1 | /* Compute x * y + z as ternary operation. |
2 | Copyright (C) 2010-2017 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Jakub Jelinek <jakub@redhat.com>, 2010. |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <http://www.gnu.org/licenses/>. */ |
19 | |
20 | #include <float.h> |
21 | #include <math.h> |
22 | #include <fenv.h> |
23 | #include <ieee754.h> |
24 | #include <math_private.h> |
25 | #include <tininess.h> |
26 | |
27 | /* This implementation uses rounding to odd to avoid problems with |
28 | double rounding. See a paper by Boldo and Melquiond: |
29 | http://www.lri.fr/~melquion/doc/08-tc.pdf */ |
30 | |
31 | _Float128 |
32 | __fmal (_Float128 x, _Float128 y, _Float128 z) |
33 | { |
34 | union ieee854_long_double u, v, w; |
35 | int adjust = 0; |
36 | u.d = x; |
37 | v.d = y; |
38 | w.d = z; |
39 | if (__builtin_expect (u.ieee.exponent + v.ieee.exponent |
40 | >= 0x7fff + IEEE854_LONG_DOUBLE_BIAS |
41 | - LDBL_MANT_DIG, 0) |
42 | || __builtin_expect (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0) |
43 | || __builtin_expect (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0) |
44 | || __builtin_expect (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0) |
45 | || __builtin_expect (u.ieee.exponent + v.ieee.exponent |
46 | <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG, 0)) |
47 | { |
48 | /* If z is Inf, but x and y are finite, the result should be |
49 | z rather than NaN. */ |
50 | if (w.ieee.exponent == 0x7fff |
51 | && u.ieee.exponent != 0x7fff |
52 | && v.ieee.exponent != 0x7fff) |
53 | return (z + x) + y; |
54 | /* If z is zero and x are y are nonzero, compute the result |
55 | as x * y to avoid the wrong sign of a zero result if x * y |
56 | underflows to 0. */ |
57 | if (z == 0 && x != 0 && y != 0) |
58 | return x * y; |
59 | /* If x or y or z is Inf/NaN, or if x * y is zero, compute as |
60 | x * y + z. */ |
61 | if (u.ieee.exponent == 0x7fff |
62 | || v.ieee.exponent == 0x7fff |
63 | || w.ieee.exponent == 0x7fff |
64 | || x == 0 |
65 | || y == 0) |
66 | return x * y + z; |
67 | /* If fma will certainly overflow, compute as x * y. */ |
68 | if (u.ieee.exponent + v.ieee.exponent |
69 | > 0x7fff + IEEE854_LONG_DOUBLE_BIAS) |
70 | return x * y; |
71 | /* If x * y is less than 1/4 of LDBL_TRUE_MIN, neither the |
72 | result nor whether there is underflow depends on its exact |
73 | value, only on its sign. */ |
74 | if (u.ieee.exponent + v.ieee.exponent |
75 | < IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG - 2) |
76 | { |
77 | int neg = u.ieee.negative ^ v.ieee.negative; |
78 | _Float128 tiny = neg ? L(-0x1p-16494) : L(0x1p-16494); |
79 | if (w.ieee.exponent >= 3) |
80 | return tiny + z; |
81 | /* Scaling up, adding TINY and scaling down produces the |
82 | correct result, because in round-to-nearest mode adding |
83 | TINY has no effect and in other modes double rounding is |
84 | harmless. But it may not produce required underflow |
85 | exceptions. */ |
86 | v.d = z * L(0x1p114) + tiny; |
87 | if (TININESS_AFTER_ROUNDING |
88 | ? v.ieee.exponent < 115 |
89 | : (w.ieee.exponent == 0 |
90 | || (w.ieee.exponent == 1 |
91 | && w.ieee.negative != neg |
92 | && w.ieee.mantissa3 == 0 |
93 | && w.ieee.mantissa2 == 0 |
94 | && w.ieee.mantissa1 == 0 |
95 | && w.ieee.mantissa0 == 0))) |
96 | { |
97 | _Float128 force_underflow = x * y; |
98 | math_force_eval (force_underflow); |
99 | } |
100 | return v.d * L(0x1p-114); |
101 | } |
102 | if (u.ieee.exponent + v.ieee.exponent |
