1 | /* Copyright (C) 2002-2018 Free Software Foundation, Inc. |
2 | This file is part of the GNU C Library. |
3 | Contributed by Ulrich Drepper <drepper@redhat.com>, 2002. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <http://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <assert.h> |
20 | #include <errno.h> |
21 | #include <stdlib.h> |
22 | #include <unistd.h> |
23 | #include <sys/param.h> |
24 | #include <not-cancel.h> |
25 | #include "pthreadP.h" |
26 | #include <atomic.h> |
27 | #include <lowlevellock.h> |
28 | #include <stap-probe.h> |
29 | |
30 | #ifndef lll_lock_elision |
31 | #define lll_lock_elision(lock, try_lock, private) ({ \ |
32 | lll_lock (lock, private); 0; }) |
33 | #endif |
34 | |
35 | #ifndef lll_trylock_elision |
36 | #define lll_trylock_elision(a,t) lll_trylock(a) |
37 | #endif |
38 | |
39 | /* Some of the following definitions differ when pthread_mutex_cond_lock.c |
40 | includes this file. */ |
41 | #ifndef LLL_MUTEX_LOCK |
42 | # define LLL_MUTEX_LOCK(mutex) \ |
43 | lll_lock ((mutex)->__data.__lock, PTHREAD_MUTEX_PSHARED (mutex)) |
44 | # define LLL_MUTEX_TRYLOCK(mutex) \ |
45 | lll_trylock ((mutex)->__data.__lock) |
46 | # define LLL_ROBUST_MUTEX_LOCK_MODIFIER 0 |
47 | # define LLL_MUTEX_LOCK_ELISION(mutex) \ |
48 | lll_lock_elision ((mutex)->__data.__lock, (mutex)->__data.__elision, \ |
49 | PTHREAD_MUTEX_PSHARED (mutex)) |
50 | # define LLL_MUTEX_TRYLOCK_ELISION(mutex) \ |
51 | lll_trylock_elision((mutex)->__data.__lock, (mutex)->__data.__elision, \ |
52 | PTHREAD_MUTEX_PSHARED (mutex)) |
53 | #endif |
54 | |
55 | #ifndef FORCE_ELISION |
56 | #define FORCE_ELISION(m, s) |
57 | #endif |
58 | |
59 | static int __pthread_mutex_lock_full (pthread_mutex_t *mutex) |
60 | __attribute_noinline__; |
61 | |
62 | int |
63 | __pthread_mutex_lock (pthread_mutex_t *mutex) |
64 | { |
65 | unsigned int type = PTHREAD_MUTEX_TYPE_ELISION (mutex); |
66 | |
67 | LIBC_PROBE (mutex_entry, 1, mutex); |
68 | |
69 | if (__builtin_expect (type & ~(PTHREAD_MUTEX_KIND_MASK_NP |
70 | | PTHREAD_MUTEX_ELISION_FLAGS_NP), 0)) |
71 | return __pthread_mutex_lock_full (mutex); |
72 | |
73 | if (__glibc_likely (type == PTHREAD_MUTEX_TIMED_NP)) |
74 | { |
75 | FORCE_ELISION (mutex, goto elision); |
76 | simple: |
77 | /* Normal mutex. */ |
78 | LLL_MUTEX_LOCK (mutex); |
79 | assert (mutex->__data.__owner == 0); |
80 | } |
81 | #ifdef HAVE_ELISION |
82 | else if (__glibc_likely (type == PTHREAD_MUTEX_TIMED_ELISION_NP)) |
83 | { |
84 | elision: __attribute__((unused)) |
85 | /* This case can never happen on a system without elision, |
86 | as the mutex type initialization functions will not |
87 | allow to set the elision flags. */ |
88 | /* Don't record owner or users for elision case. This is a |
89 | tail call. */ |
90 | return LLL_MUTEX_LOCK_ELISION (mutex); |
91 | } |
92 | #endif |
93 | else if (__builtin_expect (PTHREAD_MUTEX_TYPE (mutex) |
94 | == PTHREAD_MUTEX_RECURSIVE_NP, 1)) |
95 | { |
96 | /* Recursive mutex. */ |
97 | pid_t id = THREAD_GETMEM (THREAD_SELF, tid); |
98 | |
99 | /* Check whether we already hold the mutex. */ |
100 | if (mutex->__data.__owner == id) |
101 | { |
102 | /* Just bump the counter. */ |
103 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
104 | /* Overflow of the counter. */ |
105 | return EAGAIN; |
106 | |
107 | ++mutex->__data.__count; |
108 | |
109 | return 0; |
110 | } |
111 | |
112 | /* We have to get the mutex. */ |
113 | LLL_MUTEX_LOCK (mutex); |
