C) 2002-2018 Free Software Foundation, Inc. |
| 2 | This file is part of the GNU C Library. |
| 3 | Contributed by Ulrich Drepper <drepper@redhat.com>, 2002. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <http://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <assert.h> |
| 20 | #include <errno.h> |
| 21 | #include <time.h> |
| 22 | #include <sys/param.h> |
| 23 | #include <sys/time.h> |
| 24 | #include "pthreadP.h" |
| 25 | #include <atomic.h> |
| 26 | #include <lowlevellock.h> |
| 27 | #include <not-cancel.h> |
| 28 | |
| 29 | #include <stap-probe.h> |
| 30 | |
| 31 | #ifndef lll_timedlock_elision |
| 32 | #define lll_timedlock_elision(a,dummy,b,c) lll_timedlock(a, b, c) |
| 33 | #endif |
| 34 | |
| 35 | #ifndef lll_trylock_elision |
| 36 | #define lll_trylock_elision(a,t) lll_trylock(a) |
| 37 | #endif |
| 38 | |
| 39 | #ifndef FORCE_ELISION |
| 40 | #define FORCE_ELISION(m, s) |
| 41 | #endif |
| 42 | |
| 43 | int |
| 44 | __pthread_mutex_timedlock (pthread_mutex_t *mutex, |
| 45 | const struct timespec *abstime) |
| 46 | { |
| 47 | int oldval; |
| 48 | pid_t id = THREAD_GETMEM (THREAD_SELF, tid); |
| 49 | int result = 0; |
| 50 | |
| 51 | LIBC_PROBE (mutex_timedlock_entry, 2, mutex, abstime); |
| 52 | |
| 53 | /* We must not check ABSTIME here. If the thread does not block |
| 54 | abstime must not be checked for a valid value. */ |
| 55 | |
| 56 | switch (__builtin_expect (PTHREAD_MUTEX_TYPE_ELISION (mutex), |
| 57 | PTHREAD_MUTEX_TIMED_NP)) |
| 58 | { |
| 59 | /* Recursive mutex. */ |
| 60 | case PTHREAD_MUTEX_RECURSIVE_NP|PTHREAD_MUTEX_ELISION_NP: |
| 61 | case PTHREAD_MUTEX_RECURSIVE_NP: |
| 62 | /* Check whether we already hold the mutex. */ |
| 63 | if (mutex->__data.__owner == id) |
| 64 | { |
| 65 | /* Just bump the counter. */ |
| 66 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
| 67 | /* Overflow of the counter. */ |
| 68 | return EAGAIN; |
| 69 | |
| 70 | ++mutex->__data.__count; |
| 71 | |
| 72 | goto out; |
| 73 | } |
| 74 | |
| 75 | /* We have to get the mutex. */ |
| 76 | result = lll_timedlock (mutex->__data.__lock, abstime, |
| 77 | PTHREAD_MUTEX_PSHARED (mutex)); |
| 78 | |
| 79 | if (result != 0) |
| 80 | goto out; |
| 81 | |
| 82 | /* Only locked once so far. */ |
| 83 | mutex->__data.__count = 1; |
| 84 | break; |
| 85 | |
| 86 | /* Error checking mutex. */ |
| 87 | case PTHREAD_MUTEX_ERRORCHECK_NP: |
| 88 | /* Check whether we already hold the mutex. */ |
| 89 | if (__glibc_unlikely (mutex->__data.__owner == id)) |
| 90 | return EDEADLK; |
| 91 | |
| 92 | /* Don't do lock elision on an error checking mutex. */ |
| 93 | goto simple; |
| 94 | |
| 95 | case PTHREAD_MUTEX_TIMED_NP: |
| 96 | FORCE_ELISION (mutex, goto elision); |
| 97 | simple: |
| 98 | /* Normal mutex. */ |
| 99 | result = lll_timedlock (mutex->__data.__lock, abstime, |
| 100 | PTHREAD_MUTEX_PSHARED (mutex)); |
| 101 | break; |
| 102 | |
| 103 | case PTHREAD_MUTEX_TIMED_ELISION_NP: |
| 104 | elision: __attribute__((unused)) |
| 105 | /* Don't record ownership */ |
| 106 | return lll_timedlock_elision (mutex->__data.__lock, |
| 107 | mutex->__data.__spins, |
| 108 | abstime, |
| 109 | PTHREAD_MUTEX_PSHARED (mutex)); |
| 110 | |
| 111 | |
| 112 | case PTHREAD_MUTEX_ADAPTIVE_NP: |
| 113 | if (! __is_smp) |
| 114 | goto simple; |
| 115 | |
| 116 | if (lll_trylock (mutex->__data.__lock) != 0) |
| 117 | { |
| 118 | int cnt = 0; |
| 119 | int max_cnt = MIN (MAX_ADAPTIVE_COUNT, |
| 120 | mutex->__data.__spins * 2 + 10); |
| 121 | do |
| 122 | { |
| 123 | if (cnt++ >= max_cnt) |
| 124 | { |
| 125 | result = lll_timedlock (mutex->__data.__lock, abstime, |
| 126 | PTHREAD_MUTEX_PSHARED (mutex)); |
