1 | /* |
2 | * ==================================================== |
3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
4 | * |
5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
6 | * Permission to use, copy, modify, and distribute this |
7 | * software is freely granted, provided that this notice |
8 | * is preserved. |
9 | * ==================================================== |
10 | */ |
11 | |
12 | /* Modifications and expansions for 128-bit long double are |
13 | Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> |
14 | and are incorporated herein by permission of the author. The author |
15 | reserves the right to distribute this material elsewhere under different |
16 | copying permissions. These modifications are distributed here under |
17 | the following terms: |
18 | |
19 | This library is free software; you can redistribute it and/or |
20 | modify it under the terms of the GNU Lesser General Public |
21 | License as published by the Free Software Foundation; either |
22 | version 2.1 of the License, or (at your option) any later version. |
23 | |
24 | This library is distributed in the hope that it will be useful, |
25 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
26 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
27 | Lesser General Public License for more details. |
28 | |
29 | You should have received a copy of the GNU Lesser General Public |
30 | License along with this library; if not, see |
31 | <http://www.gnu.org/licenses/>. */ |
32 | |
33 | /* double erf(double x) |
34 | * double erfc(double x) |
35 | * x |
36 | * 2 |\ |
37 | * erf(x) = --------- | exp(-t*t)dt |
38 | * sqrt(pi) \| |
39 | * 0 |
40 | * |
41 | * erfc(x) = 1-erf(x) |
42 | * Note that |
43 | * erf(-x) = -erf(x) |
44 | * erfc(-x) = 2 - erfc(x) |
45 | * |
46 | * Method: |
47 | * 1. erf(x) = x + x*R(x^2) for |x| in [0, 7/8] |
48 | * Remark. The formula is derived by noting |
49 | * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) |
50 | * and that |
51 | * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 |
52 | * is close to one. |
53 | * |
54 | * 1a. erf(x) = 1 - erfc(x), for |x| > 1.0 |
55 | * erfc(x) = 1 - erf(x) if |x| < 1/4 |
56 | * |
57 | * 2. For |x| in [7/8, 1], let s = |x| - 1, and |
58 | * c = 0.84506291151 rounded to single (24 bits) |
59 | * erf(s + c) = sign(x) * (c + P1(s)/Q1(s)) |
60 | * Remark: here we use the taylor series expansion at x=1. |
61 | * erf(1+s) = erf(1) + s*Poly(s) |
62 | * = 0.845.. + P1(s)/Q1(s) |
63 | * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] |
64 | * |
65 | * 3. For x in [1/4, 5/4], |
66 | * erfc(s + const) = erfc(const) + s P1(s)/Q1(s) |
67 | * for const = 1/4, 3/8, ..., 9/8 |
68 | * and 0 <= s <= 1/8 . |
69 | * |
70 | * 4. For x in [5/4, 107], |
71 | * erfc(x) = (1/x)*exp(-x*x-0.5625 + R(z)) |
72 | * z=1/x^2 |
73 | * The interval is partitioned into several segments |
74 | * of width 1/8 in 1/x. |
75 | * |
76 | * Note1: |
77 | * To compute exp(-x*x-0.5625+R/S), let s be a single |
78 | * precision number and s := x; then |
79 | * -x*x = -s*s + (s-x)*(s+x) |
80 | * exp(-x*x-0.5626+R/S) = |
81 | * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); |
82 | * Note2: |
83 | * Here 4 and 5 make use of the asymptotic series |
84 | * exp(-x*x) |
85 | * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) |
86 | * x*sqrt(pi) |
87 | * |
88 | * 5. For inf > x >= 107 |
89 | * erf(x) = sign(x) *(1 - tiny) (raise inexact) |
90 | * erfc(x) = tiny*tiny (raise underflow) if x > 0 |
91 | * = 2 - tiny if x<0 |
92 | * |
93 | * 7. Special case: |
94 | * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, |
95 | * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, |
96 | * erfc/erf(NaN) is NaN |
97 | */ |
98 | |
99 | #include <errno.h> |
100 | #include <float.h> |
101 | #include <math.h> |