114 | |
115 | assert (mutex->__data.__owner == 0); |
116 | mutex->__data.__count = 1; |
117 | } |
118 | else if (__builtin_expect (PTHREAD_MUTEX_TYPE (mutex) |
119 | == PTHREAD_MUTEX_ADAPTIVE_NP, 1)) |
120 | { |
121 | if (! __is_smp) |
122 | goto simple; |
123 | |
124 | if (LLL_MUTEX_TRYLOCK (mutex) != 0) |
125 | { |
126 | int cnt = 0; |
127 | int max_cnt = MIN (MAX_ADAPTIVE_COUNT, |
128 | mutex->__data.__spins * 2 + 10); |
129 | do |
130 | { |
131 | if (cnt++ >= max_cnt) |
132 | { |
133 | LLL_MUTEX_LOCK (mutex); |
134 | break; |
135 | } |
136 | atomic_spin_nop (); |
137 | } |
138 | while (LLL_MUTEX_TRYLOCK (mutex) != 0); |
139 | |
140 | mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8; |
141 | } |
142 | assert (mutex->__data.__owner == 0); |
143 | } |
144 | else |
145 | { |
146 | pid_t id = THREAD_GETMEM (THREAD_SELF, tid); |
147 | assert (PTHREAD_MUTEX_TYPE (mutex) == PTHREAD_MUTEX_ERRORCHECK_NP); |
148 | /* Check whether we already hold the mutex. */ |
149 | if (__glibc_unlikely (mutex->__data.__owner == id)) |
150 | return EDEADLK; |
151 | goto simple; |
152 | } |
153 | |
154 | pid_t id = THREAD_GETMEM (THREAD_SELF, tid); |
155 | |
156 | /* Record the ownership. */ |
157 | mutex->__data.__owner = id; |
158 | #ifndef NO_INCR |
159 | ++mutex->__data.__nusers; |
160 | #endif |
161 | |
162 | LIBC_PROBE (mutex_acquired, 1, mutex); |
163 | |
164 | return 0; |
165 | } |
166 | |
167 | static int |
168 | __pthread_mutex_lock_full (pthread_mutex_t *mutex) |
169 | { |
170 | int oldval; |
171 | pid_t id = THREAD_GETMEM (THREAD_SELF, tid); |
172 | |
173 | switch (PTHREAD_MUTEX_TYPE (mutex)) |
174 | { |
175 | case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP: |
176 | case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP: |
177 | case PTHREAD_MUTEX_ROBUST_NORMAL_NP: |
178 | case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP: |
179 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
180 | &mutex->__data.__list.__next); |
181 | /* We need to set op_pending before starting the operation. Also |
182 | see comments at ENQUEUE_MUTEX. */ |
183 | __asm ("" ::: "memory" ); |
184 | |
185 | oldval = mutex->__data.__lock; |
186 | /* This is set to FUTEX_WAITERS iff we might have shared the |
187 | FUTEX_WAITERS flag with other threads, and therefore need to keep it |
188 | set to avoid lost wake-ups. We have the same requirement in the |
189 | simple mutex algorithm. |
190 | We start with value zero for a normal mutex, and FUTEX_WAITERS if we |
191 | are building the special case mutexes for use from within condition |
192 | variables. */ |
193 | unsigned int assume_other_futex_waiters = LLL_ROBUST_MUTEX_LOCK_MODIFIER; |
194 | while (1) |
195 | { |
196 | /* Try to acquire the lock through a CAS from 0 (not acquired) to |
197 | our TID | assume_other_futex_waiters. */ |
198 | if (__glibc_likely (oldval == 0)) |
199 | { |
200 | oldval |
201 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
202 | id | assume_other_futex_waiters, 0); |
203 | if (__glibc_likely (oldval == 0)) |
204 | break; |
205 | } |
206 | |
207 | if ((oldval & FUTEX_OWNER_DIED) != 0) |
208 | { |
209 | /* The previous owner died. Try locking the mutex. */ |
210 | int newval = id; |
211 | #ifdef NO_INCR |
212 | /* We are not taking assume_other_futex_waiters into accoount |
213 | here simply because we'll set FUTEX_WAITERS anyway. */ |
214 | newval |= FUTEX_WAITERS; |
215 | #else |