| 127 | break; |
| 128 | } |
| 129 | atomic_spin_nop (); |
| 130 | } |
| 131 | while (lll_trylock (mutex->__data.__lock) != 0); |
| 132 | |
| 133 | mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8; |
| 134 | } |
| 135 | break; |
| 136 | |
| 137 | case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP: |
| 138 | case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP: |
| 139 | case PTHREAD_MUTEX_ROBUST_NORMAL_NP: |
| 140 | case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP: |
| 141 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
| 142 | &mutex->__data.__list.__next); |
| 143 | /* We need to set op_pending before starting the operation. Also |
| 144 | see comments at ENQUEUE_MUTEX. */ |
| 145 | __asm ("" ::: "memory" ); |
| 146 | |
| 147 | oldval = mutex->__data.__lock; |
| 148 | /* This is set to FUTEX_WAITERS iff we might have shared the |
| 149 | FUTEX_WAITERS flag with other threads, and therefore need to keep it |
| 150 | set to avoid lost wake-ups. We have the same requirement in the |
| 151 | simple mutex algorithm. */ |
| 152 | unsigned int assume_other_futex_waiters = 0; |
| 153 | while (1) |
| 154 | { |
| 155 | /* Try to acquire the lock through a CAS from 0 (not acquired) to |
| 156 | our TID | assume_other_futex_waiters. */ |
| 157 | if (__glibc_likely (oldval == 0)) |
| 158 | { |
| 159 | oldval |
| 160 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 161 | id | assume_other_futex_waiters, 0); |
| 162 | if (__glibc_likely (oldval == 0)) |
| 163 | break; |
| 164 | } |
| 165 | |
| 166 | if ((oldval & FUTEX_OWNER_DIED) != 0) |
| 167 | { |
| 168 | /* The previous owner died. Try locking the mutex. */ |
| 169 | int newval = id | (oldval & FUTEX_WAITERS) |
| 170 | | assume_other_futex_waiters; |
| 171 | |
| 172 | newval |
| 173 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 174 | newval, oldval); |
| 175 | if (newval != oldval) |
| 176 | { |
| 177 | oldval = newval; |
| 178 | continue; |
| 179 | } |
| 180 | |
| 181 | /* We got the mutex. */ |
| 182 | mutex->__data.__count = 1; |
| 183 | /* But it is inconsistent unless marked otherwise. */ |
| 184 | mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; |
| 185 | |
| 186 | /* We must not enqueue the mutex before we have acquired it. |
| 187 | Also see comments at ENQUEUE_MUTEX. */ |
| 188 | __asm ("" ::: "memory" ); |
| 189 | ENQUEUE_MUTEX (mutex); |
| 190 | /* We need to clear op_pending after we enqueue the mutex. */ |
| 191 | __asm ("" ::: "memory" ); |
| 192 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 193 | |
| 194 | /* Note that we deliberately exit here. If we fall |
| 195 | through to the end of the function __nusers would be |
| 196 | incremented which is not correct because the old |
| 197 | owner has to be discounted. */ |
| 198 | return EOWNERDEAD; |
| 199 | } |
| 200 | |
| 201 | /* Check whether we already hold the mutex. */ |
| 202 | if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id)) |
| 203 | { |
| 204 | int kind = PTHREAD_MUTEX_TYPE (mutex); |
| 205 | if (kind == PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP) |
| 206 | { |
| 207 | /* We do not need to ensure ordering wrt another memory |
| 208 | access. Also see comments at ENQUEUE_MUTEX. */ |
| 209 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
| 210 | NULL); |
| 211 | return EDEADLK; |
| 212 | } |
| 213 | |
| 214 | if (kind == PTHREAD_MUTEX_ROBUST_RECURSIVE_NP) |
| 215 | { |
| 216 | /* We do not need to ensure ordering wrt another memory |
| 217 | access. */ |
| 218 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
| 219 | NULL); |
| 220 | |
| 221 | /* Just bump the counter. */ |