103 | >= 0x7fff + IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG) |
104 | { |
105 | /* Compute 1p-113 times smaller result and multiply |
106 | at the end. */ |
107 | if (u.ieee.exponent > v.ieee.exponent) |
108 | u.ieee.exponent -= LDBL_MANT_DIG; |
109 | else |
110 | v.ieee.exponent -= LDBL_MANT_DIG; |
111 | /* If x + y exponent is very large and z exponent is very small, |
112 | it doesn't matter if we don't adjust it. */ |
113 | if (w.ieee.exponent > LDBL_MANT_DIG) |
114 | w.ieee.exponent -= LDBL_MANT_DIG; |
115 | adjust = 1; |
116 | } |
117 | else if (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG) |
118 | { |
119 | /* Similarly. |
120 | If z exponent is very large and x and y exponents are |
121 | very small, adjust them up to avoid spurious underflows, |
122 | rather than down. */ |
123 | if (u.ieee.exponent + v.ieee.exponent |
124 | <= IEEE854_LONG_DOUBLE_BIAS + 2 * LDBL_MANT_DIG) |
125 | { |
126 | if (u.ieee.exponent > v.ieee.exponent) |
127 | u.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
128 | else |
129 | v.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
130 | } |
131 | else if (u.ieee.exponent > v.ieee.exponent) |
132 | { |
133 | if (u.ieee.exponent > LDBL_MANT_DIG) |
134 | u.ieee.exponent -= LDBL_MANT_DIG; |
135 | } |
136 | else if (v.ieee.exponent > LDBL_MANT_DIG) |
137 | v.ieee.exponent -= LDBL_MANT_DIG; |
138 | w.ieee.exponent -= LDBL_MANT_DIG; |
139 | adjust = 1; |
140 | } |
141 | else if (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG) |
142 | { |
143 | u.ieee.exponent -= LDBL_MANT_DIG; |
144 | if (v.ieee.exponent) |
145 | v.ieee.exponent += LDBL_MANT_DIG; |
146 | else |
147 | v.d *= L(0x1p113); |
148 | } |
149 | else if (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG) |
150 | { |
151 | v.ieee.exponent -= LDBL_MANT_DIG; |
152 | if (u.ieee.exponent) |
153 | u.ieee.exponent += LDBL_MANT_DIG; |
154 | else |
155 | u.d *= L(0x1p113); |
156 | } |
157 | else /* if (u.ieee.exponent + v.ieee.exponent |
158 | <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG) */ |
159 | { |
160 | if (u.ieee.exponent > v.ieee.exponent) |
161 | u.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
162 | else |
163 | v.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
164 | if (w.ieee.exponent <= 4 * LDBL_MANT_DIG + 6) |
165 | { |
166 | if (w.ieee.exponent) |
167 | w.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
168 | else |
169 | w.d *= L(0x1p228); |
170 | adjust = -1; |
171 | } |
172 | /* Otherwise x * y should just affect inexact |
173 | and nothing else. */ |
174 | } |
175 | x = u.d; |
176 | y = v.d; |
177 | z = w.d; |
178 | } |
179 | |
180 | /* Ensure correct sign of exact 0 + 0. */ |
181 | if (__glibc_unlikely ((x == 0 || y == 0) && z == 0)) |
182 | { |
183 | x = math_opt_barrier (x); |
184 | return x * y + z; |
185 | } |
186 | |
187 | fenv_t env; |
188 | feholdexcept (&env); |
189 | fesetround (FE_TONEAREST); |
190 | |
191 | /* Multiplication m1 + m2 = x * y using Dekker's algorithm. */ |
192 | #define C ((1LL << (LDBL_MANT_DIG + 1) / 2) + 1) |
193 | _Float128 x1 = x * C; |
194 | _Float128 y1 = y * C; |
195 | _Float128 m1 = x * y; |
196 | x1 = (x - x1) + x1; |
197 | y1 = (y - y1) + y1; |
198 | _Float128 x2 = x - x1; |
199 | _Float128 y2 = y - y1; |
200 | _Float128 m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2; |
201 | |
202 | /* Addition a1 + a2 = z + m1 using Knuth's algorithm. */ |
203 | _Float128 a1 = z + m1; |
204 | _Float128 t1 = a1 - z; |
205 | _Float128 t2 = a1 - t1; |
206 | t1 = m1 - t1; |