216 | newval |= (oldval & FUTEX_WAITERS) | assume_other_futex_waiters; |
217 | #endif |
218 | |
219 | newval |
220 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
221 | newval, oldval); |
222 | |
223 | if (newval != oldval) |
224 | { |
225 | oldval = newval; |
226 | continue; |
227 | } |
228 | |
229 | /* We got the mutex. */ |
230 | mutex->__data.__count = 1; |
231 | /* But it is inconsistent unless marked otherwise. */ |
232 | mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; |
233 | |
234 | /* We must not enqueue the mutex before we have acquired it. |
235 | Also see comments at ENQUEUE_MUTEX. */ |
236 | __asm ("" ::: "memory" ); |
237 | ENQUEUE_MUTEX (mutex); |
238 | /* We need to clear op_pending after we enqueue the mutex. */ |
239 | __asm ("" ::: "memory" ); |
240 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
241 | |
242 | /* Note that we deliberately exit here. If we fall |
243 | through to the end of the function __nusers would be |
244 | incremented which is not correct because the old |
245 | owner has to be discounted. If we are not supposed |
246 | to increment __nusers we actually have to decrement |
247 | it here. */ |
248 | #ifdef NO_INCR |
249 | --mutex->__data.__nusers; |
250 | #endif |
251 | |
252 | return EOWNERDEAD; |
253 | } |
254 | |
255 | /* Check whether we already hold the mutex. */ |
256 | if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id)) |
257 | { |
258 | int kind = PTHREAD_MUTEX_TYPE (mutex); |
259 | if (kind == PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP) |
260 | { |
261 | /* We do not need to ensure ordering wrt another memory |
262 | access. Also see comments at ENQUEUE_MUTEX. */ |
263 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
264 | NULL); |
265 | return EDEADLK; |
266 | } |
267 | |
268 | if (kind == PTHREAD_MUTEX_ROBUST_RECURSIVE_NP) |
269 | { |
270 | /* We do not need to ensure ordering wrt another memory |
271 | access. */ |
272 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
273 | NULL); |
274 | |
275 | /* Just bump the counter. */ |
276 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
277 | /* Overflow of the counter. */ |
278 | return EAGAIN; |
279 | |
280 | ++mutex->__data.__count; |
281 | |
282 | return 0; |
283 | } |
284 | } |
285 | |
286 | /* We cannot acquire the mutex nor has its owner died. Thus, try |
287 | to block using futexes. Set FUTEX_WAITERS if necessary so that |
288 | other threads are aware that there are potentially threads |
289 | blocked on the futex. Restart if oldval changed in the |
290 | meantime. */ |
291 | if ((oldval & FUTEX_WAITERS) == 0) |
292 | { |
293 | if (atomic_compare_and_exchange_bool_acq (&mutex->__data.__lock, |
294 | oldval | FUTEX_WAITERS, |
295 | oldval) |
296 | != 0) |
297 | { |
298 | oldval = mutex->__data.__lock; |
299 | continue; |
300 | } |
301 | oldval |= FUTEX_WAITERS; |
302 | } |
303 | |
304 | /* It is now possible that we share the FUTEX_WAITERS flag with |
305 | another thread; therefore, update assume_other_futex_waiters so |
306 | that we do not forget about this when handling other cases |
307 | above and thus do not cause lost wake-ups. */ |
308 | assume_other_futex_waiters |= FUTEX_WAITERS; |
309 | |
310 | /* Block using the futex and reload current lock value. */ |
311 | lll_futex_wait (&mutex->__data.__lock, oldval, |
312 | PTHREAD_ROBUST_MUTEX_PSHARED (mutex)); |
313 | oldval = mutex->__data.__lock; |
314 | } |
315 | |