102 | #include <math_private.h> |
103 | |
104 | /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */ |
105 | |
106 | static _Float128 |
107 | neval (_Float128 x, const _Float128 *p, int n) |
108 | { |
109 | _Float128 y; |
110 | |
111 | p += n; |
112 | y = *p--; |
113 | do |
114 | { |
115 | y = y * x + *p--; |
116 | } |
117 | while (--n > 0); |
118 | return y; |
119 | } |
120 | |
121 | |
122 | /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */ |
123 | |
124 | static _Float128 |
125 | deval (_Float128 x, const _Float128 *p, int n) |
126 | { |
127 | _Float128 y; |
128 | |
129 | p += n; |
130 | y = x + *p--; |
131 | do |
132 | { |
133 | y = y * x + *p--; |
134 | } |
135 | while (--n > 0); |
136 | return y; |
137 | } |
138 | |
139 | |
140 | |
141 | static const _Float128 |
142 | tiny = L(1e-4931), |
143 | one = 1, |
144 | two = 2, |
145 | /* 2/sqrt(pi) - 1 */ |
146 | efx = L(1.2837916709551257389615890312154517168810E-1); |
147 | |
148 | |
149 | /* erf(x) = x + x R(x^2) |
150 | 0 <= x <= 7/8 |
151 | Peak relative error 1.8e-35 */ |
152 | #define NTN1 8 |
153 | static const _Float128 TN1[NTN1 + 1] = |
154 | { |
155 | L(-3.858252324254637124543172907442106422373E10), |
156 | L(9.580319248590464682316366876952214879858E10), |
157 | L(1.302170519734879977595901236693040544854E10), |
158 | L(2.922956950426397417800321486727032845006E9), |
159 | L(1.764317520783319397868923218385468729799E8), |
160 | L(1.573436014601118630105796794840834145120E7), |
161 | L(4.028077380105721388745632295157816229289E5), |
162 | L(1.644056806467289066852135096352853491530E4), |
163 | L(3.390868480059991640235675479463287886081E1) |
164 | }; |
165 | #define NTD1 8 |
166 | static const _Float128 TD1[NTD1 + 1] = |
167 | { |
168 | L(-3.005357030696532927149885530689529032152E11), |
169 | L(-1.342602283126282827411658673839982164042E11), |
170 | L(-2.777153893355340961288511024443668743399E10), |
171 | L(-3.483826391033531996955620074072768276974E9), |
172 | L(-2.906321047071299585682722511260895227921E8), |
173 | L(-1.653347985722154162439387878512427542691E7), |
174 | L(-6.245520581562848778466500301865173123136E5), |
175 | L(-1.402124304177498828590239373389110545142E4), |
176 | L(-1.209368072473510674493129989468348633579E2) |
177 | /* 1.0E0 */ |
178 | }; |
179 | |
180 | |
181 | /* erf(z+1) = erf_const + P(z)/Q(z) |
182 | -.125 <= z <= 0 |
183 | Peak relative error 7.3e-36 */ |
184 | static const _Float128 erf_const = L(0.845062911510467529296875); |
185 | #define NTN2 8 |
186 | static const _Float128 TN2[NTN2 + 1] = |
187 | { |
188 | L(-4.088889697077485301010486931817357000235E1), |
189 | L(7.157046430681808553842307502826960051036E3), |
190 | L(-2.191561912574409865550015485451373731780E3), |
191 | L(2.180174916555316874988981177654057337219E3), |
192 | L(2.848578658049670668231333682379720943455E2), |
193 | L(1.630362490952512836762810462174798925274E2), |
194 | L(6.317712353961866974143739396865293596895E0), |
195 | L(2.450441034183492434655586496522857578066E1), |
196 | L(5.127662277706787664956025545897050896203E-1) |
197 | }; |
198 | #define NTD2 8 |
199 | static const _Float128 TD2[NTD2 + 1] = |
200 | { |
201 | L(1.731026445926834008273768924015161048885E4), |
202 | L(1.209682239007990370796112604286048173750E4), |
203 | L(1.160950290217993641320602282462976163857E4), |
204 | L(5.394294645127126577825507169061355698157E3), |
205 | L(2.791239340533632669442158497532521776093E3), |
206 | L(8.989365571337319032943005387378993827684E2), |
207 | L(2.974016493766349409725385710897298069677E2), |
208 | L(6.148192754590376378740261072533527271947E1), |
209 | L(1.178502892490738445655468927408440847480E1) |
210 | /* 1.0E0 */ |
211 | }; |
212 | |
213 | |
214 | /* erfc(x + 0.25) = erfc(0.25) + x R(x) |
215 | 0 <= x < 0.125 |
216 | Peak relative error 1.4e-35 */ |