| 222 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
| 223 | /* Overflow of the counter. */ |
| 224 | return EAGAIN; |
| 225 | |
| 226 | ++mutex->__data.__count; |
| 227 | |
| 228 | LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
| 229 | |
| 230 | return 0; |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | /* We are about to block; check whether the timeout is invalid. */ |
| 235 | if (abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000) |
| 236 | return EINVAL; |
| 237 | /* Work around the fact that the kernel rejects negative timeout |
| 238 | values despite them being valid. */ |
| 239 | if (__glibc_unlikely (abstime->tv_sec < 0)) |
| 240 | return ETIMEDOUT; |
| 241 | #if (!defined __ASSUME_FUTEX_CLOCK_REALTIME \ |
| 242 | || !defined lll_futex_timed_wait_bitset) |
| 243 | struct timeval tv; |
| 244 | struct timespec rt; |
| 245 | |
| 246 | /* Get the current time. */ |
| 247 | (void) __gettimeofday (&tv, NULL); |
| 248 | |
| 249 | /* Compute relative timeout. */ |
| 250 | rt.tv_sec = abstime->tv_sec - tv.tv_sec; |
| 251 | rt.tv_nsec = abstime->tv_nsec - tv.tv_usec * 1000; |
| 252 | if (rt.tv_nsec < 0) |
| 253 | { |
| 254 | rt.tv_nsec += 1000000000; |
| 255 | --rt.tv_sec; |
| 256 | } |
| 257 | |
| 258 | /* Already timed out? */ |
| 259 | if (rt.tv_sec < 0) |
| 260 | return ETIMEDOUT; |
| 261 | #endif |
| 262 | |
| 263 | /* We cannot acquire the mutex nor has its owner died. Thus, try |
| 264 | to block using futexes. Set FUTEX_WAITERS if necessary so that |
| 265 | other threads are aware that there are potentially threads |
| 266 | blocked on the futex. Restart if oldval changed in the |
| 267 | meantime. */ |
| 268 | if ((oldval & FUTEX_WAITERS) == 0) |
| 269 | { |
| 270 | if (atomic_compare_and_exchange_bool_acq (&mutex->__data.__lock, |
| 271 | oldval | FUTEX_WAITERS, |
| 272 | oldval) |
| 273 | != 0) |
| 274 | { |
| 275 | oldval = mutex->__data.__lock; |
| 276 | continue; |
| 277 | } |
| 278 | oldval |= FUTEX_WAITERS; |
| 279 | } |
| 280 | |
| 281 | /* It is now possible that we share the FUTEX_WAITERS flag with |
| 282 | another thread; therefore, update assume_other_futex_waiters so |
| 283 | that we do not forget about this when handling other cases |
| 284 | above and thus do not cause lost wake-ups. */ |
| 285 | assume_other_futex_waiters |= FUTEX_WAITERS; |
| 286 | |
| 287 | /* Block using the futex. */ |
| 288 | #if (!defined __ASSUME_FUTEX_CLOCK_REALTIME \ |
| 289 | || !defined lll_futex_timed_wait_bitset) |
| 290 | lll_futex_timed wait (&mutex->__data.__lock, oldval, |
| 291 | &rt, PTHREAD_ROBUST_MUTEX_PSHARED (mutex)); |
| 292 | #else |
| 293 | int err = lll_futex_timed_wait_bitset (&mutex->__data.__lock, |
| 294 | oldval, abstime, FUTEX_CLOCK_REALTIME, |
| 295 | PTHREAD_ROBUST_MUTEX_PSHARED (mutex)); |
| 296 | /* The futex call timed out. */ |
| 297 | if (err == -ETIMEDOUT) |
| 298 | return -err; |
| 299 | #endif |
| 300 | /* Reload current lock value. */ |
| 301 | oldval = mutex->__data.__lock; |
| 302 | } |
| 303 | |
| 304 | /* We have acquired the mutex; check if it is still consistent. */ |
| 305 | if (__builtin_expect (mutex->__data.__owner |
| 306 | == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) |
| 307 | { |
| 308 | /* This mutex is now not recoverable. */ |
| 309 | mutex->__data.__count = 0; |
| 310 | int private = PTHREAD_ROBUST_MUTEX_PSHARED (mutex); |
| 311 | lll_unlock (mutex->__data.__lock, private); |
| 312 | /* FIXME This violates the mutex destruction requirements. See |
| 313 | __pthread_mutex_unlock_full. */ |
| 314 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 315 | return ENOTRECOVERABLE; |
| 316 | } |
| 317 | |
| 318 | mutex->__data.__count = 1; |
