1 | /* expm1l.c |
2 | * |
3 | * Exponential function, minus 1 |
4 | * 128-bit long double precision |
5 | * |
6 | * |
7 | * |
8 | * SYNOPSIS: |
9 | * |
10 | * long double x, y, expm1l(); |
11 | * |
12 | * y = expm1l( x ); |
13 | * |
14 | * |
15 | * |
16 | * DESCRIPTION: |
17 | * |
18 | * Returns e (2.71828...) raised to the x power, minus one. |
19 | * |
20 | * Range reduction is accomplished by separating the argument |
21 | * into an integer k and fraction f such that |
22 | * |
23 | * x k f |
24 | * e = 2 e. |
25 | * |
26 | * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1 |
27 | * in the basic range [-0.5 ln 2, 0.5 ln 2]. |
28 | * |
29 | * |
30 | * ACCURACY: |
31 | * |
32 | * Relative error: |
33 | * arithmetic domain # trials peak rms |
34 | * IEEE -79,+MAXLOG 100,000 1.7e-34 4.5e-35 |
35 | * |
36 | */ |
37 | |
38 | /* Copyright 2001 by Stephen L. Moshier |
39 | |
40 | This library is free software; you can redistribute it and/or |
41 | modify it under the terms of the GNU Lesser General Public |
42 | License as published by the Free Software Foundation; either |
43 | version 2.1 of the License, or (at your option) any later version. |
44 | |
45 | This library is distributed in the hope that it will be useful, |
46 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
47 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
48 | Lesser General Public License for more details. |
49 | |
50 | You should have received a copy of the GNU Lesser General Public |
51 | License along with this library; if not, see |
52 | <http://www.gnu.org/licenses/>. */ |
53 | |
54 | |
55 | |
56 | #include <errno.h> |
57 | #include <float.h> |
58 | #include <math.h> |
59 | #include <math_private.h> |
60 | |
61 | /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x) |
62 | -.5 ln 2 < x < .5 ln 2 |
63 | Theoretical peak relative error = 8.1e-36 */ |
64 | |
65 | static const _Float128 |
66 | P0 = L(2.943520915569954073888921213330863757240E8), |
67 | P1 = L(-5.722847283900608941516165725053359168840E7), |
68 | P2 = L(8.944630806357575461578107295909719817253E6), |
69 | P3 = L(-7.212432713558031519943281748462837065308E5), |
70 | P4 = L(4.578962475841642634225390068461943438441E4), |
71 | P5 = L(-1.716772506388927649032068540558788106762E3), |
72 | P6 = L(4.401308817383362136048032038528753151144E1), |
73 | P7 = L(-4.888737542888633647784737721812546636240E-1), |
74 | Q0 = L(1.766112549341972444333352727998584753865E9), |
75 | Q1 = L(-7.848989743695296475743081255027098295771E8), |
76 | Q2 = L(1.615869009634292424463780387327037251069E8), |
77 | Q3 = L(-2.019684072836541751428967854947019415698E7), |
78 | Q4 = L(1.682912729190313538934190635536631941751E6), |
79 | Q5 = L(-9.615511549171441430850103489315371768998E4), |
80 | Q6 = L(3.697714952261803935521187272204485251835E3), |
81 | Q7 = L(-8.802340681794263968892934703309274564037E1), |
82 | /* Q8 = 1.000000000000000000000000000000000000000E0 */ |
83 | /* C1 + C2 = ln 2 */ |
84 | |
85 | C1 = L(6.93145751953125E-1), |
86 | C2 = L(1.428606820309417232121458176568075500134E-6), |
87 | /* ln 2^-114 */ |
88 | minarg = L(-7.9018778583833765273564461846232128760607E1), big = L(1e4932); |
89 | |
90 | |
91 | _Float128 |
92 | __expm1l (_Float128 x) |
93 | { |
94 | _Float128 px, qx, xx; |
95 | int32_t ix, sign; |
96 | ieee854_long_double_shape_type u; |
97 | int k; |
98 | |
99 | /* Detect infinity and NaN. */ |
100 | u.value = x; |
101 | ix = u.parts32.w0; |
102 | sign = ix & 0x80000000; |
103 | ix &= 0x7fffffff; |
104 | if (!sign && ix >= 0x40060000) |
105 | { |
106 | /* If num is positive and exp >= 6 use plain exp. */ |
107 | return __expl (x); |
108 | } |
109 | if (ix >= 0x7fff0000) |
110 | { |
111 | /* Infinity (which must be negative infinity). */ |
112 | if (((ix & 0xffff) | u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0) |
113 | return -1; |
114 | /* NaN. Invalid exception if signaling. */ |
115 | return x + x; |
116 | } |
117 | |
118 | /* expm1(+- 0) = +- 0. */ |
119 | if ((ix == 0) && (u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0) |
120 | return x; |
121 | |
122 | /* Minimum value. */ |
123 | if (x < minarg) |
124 | return (4.0/big - 1); |
125 | |
126 | /* Avoid internal underflow when result does not underflow, while |
127 | ensuring underflow (without returning a zero of the wrong sign) |
128 | when the result does underflow. */ |
129 | if (fabsl (x) < L(0x1p-113)) |
130 | { |
131 | math_check_force_underflow (x); |
132 | return x; |
133 | } |
134 | |
135 | /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */ |
136 | xx = C1 + C2; /* ln 2. */ |
137 | px = __floorl (0.5 + x / xx); |
138 | k = px; |
139 | /* remainder times ln 2 */ |
140 | x -= px * C1; |
141 | x -= px * C2; |
142 | |
143 | /* Approximate exp(remainder ln 2). */ |
144 | px = (((((((P7 * x |
145 | + P6) * x |
146 | + P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x; |
147 | |
148 | qx = (((((((x |
149 | + Q7) * x |
150 | + Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0; |
151 | |
152 | xx = x * x; |
153 | qx = x + (0.5 * xx + xx * px / qx); |
154 | |
155 | /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2). |
156 | |
157 | We have qx = exp(remainder ln 2) - 1, so |
158 | exp(x) - 1 = 2^k (qx + 1) - 1 |
159 | = 2^k qx + 2^k - 1. */ |
160 | |
161 | px = __ldexpl (1, k); |
162 | x = px * qx + (px - 1.0); |
163 | return x; |
164 | } |
165 | libm_hidden_def (__expm1l) |
166 | weak_alias (__expm1l, expm1l) |
167 | |