316 | /* We have acquired the mutex; check if it is still consistent. */ |
317 | if (__builtin_expect (mutex->__data.__owner |
318 | == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) |
319 | { |
320 | /* This mutex is now not recoverable. */ |
321 | mutex->__data.__count = 0; |
322 | int private = PTHREAD_ROBUST_MUTEX_PSHARED (mutex); |
323 | lll_unlock (mutex->__data.__lock, private); |
324 | /* FIXME This violates the mutex destruction requirements. See |
325 | __pthread_mutex_unlock_full. */ |
326 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
327 | return ENOTRECOVERABLE; |
328 | } |
329 | |
330 | mutex->__data.__count = 1; |
331 | /* We must not enqueue the mutex before we have acquired it. |
332 | Also see comments at ENQUEUE_MUTEX. */ |
333 | __asm ("" ::: "memory" ); |
334 | ENQUEUE_MUTEX (mutex); |
335 | /* We need to clear op_pending after we enqueue the mutex. */ |
336 | __asm ("" ::: "memory" ); |
337 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
338 | break; |
339 | |
340 | /* The PI support requires the Linux futex system call. If that's not |
341 | available, pthread_mutex_init should never have allowed the type to |
342 | be set. So it will get the default case for an invalid type. */ |
343 | #ifdef __NR_futex |
344 | case PTHREAD_MUTEX_PI_RECURSIVE_NP: |
345 | case PTHREAD_MUTEX_PI_ERRORCHECK_NP: |
346 | case PTHREAD_MUTEX_PI_NORMAL_NP: |
347 | case PTHREAD_MUTEX_PI_ADAPTIVE_NP: |
348 | case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP: |
349 | case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP: |
350 | case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP: |
351 | case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP: |
352 | { |
353 | int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP; |
354 | int robust = mutex->__data.__kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP; |
355 | |
356 | if (robust) |
357 | { |
358 | /* Note: robust PI futexes are signaled by setting bit 0. */ |
359 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
360 | (void *) (((uintptr_t) &mutex->__data.__list.__next) |
361 | | 1)); |
362 | /* We need to set op_pending before starting the operation. Also |
363 | see comments at ENQUEUE_MUTEX. */ |
364 | __asm ("" ::: "memory" ); |
365 | } |
366 | |
367 | oldval = mutex->__data.__lock; |
368 | |
369 | /* Check whether we already hold the mutex. */ |
370 | if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id)) |
371 | { |
372 | if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) |
373 | { |
374 | /* We do not need to ensure ordering wrt another memory |
375 | access. */ |
376 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
377 | return EDEADLK; |
378 | } |
379 | |
380 | if (kind == PTHREAD_MUTEX_RECURSIVE_NP) |
381 | { |
382 | /* We do not need to ensure ordering wrt another memory |
383 | access. */ |
384 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
385 | |
386 | /* Just bump the counter. */ |
387 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
388 | /* Overflow of the counter. */ |
389 | return EAGAIN; |
390 | |
391 | ++mutex->__data.__count; |
392 | |
393 | return 0; |
394 | } |
395 | } |
396 | |
397 | int newval = id; |
398 | # ifdef NO_INCR |
399 | newval |= FUTEX_WAITERS; |
400 | # endif |
401 | oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
402 | newval, 0); |
403 | |
404 | if (oldval != 0) |
405 | { |
406 | /* The mutex is locked. The kernel will now take care of |