| 319 | /* We must not enqueue the mutex before we have acquired it. |
| 320 | Also see comments at ENQUEUE_MUTEX. */ |
| 321 | __asm ("" ::: "memory" ); |
| 322 | ENQUEUE_MUTEX (mutex); |
| 323 | /* We need to clear op_pending after we enqueue the mutex. */ |
| 324 | __asm ("" ::: "memory" ); |
| 325 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 326 | break; |
| 327 | |
| 328 | /* The PI support requires the Linux futex system call. If that's not |
| 329 | available, pthread_mutex_init should never have allowed the type to |
| 330 | be set. So it will get the default case for an invalid type. */ |
| 331 | #ifdef __NR_futex |
| 332 | case PTHREAD_MUTEX_PI_RECURSIVE_NP: |
| 333 | case PTHREAD_MUTEX_PI_ERRORCHECK_NP: |
| 334 | case PTHREAD_MUTEX_PI_NORMAL_NP: |
| 335 | case PTHREAD_MUTEX_PI_ADAPTIVE_NP: |
| 336 | case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP: |
| 337 | case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP: |
| 338 | case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP: |
| 339 | case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP: |
| 340 | { |
| 341 | int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP; |
| 342 | int robust = mutex->__data.__kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP; |
| 343 | |
| 344 | if (robust) |
| 345 | { |
| 346 | /* Note: robust PI futexes are signaled by setting bit 0. */ |
| 347 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
| 348 | (void *) (((uintptr_t) &mutex->__data.__list.__next) |
| 349 | | 1)); |
| 350 | /* We need to set op_pending before starting the operation. Also |
| 351 | see comments at ENQUEUE_MUTEX. */ |
| 352 | __asm ("" ::: "memory" ); |
| 353 | } |
| 354 | |
| 355 | oldval = mutex->__data.__lock; |
| 356 | |
| 357 | /* Check whether we already hold the mutex. */ |
| 358 | if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id)) |
| 359 | { |
| 360 | if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) |
| 361 | { |
| 362 | /* We do not need to ensure ordering wrt another memory |
| 363 | access. */ |
| 364 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 365 | return EDEADLK; |
| 366 | } |
| 367 | |
| 368 | if (kind == PTHREAD_MUTEX_RECURSIVE_NP) |
| 369 | { |
| 370 | /* We do not need to ensure ordering wrt another memory |
| 371 | access. */ |
| 372 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 373 | |
| 374 | /* Just bump the counter. */ |
| 375 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
| 376 | /* Overflow of the counter. */ |
| 377 | return EAGAIN; |
| 378 | |
| 379 | ++mutex->__data.__count; |
| 380 | |
| 381 | LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
| 382 | |
| 383 | return 0; |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 388 | id, 0); |
| 389 | |
| 390 | if (oldval != 0) |
| 391 | { |
| 392 | /* The mutex is locked. The kernel will now take care of |
| 393 | everything. The timeout value must be a relative value. |
| 394 | Convert it. */ |
| 395 | int private = (robust |
| 396 | ? PTHREAD_ROBUST_MUTEX_PSHARED (mutex) |
| 397 | : PTHREAD_MUTEX_PSHARED (mutex)); |
| 398 | INTERNAL_SYSCALL_DECL (__err); |
| 399 | |
| 400 | int e = INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock, |
| 401 | __lll_private_flag (FUTEX_LOCK_PI, |
| 402 | private), 1, |
| 403 | abstime); |
| 404 | if (INTERNAL_SYSCALL_ERROR_P (e, __err)) |
| 405 | { |
| 406 | if (INTERNAL_SYSCALL_ERRNO (e, __err) == ETIMEDOUT) |
| 407 | return ETIMEDOUT; |
| 408 | |
| 409 | if (INTERNAL_SYSCALL_ERRNO (e, __err) == ESRCH |
| 410 | || INTERNAL_SYSCALL_ERRNO (e, __err) == EDEADLK) |
| 411 | { |
| 412 | assert (INTERNAL_SYSCALL_ERRNO (e, __err) != EDEADLK |