217 | #define NRNr13 8 |
218 | static const _Float128 RNr13[NRNr13 + 1] = |
219 | { |
220 | L(-2.353707097641280550282633036456457014829E3), |
221 | L(3.871159656228743599994116143079870279866E2), |
222 | L(-3.888105134258266192210485617504098426679E2), |
223 | L(-2.129998539120061668038806696199343094971E1), |
224 | L(-8.125462263594034672468446317145384108734E1), |
225 | L(8.151549093983505810118308635926270319660E0), |
226 | L(-5.033362032729207310462422357772568553670E0), |
227 | L(-4.253956621135136090295893547735851168471E-2), |
228 | L(-8.098602878463854789780108161581050357814E-2) |
229 | }; |
230 | #define NRDr13 7 |
231 | static const _Float128 RDr13[NRDr13 + 1] = |
232 | { |
233 | L(2.220448796306693503549505450626652881752E3), |
234 | L(1.899133258779578688791041599040951431383E2), |
235 | L(1.061906712284961110196427571557149268454E3), |
236 | L(7.497086072306967965180978101974566760042E1), |
237 | L(2.146796115662672795876463568170441327274E2), |
238 | L(1.120156008362573736664338015952284925592E1), |
239 | L(2.211014952075052616409845051695042741074E1), |
240 | L(6.469655675326150785692908453094054988938E-1) |
241 | /* 1.0E0 */ |
242 | }; |
243 | /* erfc(0.25) = C13a + C13b to extra precision. */ |
244 | static const _Float128 C13a = L(0.723663330078125); |
245 | static const _Float128 C13b = L(1.0279753638067014931732235184287934646022E-5); |
246 | |
247 | |
248 | /* erfc(x + 0.375) = erfc(0.375) + x R(x) |
249 | 0 <= x < 0.125 |
250 | Peak relative error 1.2e-35 */ |
251 | #define NRNr14 8 |
252 | static const _Float128 RNr14[NRNr14 + 1] = |
253 | { |
254 | L(-2.446164016404426277577283038988918202456E3), |
255 | L(6.718753324496563913392217011618096698140E2), |
256 | L(-4.581631138049836157425391886957389240794E2), |
257 | L(-2.382844088987092233033215402335026078208E1), |
258 | L(-7.119237852400600507927038680970936336458E1), |
259 | L(1.313609646108420136332418282286454287146E1), |
260 | L(-6.188608702082264389155862490056401365834E0), |
261 | L(-2.787116601106678287277373011101132659279E-2), |
262 | L(-2.230395570574153963203348263549700967918E-2) |
263 | }; |
264 | #define NRDr14 7 |
265 | static const _Float128 RDr14[NRDr14 + 1] = |
266 | { |
267 | L(2.495187439241869732696223349840963702875E3), |
268 | L(2.503549449872925580011284635695738412162E2), |
269 | L(1.159033560988895481698051531263861842461E3), |
270 | L(9.493751466542304491261487998684383688622E1), |
271 | L(2.276214929562354328261422263078480321204E2), |
272 | L(1.367697521219069280358984081407807931847E1), |
273 | L(2.276988395995528495055594829206582732682E1), |
274 | L(7.647745753648996559837591812375456641163E-1) |
275 | /* 1.0E0 */ |
276 | }; |
277 | /* erfc(0.375) = C14a + C14b to extra precision. */ |
278 | static const _Float128 C14a = L(0.5958709716796875); |
279 | static const _Float128 C14b = L(1.2118885490201676174914080878232469565953E-5); |
280 | |
281 | /* erfc(x + 0.5) = erfc(0.5) + x R(x) |
282 | 0 <= x < 0.125 |
283 | Peak relative error 4.7e-36 */ |
284 | #define NRNr15 8 |
285 | static const _Float128 RNr15[NRNr15 + 1] = |
286 | { |
287 | L(-2.624212418011181487924855581955853461925E3), |
288 | L(8.473828904647825181073831556439301342756E2), |
289 | L(-5.286207458628380765099405359607331669027E2), |
290 | L(-3.895781234155315729088407259045269652318E1), |
291 | L(-6.200857908065163618041240848728398496256E1), |
292 | L(1.469324610346924001393137895116129204737E1), |
293 | L(-6.961356525370658572800674953305625578903E0), |
294 | L(5.145724386641163809595512876629030548495E-3), |
295 | L(1.990253655948179713415957791776180406812E-2) |
296 | }; |
297 | #define NRDr15 7 |
298 | static const _Float128 RDr15[NRDr15 + 1] = |
299 | { |
300 | L(2.986190760847974943034021764693341524962E3), |
301 | L(5.288262758961073066335410218650047725985E2), |