407 | everything. */ |
408 | int private = (robust |
409 | ? PTHREAD_ROBUST_MUTEX_PSHARED (mutex) |
410 | : PTHREAD_MUTEX_PSHARED (mutex)); |
411 | INTERNAL_SYSCALL_DECL (__err); |
412 | int e = INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock, |
413 | __lll_private_flag (FUTEX_LOCK_PI, |
414 | private), 1, 0); |
415 | |
416 | if (INTERNAL_SYSCALL_ERROR_P (e, __err) |
417 | && (INTERNAL_SYSCALL_ERRNO (e, __err) == ESRCH |
418 | || INTERNAL_SYSCALL_ERRNO (e, __err) == EDEADLK)) |
419 | { |
420 | assert (INTERNAL_SYSCALL_ERRNO (e, __err) != EDEADLK |
421 | || (kind != PTHREAD_MUTEX_ERRORCHECK_NP |
422 | && kind != PTHREAD_MUTEX_RECURSIVE_NP)); |
423 | /* ESRCH can happen only for non-robust PI mutexes where |
424 | the owner of the lock died. */ |
425 | assert (INTERNAL_SYSCALL_ERRNO (e, __err) != ESRCH || !robust); |
426 | |
427 | /* Delay the thread indefinitely. */ |
428 | while (1) |
429 | __pause_nocancel (); |
430 | } |
431 | |
432 | oldval = mutex->__data.__lock; |
433 | |
434 | assert (robust || (oldval & FUTEX_OWNER_DIED) == 0); |
435 | } |
436 | |
437 | if (__glibc_unlikely (oldval & FUTEX_OWNER_DIED)) |
438 | { |
439 | atomic_and (&mutex->__data.__lock, ~FUTEX_OWNER_DIED); |
440 | |
441 | /* We got the mutex. */ |
442 | mutex->__data.__count = 1; |
443 | /* But it is inconsistent unless marked otherwise. */ |
444 | mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; |
445 | |
446 | /* We must not enqueue the mutex before we have acquired it. |
447 | Also see comments at ENQUEUE_MUTEX. */ |
448 | __asm ("" ::: "memory" ); |
449 | ENQUEUE_MUTEX_PI (mutex); |
450 | /* We need to clear op_pending after we enqueue the mutex. */ |
451 | __asm ("" ::: "memory" ); |
452 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
453 | |
454 | /* Note that we deliberately exit here. If we fall |
455 | through to the end of the function __nusers would be |
456 | incremented which is not correct because the old owner |
457 | has to be discounted. If we are not supposed to |
458 | increment __nusers we actually have to decrement it here. */ |
459 | # ifdef NO_INCR |
460 | --mutex->__data.__nusers; |
461 | # endif |
462 | |
463 | return EOWNERDEAD; |
464 | } |
465 | |
466 | if (robust |
467 | && __builtin_expect (mutex->__data.__owner |
468 | == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) |
469 | { |
470 | /* This mutex is now not recoverable. */ |
471 | mutex->__data.__count = 0; |
472 | |
473 | INTERNAL_SYSCALL_DECL (__err); |
474 | INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock, |
475 | __lll_private_flag (FUTEX_UNLOCK_PI, |
476 | PTHREAD_ROBUST_MUTEX_PSHARED (mutex)), |
477 | 0, 0); |
478 | |
479 | /* To the kernel, this will be visible after the kernel has |
480 | acquired the mutex in the syscall. */ |
481 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
482 | return ENOTRECOVERABLE; |
483 | } |
484 | |
485 | mutex->__data.__count = 1; |
486 | if (robust) |
487 | { |
488 | /* We must not enqueue the mutex before we have acquired it. |
489 | Also see comments at ENQUEUE_MUTEX. */ |
490 | __asm ("" ::: "memory" ); |
491 | ENQUEUE_MUTEX_PI (mutex); |
492 | /* We need to clear op_pending after we enqueue the mutex. */ |
493 | __asm ("" ::: "memory" ); |
494 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
495 | } |
496 | } |
497 | break; |
498 | #endif /* __NR_futex. */ |
499 | |
500 | case PTHREAD_MUTEX_PP_RECURSIVE_NP: |