| 413 | || (kind != PTHREAD_MUTEX_ERRORCHECK_NP |
| 414 | && kind != PTHREAD_MUTEX_RECURSIVE_NP)); |
| 415 | /* ESRCH can happen only for non-robust PI mutexes where |
| 416 | the owner of the lock died. */ |
| 417 | assert (INTERNAL_SYSCALL_ERRNO (e, __err) != ESRCH |
| 418 | || !robust); |
| 419 | |
| 420 | /* Delay the thread until the timeout is reached. |
| 421 | Then return ETIMEDOUT. */ |
| 422 | struct timespec reltime; |
| 423 | struct timespec now; |
| 424 | |
| 425 | INTERNAL_SYSCALL (clock_gettime, __err, 2, CLOCK_REALTIME, |
| 426 | &now); |
| 427 | reltime.tv_sec = abstime->tv_sec - now.tv_sec; |
| 428 | reltime.tv_nsec = abstime->tv_nsec - now.tv_nsec; |
| 429 | if (reltime.tv_nsec < 0) |
| 430 | { |
| 431 | reltime.tv_nsec += 1000000000; |
| 432 | --reltime.tv_sec; |
| 433 | } |
| 434 | if (reltime.tv_sec >= 0) |
| 435 | while (__nanosleep_nocancel (&reltime, &reltime) != 0) |
| 436 | continue; |
| 437 | |
| 438 | return ETIMEDOUT; |
| 439 | } |
| 440 | |
| 441 | return INTERNAL_SYSCALL_ERRNO (e, __err); |
| 442 | } |
| 443 | |
| 444 | oldval = mutex->__data.__lock; |
| 445 | |
| 446 | assert (robust || (oldval & FUTEX_OWNER_DIED) == 0); |
| 447 | } |
| 448 | |
| 449 | if (__glibc_unlikely (oldval & FUTEX_OWNER_DIED)) |
| 450 | { |
| 451 | atomic_and (&mutex->__data.__lock, ~FUTEX_OWNER_DIED); |
| 452 | |
| 453 | /* We got the mutex. */ |
| 454 | mutex->__data.__count = 1; |
| 455 | /* But it is inconsistent unless marked otherwise. */ |
| 456 | mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; |
| 457 | |
| 458 | /* We must not enqueue the mutex before we have acquired it. |
| 459 | Also see comments at ENQUEUE_MUTEX. */ |
| 460 | __asm ("" ::: "memory" ); |
| 461 | ENQUEUE_MUTEX_PI (mutex); |
| 462 | /* We need to clear op_pending after we enqueue the mutex. */ |
| 463 | __asm ("" ::: "memory" ); |
| 464 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 465 | |
| 466 | /* Note that we deliberately exit here. If we fall |
| 467 | through to the end of the function __nusers would be |
| 468 | incremented which is not correct because the old owner |
| 469 | has to be discounted. */ |
| 470 | return EOWNERDEAD; |
| 471 | } |
| 472 | |
| 473 | if (robust |
| 474 | && __builtin_expect (mutex->__data.__owner |
| 475 | == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) |
| 476 | { |
| 477 | /* This mutex is now not recoverable. */ |
| 478 | mutex->__data.__count = 0; |
| 479 | |
| 480 | INTERNAL_SYSCALL_DECL (__err); |
| 481 | INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock, |
| 482 | __lll_private_flag (FUTEX_UNLOCK_PI, |
| 483 | PTHREAD_ROBUST_MUTEX_PSHARED (mutex)), |
| 484 | 0, 0); |
| 485 | |
| 486 | /* To the kernel, this will be visible after the kernel has |
| 487 | acquired the mutex in the syscall. */ |
| 488 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 489 | return ENOTRECOVERABLE; |
| 490 | } |
| 491 | |
| 492 | mutex->__data.__count = 1; |
| 493 | if (robust) |
| 494 | { |
| 495 | /* We must not enqueue the mutex before we have acquired it. |
| 496 | Also see comments at ENQUEUE_MUTEX. */ |
| 497 | __asm ("" ::: "memory" ); |
| 498 | ENQUEUE_MUTEX_PI (mutex); |
| 499 | /* We need to clear op_pending after we enqueue the mutex. */ |
| 500 | __asm ("" ::: "memory" ); |
| 501 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 502 | } |
| 503 | } |
| 504 | break; |
| 505 | #endif /* __NR_futex. */ |
| 506 | |
| 507 | case PTHREAD_MUTEX_PP_RECURSIVE_NP: |
| 508 | case PTHREAD_MUTEX_PP_ERRORCHECK_NP: |
| 509 | case PTHREAD_MUTEX_PP_NORMAL_NP: |
| 510 | case PTHREAD_MUTEX_PP_ADAPTIVE_NP: |
| 511 | { |