302 | L(1.363649178071006978355113026427856008978E3), |
303 | L(1.921707975649915894241864988942255320833E2), |
304 | L(2.588651100651029023069013885900085533226E2), |
305 | L(2.628752920321455606558942309396855629459E1), |
306 | L(2.455649035885114308978333741080991380610E1), |
307 | L(1.378826653595128464383127836412100939126E0) |
308 | /* 1.0E0 */ |
309 | }; |
310 | /* erfc(0.5) = C15a + C15b to extra precision. */ |
311 | static const _Float128 C15a = L(0.4794921875); |
312 | static const _Float128 C15b = L(7.9346869534623172533461080354712635484242E-6); |
313 | |
314 | /* erfc(x + 0.625) = erfc(0.625) + x R(x) |
315 | 0 <= x < 0.125 |
316 | Peak relative error 5.1e-36 */ |
317 | #define NRNr16 8 |
318 | static const _Float128 RNr16[NRNr16 + 1] = |
319 | { |
320 | L(-2.347887943200680563784690094002722906820E3), |
321 | L(8.008590660692105004780722726421020136482E2), |
322 | L(-5.257363310384119728760181252132311447963E2), |
323 | L(-4.471737717857801230450290232600243795637E1), |
324 | L(-4.849540386452573306708795324759300320304E1), |
325 | L(1.140885264677134679275986782978655952843E1), |
326 | L(-6.731591085460269447926746876983786152300E0), |
327 | L(1.370831653033047440345050025876085121231E-1), |
328 | L(2.022958279982138755020825717073966576670E-2), |
329 | }; |
330 | #define NRDr16 7 |
331 | static const _Float128 RDr16[NRDr16 + 1] = |
332 | { |
333 | L(3.075166170024837215399323264868308087281E3), |
334 | L(8.730468942160798031608053127270430036627E2), |
335 | L(1.458472799166340479742581949088453244767E3), |
336 | L(3.230423687568019709453130785873540386217E2), |
337 | L(2.804009872719893612081109617983169474655E2), |
338 | L(4.465334221323222943418085830026979293091E1), |
339 | L(2.612723259683205928103787842214809134746E1), |
340 | L(2.341526751185244109722204018543276124997E0), |
341 | /* 1.0E0 */ |
342 | }; |
343 | /* erfc(0.625) = C16a + C16b to extra precision. */ |
344 | static const _Float128 C16a = L(0.3767547607421875); |
345 | static const _Float128 C16b = L(4.3570693945275513594941232097252997287766E-6); |
346 | |
347 | /* erfc(x + 0.75) = erfc(0.75) + x R(x) |
348 | 0 <= x < 0.125 |
349 | Peak relative error 1.7e-35 */ |
350 | #define NRNr17 8 |
351 | static const _Float128 RNr17[NRNr17 + 1] = |
352 | { |
353 | L(-1.767068734220277728233364375724380366826E3), |
354 | L(6.693746645665242832426891888805363898707E2), |
355 | L(-4.746224241837275958126060307406616817753E2), |
356 | L(-2.274160637728782675145666064841883803196E1), |
357 | L(-3.541232266140939050094370552538987982637E1), |
358 | L(6.988950514747052676394491563585179503865E0), |
359 | L(-5.807687216836540830881352383529281215100E0), |
360 | L(3.631915988567346438830283503729569443642E-1), |
361 | L(-1.488945487149634820537348176770282391202E-2) |
362 | }; |
363 | #define NRDr17 7 |
364 | static const _Float128 RDr17[NRDr17 + 1] = |
365 | { |
366 | L(2.748457523498150741964464942246913394647E3), |
367 | L(1.020213390713477686776037331757871252652E3), |
368 | L(1.388857635935432621972601695296561952738E3), |
369 | L(3.903363681143817750895999579637315491087E2), |
370 | L(2.784568344378139499217928969529219886578E2), |
371 | L(5.555800830216764702779238020065345401144E1), |
372 | L(2.646215470959050279430447295801291168941E1), |
373 | L(2.984905282103517497081766758550112011265E0), |
374 | /* 1.0E0 */ |
375 | }; |
376 | /* erfc(0.75) = C17a + C17b to extra precision. */ |
377 | static const _Float128 C17a = L(0.2888336181640625); |
378 | static const _Float128 C17b = L(1.0748182422368401062165408589222625794046E-5); |
379 | |
380 | |
381 | /* erfc(x + 0.875) = erfc(0.875) + x R(x) |
382 | 0 <= x < 0.125 |
383 | Peak relative error 2.2e-35 */ |
384 | #define NRNr18 8 |
385 | static const _Float128 RNr18[NRNr18 + 1] = |
386 | { |