207 | t2 = z - t2; |
208 | _Float128 a2 = t1 + t2; |
209 | /* Ensure the arithmetic is not scheduled after feclearexcept call. */ |
210 | math_force_eval (m2); |
211 | math_force_eval (a2); |
212 | feclearexcept (FE_INEXACT); |
213 | |
214 | /* If the result is an exact zero, ensure it has the correct sign. */ |
215 | if (a1 == 0 && m2 == 0) |
216 | { |
217 | feupdateenv (&env); |
218 | /* Ensure that round-to-nearest value of z + m1 is not reused. */ |
219 | z = math_opt_barrier (z); |
220 | return z + m1; |
221 | } |
222 | |
223 | fesetround (FE_TOWARDZERO); |
224 | /* Perform m2 + a2 addition with round to odd. */ |
225 | u.d = a2 + m2; |
226 | |
227 | if (__glibc_likely (adjust == 0)) |
228 | { |
229 | if ((u.ieee.mantissa3 & 1) == 0 && u.ieee.exponent != 0x7fff) |
230 | u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0; |
231 | feupdateenv (&env); |
232 | /* Result is a1 + u.d. */ |
233 | return a1 + u.d; |
234 | } |
235 | else if (__glibc_likely (adjust > 0)) |
236 | { |
237 | if ((u.ieee.mantissa3 & 1) == 0 && u.ieee.exponent != 0x7fff) |
238 | u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0; |
239 | feupdateenv (&env); |
240 | /* Result is a1 + u.d, scaled up. */ |
241 | return (a1 + u.d) * L(0x1p113); |
242 | } |
243 | else |
244 | { |
245 | if ((u.ieee.mantissa3 & 1) == 0) |
246 | u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0; |
247 | v.d = a1 + u.d; |
248 | /* Ensure the addition is not scheduled after fetestexcept call. */ |
249 | math_force_eval (v.d); |
250 | int j = fetestexcept (FE_INEXACT) != 0; |
251 | feupdateenv (&env); |
252 | /* Ensure the following computations are performed in default rounding |
253 | mode instead of just reusing the round to zero computation. */ |
254 | asm volatile ("" : "=m" (u) : "m" (u)); |
255 | /* If a1 + u.d is exact, the only rounding happens during |
256 | scaling down. */ |
257 | if (j == 0) |
258 | return v.d * L(0x1p-228); |
259 | /* If result rounded to zero is not subnormal, no double |
260 | rounding will occur. */ |
261 | if (v.ieee.exponent > 228) |
262 | return (a1 + u.d) * L(0x1p-228); |
263 | /* If v.d * 0x1p-228L with round to zero is a subnormal above |
264 | or equal to LDBL_MIN / 2, then v.d * 0x1p-228L shifts mantissa |
265 | down just by 1 bit, which means v.ieee.mantissa3 |= j would |
266 | change the round bit, not sticky or guard bit. |
267 | v.d * 0x1p-228L never normalizes by shifting up, |
268 | so round bit plus sticky bit should be already enough |
269 | for proper rounding. */ |
270 | if (v.ieee.exponent == 228) |
271 | { |
272 | /* If the exponent would be in the normal range when |
273 | rounding to normal precision with unbounded exponent |
274 | range, the exact result is known and spurious underflows |
275 | must be avoided on systems detecting tininess after |
276 | rounding. */ |
277 | if (TININESS_AFTER_ROUNDING) |
278 | { |
279 | w.d = a1 + u.d; |
280 | if (w.ieee.exponent == 229) |
281 | return w.d * L(0x1p-228); |
282 | } |
283 | /* v.ieee.mantissa3 & 2 is LSB bit of the result before rounding, |
284 | v.ieee.mantissa3 & 1 is the round bit and j is our sticky |
285 | bit. */ |
286 | w.d = 0; |
287 | w.ieee.mantissa3 = ((v.ieee.mantissa3 & 3) << 1) | j; |
288 | w.ieee.negative = v.ieee.negative; |
289 | v.ieee.mantissa3 &= ~3U; |
290 | v.d *= L(0x1p-228); |
291 | w.d *= L(0x1p-2); |
292 | return v.d + w.d; |
293 | } |
294 | v.ieee.mantissa3 |= j; |
295 | return v.d * L(0x1p-228); |
296 | } |
297 | } |
298 | weak_alias (__fmal, fmal) |
299 | |