501 | case PTHREAD_MUTEX_PP_ERRORCHECK_NP: |
502 | case PTHREAD_MUTEX_PP_NORMAL_NP: |
503 | case PTHREAD_MUTEX_PP_ADAPTIVE_NP: |
504 | { |
505 | int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP; |
506 | |
507 | oldval = mutex->__data.__lock; |
508 | |
509 | /* Check whether we already hold the mutex. */ |
510 | if (mutex->__data.__owner == id) |
511 | { |
512 | if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) |
513 | return EDEADLK; |
514 | |
515 | if (kind == PTHREAD_MUTEX_RECURSIVE_NP) |
516 | { |
517 | /* Just bump the counter. */ |
518 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
519 | /* Overflow of the counter. */ |
520 | return EAGAIN; |
521 | |
522 | ++mutex->__data.__count; |
523 | |
524 | return 0; |
525 | } |
526 | } |
527 | |
528 | int oldprio = -1, ceilval; |
529 | do |
530 | { |
531 | int ceiling = (oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) |
532 | >> PTHREAD_MUTEX_PRIO_CEILING_SHIFT; |
533 | |
534 | if (__pthread_current_priority () > ceiling) |
535 | { |
536 | if (oldprio != -1) |
537 | __pthread_tpp_change_priority (oldprio, -1); |
538 | return EINVAL; |
539 | } |
540 | |
541 | int retval = __pthread_tpp_change_priority (oldprio, ceiling); |
542 | if (retval) |
543 | return retval; |
544 | |
545 | ceilval = ceiling << PTHREAD_MUTEX_PRIO_CEILING_SHIFT; |
546 | oldprio = ceiling; |
547 | |
548 | oldval |
549 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
550 | #ifdef NO_INCR |
551 | ceilval | 2, |
552 | #else |
553 | ceilval | 1, |
554 | #endif |
555 | ceilval); |
556 | |
557 | if (oldval == ceilval) |
558 | break; |
559 | |
560 | do |
561 | { |
562 | oldval |
563 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
564 | ceilval | 2, |
565 | ceilval | 1); |
566 | |
567 | if ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval) |
568 | break; |
569 | |
570 | if (oldval != ceilval) |
571 | lll_futex_wait (&mutex->__data.__lock, ceilval | 2, |
572 | PTHREAD_MUTEX_PSHARED (mutex)); |
573 | } |
574 | while (atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
575 | ceilval | 2, ceilval) |
576 | != ceilval); |
577 | } |
578 | while ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval); |
579 | |
580 | assert (mutex->__data.__owner == 0); |
581 | mutex->__data.__count = 1; |
582 | } |
583 | break; |
584 | |
585 | default: |
586 | /* Correct code cannot set any other type. */ |
587 | return EINVAL; |
588 | } |
589 | |
590 | /* Record the ownership. */ |
591 | mutex->__data.__owner = id; |
592 | #ifndef NO_INCR |
593 | ++mutex->__data.__nusers; |
594 | #endif |
595 | |
596 | LIBC_PROBE (mutex_acquired, 1, mutex); |
597 | |
598 | return 0; |
599 | } |
600 | #ifndef __pthread_mutex_lock |
601 | weak_alias (__pthread_mutex_lock, pthread_mutex_lock) |
602 | hidden_def (__pthread_mutex_lock) |
603 | #endif |
604 | |
605 | |
606 | #ifdef NO_INCR |
607 | void |
608 | __pthread_mutex_cond_lock_adjust (pthread_mutex_t *mutex) |
609 | { |
610 | assert ((mutex->__data.__kind & PTHREAD_MUTEX_PRIO_INHERIT_NP) != 0); |
611 | assert ((mutex->__data.__kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP) == 0); |
612 | assert ((mutex->__data.__kind & PTHREAD_MUTEX_PSHARED_BIT) == 0); |
613 | |
614 | /* Record the ownership. */ |
615 | pid_t id = THREAD_GETMEM (THREAD_SELF, tid); |
616 | mutex->__data.__owner = id; |
617 | |
618 | if (mutex->__data.__kind == PTHREAD_MUTEX_PI_RECURSIVE_NP) |
619 | ++mutex->__data.__count; |
620 | } |
621 | #endif |
622 | |