| 512 | int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP; |
| 513 | |
| 514 | oldval = mutex->__data.__lock; |
| 515 | |
| 516 | /* Check whether we already hold the mutex. */ |
| 517 | if (mutex->__data.__owner == id) |
| 518 | { |
| 519 | if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) |
| 520 | return EDEADLK; |
| 521 | |
| 522 | if (kind == PTHREAD_MUTEX_RECURSIVE_NP) |
| 523 | { |
| 524 | /* Just bump the counter. */ |
| 525 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
| 526 | /* Overflow of the counter. */ |
| 527 | return EAGAIN; |
| 528 | |
| 529 | ++mutex->__data.__count; |
| 530 | |
| 531 | LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
| 532 | |
| 533 | return 0; |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | int oldprio = -1, ceilval; |
| 538 | do |
| 539 | { |
| 540 | int ceiling = (oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) |
| 541 | >> PTHREAD_MUTEX_PRIO_CEILING_SHIFT; |
| 542 | |
| 543 | if (__pthread_current_priority () > ceiling) |
| 544 | { |
| 545 | result = EINVAL; |
| 546 | failpp: |
| 547 | if (oldprio != -1) |
| 548 | __pthread_tpp_change_priority (oldprio, -1); |
| 549 | return result; |
| 550 | } |
| 551 | |
| 552 | result = __pthread_tpp_change_priority (oldprio, ceiling); |
| 553 | if (result) |
| 554 | return result; |
| 555 | |
| 556 | ceilval = ceiling << PTHREAD_MUTEX_PRIO_CEILING_SHIFT; |
| 557 | oldprio = ceiling; |
| 558 | |
| 559 | oldval |
| 560 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 561 | ceilval | 1, ceilval); |
| 562 | |
| 563 | if (oldval == ceilval) |
| 564 | break; |
| 565 | |
| 566 | do |
| 567 | { |
| 568 | oldval |
| 569 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 570 | ceilval | 2, |
| 571 | ceilval | 1); |
| 572 | |
| 573 | if ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval) |
| 574 | break; |
| 575 | |
| 576 | if (oldval != ceilval) |
| 577 | { |
| 578 | /* Reject invalid timeouts. */ |
| 579 | if (abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000) |
| 580 | { |
| 581 | result = EINVAL; |
| 582 | goto failpp; |
| 583 | } |
| 584 | |
| 585 | struct timeval tv; |
| 586 | struct timespec rt; |
| 587 | |
| 588 | /* Get the current time. */ |
| 589 | (void) __gettimeofday (&tv, NULL); |
| 590 | |
| 591 | /* Compute relative timeout. */ |
| 592 | rt.tv_sec = abstime->tv_sec - tv.tv_sec; |
| 593 | rt.tv_nsec = abstime->tv_nsec - tv.tv_usec * 1000; |
| 594 | if (rt.tv_nsec < 0) |
| 595 | { |
| 596 | rt.tv_nsec += 1000000000; |
| 597 | --rt.tv_sec; |
| 598 | } |
| 599 | |
| 600 | /* Already timed out? */ |
| 601 | if (rt.tv_sec < 0) |
| 602 | { |
| 603 | result = ETIMEDOUT; |
| 604 | goto failpp; |
| 605 | } |
| 606 | |
| 607 | lll_futex_timed_wait (&mutex->__data.__lock, |
| 608 | ceilval | 2, &rt, |
| 609 | PTHREAD_MUTEX_PSHARED (mutex)); |
| 610 | } |
| 611 | } |
| 612 | while (atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 613 | ceilval | 2, ceilval) |
| 614 | != ceilval); |
| 615 | } |
| 616 | while ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval); |
| 617 | |
| 618 | assert (mutex->__data.__owner == 0); |
| 619 | mutex->__data.__count = 1; |
| 620 | } |
| 621 | break; |
| 622 | |
| 623 | default: |
| 624 | /* Correct code cannot set any other type. */ |
| 625 | return EINVAL; |
| 626 | } |
| 627 | |
| 628 | if (result == 0) |
| 629 | { |
| 630 | /* Record the ownership. */ |
| 631 | mutex->__data.__owner = id; |
| 632 | ++mutex->__data.__nusers; |
| 633 | |
| 634 | LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
| 635 | } |
| 636 | |
| 637 | out: |
| 638 | return result; |
| 639 | } |
| 640 | weak_alias (__pthread_mutex_timedlock, pthread_mutex_timedlock) |
| 641 | |