1 | /* s_tanhl.c -- long double version of s_tanh.c. |
2 | * Conversion to long double by Ulrich Drepper, |
3 | * Cygnus Support, drepper@cygnus.com. |
4 | */ |
5 | |
6 | /* |
7 | * ==================================================== |
8 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
9 | * |
10 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
11 | * Permission to use, copy, modify, and distribute this |
12 | * software is freely granted, provided that this notice |
13 | * is preserved. |
14 | * ==================================================== |
15 | */ |
16 | |
17 | /* Changes for 128-bit long double contributed by |
18 | Stephen L. Moshier <moshier@na-net.ornl.gov> */ |
19 | |
20 | /* tanhl(x) |
21 | * Return the Hyperbolic Tangent of x |
22 | * |
23 | * Method : |
24 | * x -x |
25 | * e - e |
26 | * 0. tanhl(x) is defined to be ----------- |
27 | * x -x |
28 | * e + e |
29 | * 1. reduce x to non-negative by tanhl(-x) = -tanhl(x). |
30 | * 2. 0 <= x <= 2**-57 : tanhl(x) := x*(one+x) |
31 | * -t |
32 | * 2**-57 < x <= 1 : tanhl(x) := -----; t = expm1l(-2x) |
33 | * t + 2 |
34 | * 2 |
35 | * 1 <= x <= 40.0 : tanhl(x) := 1- ----- ; t=expm1l(2x) |
36 | * t + 2 |
37 | * 40.0 < x <= INF : tanhl(x) := 1. |
38 | * |
39 | * Special cases: |
40 | * tanhl(NaN) is NaN; |
41 | * only tanhl(0)=0 is exact for finite argument. |
42 | */ |
43 | |
44 | #include <float.h> |
45 | #include <math.h> |
46 | #include <math_private.h> |
47 | |
48 | static const _Float128 one = 1.0, two = 2.0, tiny = L(1.0e-4900); |
49 | |
50 | _Float128 |
51 | __tanhl (_Float128 x) |
52 | { |
53 | _Float128 t, z; |
54 | u_int32_t jx, ix; |
55 | ieee854_long_double_shape_type u; |
56 | |
57 | /* Words of |x|. */ |
58 | u.value = x; |
59 | jx = u.parts32.w0; |
60 | ix = jx & 0x7fffffff; |
61 | /* x is INF or NaN */ |
62 | if (ix >= 0x7fff0000) |
63 | { |
64 | /* for NaN it's not important which branch: tanhl(NaN) = NaN */ |
65 | if (jx & 0x80000000) |
66 | return one / x - one; /* tanhl(-inf)= -1; */ |
67 | else |
68 | return one / x + one; /* tanhl(+inf)=+1 */ |
69 | } |
70 | |
71 | /* |x| < 40 */ |
72 | if (ix < 0x40044000) |
73 | { |
74 | if (u.value == 0) |
75 | return x; /* x == +- 0 */ |
76 | if (ix < 0x3fc60000) /* |x| < 2^-57 */ |
77 | { |
78 | math_check_force_underflow (x); |
79 | return x * (one + tiny); /* tanh(small) = small */ |
80 | } |
81 | u.parts32.w0 = ix; /* Absolute value of x. */ |
82 | if (ix >= 0x3fff0000) |
83 | { /* |x| >= 1 */ |
84 | t = __expm1l (two * u.value); |
85 | z = one - two / (t + two); |
86 | } |
87 | else |
88 | { |
89 | t = __expm1l (-two * u.value); |
90 | z = -t / (t + two); |
91 | } |
92 | /* |x| > 40, return +-1 */ |
93 | } |
94 | else |
95 | { |
96 | z = one - tiny; /* raised inexact flag */ |
97 | } |
98 | return (jx & 0x80000000) ? -z : z; |
99 | } |
100 | weak_alias (__tanhl, tanhl) |
101 | |