1 | /* Compute remainder and a congruent to the quotient. |
2 | Copyright (C) 1997-2017 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and |
5 | Jakub Jelinek <jj@ultra.linux.cz>, 1999. |
6 | |
7 | The GNU C Library is free software; you can redistribute it and/or |
8 | modify it under the terms of the GNU Lesser General Public |
9 | License as published by the Free Software Foundation; either |
10 | version 2.1 of the License, or (at your option) any later version. |
11 | |
12 | The GNU C Library is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
15 | Lesser General Public License for more details. |
16 | |
17 | You should have received a copy of the GNU Lesser General Public |
18 | License along with the GNU C Library; if not, see |
19 | <http://www.gnu.org/licenses/>. */ |
20 | |
21 | #include <math.h> |
22 | |
23 | #include <math_private.h> |
24 | |
25 | |
26 | static const _Float128 zero = 0.0; |
27 | |
28 | |
29 | _Float128 |
30 | __remquol (_Float128 x, _Float128 y, int *quo) |
31 | { |
32 | int64_t hx,hy; |
33 | u_int64_t sx,lx,ly,qs; |
34 | int cquo; |
35 | |
36 | GET_LDOUBLE_WORDS64 (hx, lx, x); |
37 | GET_LDOUBLE_WORDS64 (hy, ly, y); |
38 | sx = hx & 0x8000000000000000ULL; |
39 | qs = sx ^ (hy & 0x8000000000000000ULL); |
40 | hy &= 0x7fffffffffffffffLL; |
41 | hx &= 0x7fffffffffffffffLL; |
42 | |
43 | /* Purge off exception values. */ |
44 | if ((hy | ly) == 0) |
45 | return (x * y) / (x * y); /* y = 0 */ |
46 | if ((hx >= 0x7fff000000000000LL) /* x not finite */ |
47 | || ((hy >= 0x7fff000000000000LL) /* y is NaN */ |
48 | && (((hy - 0x7fff000000000000LL) | ly) != 0))) |
49 | return (x * y) / (x * y); |
50 | |
51 | if (hy <= 0x7ffbffffffffffffLL) |
52 | x = __ieee754_fmodl (x, 8 * y); /* now x < 8y */ |
53 | |
54 | if (((hx - hy) | (lx - ly)) == 0) |
55 | { |
56 | *quo = qs ? -1 : 1; |
57 | return zero * x; |
58 | } |
59 | |
60 | x = fabsl (x); |
61 | y = fabsl (y); |
62 | cquo = 0; |
63 | |
64 | if (hy <= 0x7ffcffffffffffffLL && x >= 4 * y) |
65 | { |
66 | x -= 4 * y; |
67 | cquo += 4; |
68 | } |
69 | if (hy <= 0x7ffdffffffffffffLL && x >= 2 * y) |
70 | { |
71 | x -= 2 * y; |
72 | cquo += 2; |
73 | } |
74 | |
75 | if (hy < 0x0002000000000000LL) |
76 | { |
77 | if (x + x > y) |
78 | { |
79 | x -= y; |
80 | ++cquo; |
81 | if (x + x >= y) |
82 | { |
83 | x -= y; |
84 | ++cquo; |
85 | } |
86 | } |
87 | } |
88 | else |
89 | { |
90 | _Float128 y_half = L(0.5) * y; |
91 | if (x > y_half) |
92 | { |
93 | x -= y; |
94 | ++cquo; |
95 | if (x >= y_half) |
96 | { |
97 | x -= y; |
98 | ++cquo; |
99 | } |
100 | } |
101 | } |
102 | |
103 | *quo = qs ? -cquo : cquo; |
104 | |
105 | /* Ensure correct sign of zero result in round-downward mode. */ |
106 | if (x == 0) |
107 | x = 0; |
108 | if (sx) |
109 | x = -x; |
110 | return x; |
111 | } |
112 | weak_alias (__remquol, remquol) |
113 | |