387 | L(-1.342044899087593397419622771847219619588E3), |
388 | L(6.127221294229172997509252330961641850598E2), |
389 | L(-4.519821356522291185621206350470820610727E2), |
390 | L(1.223275177825128732497510264197915160235E1), |
391 | L(-2.730789571382971355625020710543532867692E1), |
392 | L(4.045181204921538886880171727755445395862E0), |
393 | L(-4.925146477876592723401384464691452700539E0), |
394 | L(5.933878036611279244654299924101068088582E-1), |
395 | L(-5.557645435858916025452563379795159124753E-2) |
396 | }; |
397 | #define NRDr18 7 |
398 | static const _Float128 RDr18[NRDr18 + 1] = |
399 | { |
400 | L(2.557518000661700588758505116291983092951E3), |
401 | L(1.070171433382888994954602511991940418588E3), |
402 | L(1.344842834423493081054489613250688918709E3), |
403 | L(4.161144478449381901208660598266288188426E2), |
404 | L(2.763670252219855198052378138756906980422E2), |
405 | L(5.998153487868943708236273854747564557632E1), |
406 | L(2.657695108438628847733050476209037025318E1), |
407 | L(3.252140524394421868923289114410336976512E0), |
408 | /* 1.0E0 */ |
409 | }; |
410 | /* erfc(0.875) = C18a + C18b to extra precision. */ |
411 | static const _Float128 C18a = L(0.215911865234375); |
412 | static const _Float128 C18b = L(1.3073705765341685464282101150637224028267E-5); |
413 | |
414 | /* erfc(x + 1.0) = erfc(1.0) + x R(x) |
415 | 0 <= x < 0.125 |
416 | Peak relative error 1.6e-35 */ |
417 | #define NRNr19 8 |
418 | static const _Float128 RNr19[NRNr19 + 1] = |
419 | { |
420 | L(-1.139180936454157193495882956565663294826E3), |
421 | L(6.134903129086899737514712477207945973616E2), |
422 | L(-4.628909024715329562325555164720732868263E2), |
423 | L(4.165702387210732352564932347500364010833E1), |
424 | L(-2.286979913515229747204101330405771801610E1), |
425 | L(1.870695256449872743066783202326943667722E0), |
426 | L(-4.177486601273105752879868187237000032364E0), |
427 | L(7.533980372789646140112424811291782526263E-1), |
428 | L(-8.629945436917752003058064731308767664446E-2) |
429 | }; |
430 | #define NRDr19 7 |
431 | static const _Float128 RDr19[NRDr19 + 1] = |
432 | { |
433 | L(2.744303447981132701432716278363418643778E3), |
434 | L(1.266396359526187065222528050591302171471E3), |
435 | L(1.466739461422073351497972255511919814273E3), |
436 | L(4.868710570759693955597496520298058147162E2), |
437 | L(2.993694301559756046478189634131722579643E2), |
438 | L(6.868976819510254139741559102693828237440E1), |
439 | L(2.801505816247677193480190483913753613630E1), |
440 | L(3.604439909194350263552750347742663954481E0), |
441 | /* 1.0E0 */ |
442 | }; |
443 | /* erfc(1.0) = C19a + C19b to extra precision. */ |
444 | static const _Float128 C19a = L(0.15728759765625); |
445 | static const _Float128 C19b = L(1.1609394035130658779364917390740703933002E-5); |
446 | |
447 | /* erfc(x + 1.125) = erfc(1.125) + x R(x) |
448 | 0 <= x < 0.125 |
449 | Peak relative error 3.6e-36 */ |
450 | #define NRNr20 8 |
451 | static const _Float128 RNr20[NRNr20 + 1] = |
452 | { |
453 | L(-9.652706916457973956366721379612508047640E2), |
454 | L(5.577066396050932776683469951773643880634E2), |
455 | L(-4.406335508848496713572223098693575485978E2), |
456 | L(5.202893466490242733570232680736966655434E1), |
457 | L(-1.931311847665757913322495948705563937159E1), |
458 | L(-9.364318268748287664267341457164918090611E-2), |
459 | L(-3.306390351286352764891355375882586201069E0), |
460 | L(7.573806045289044647727613003096916516475E-1), |
461 | L(-9.611744011489092894027478899545635991213E-2) |
462 | }; |
463 | #define NRDr20 7 |
464 | static const _Float128 RDr20[NRDr20 + 1] = |
465 | { |
466 | L(3.032829629520142564106649167182428189014E3), |
467 | L(1.659648470721967719961167083684972196891E3), |
468 | L(1.703545128657284619402511356932569292535E3), |
469 | L(6.393465677731598872500200253155257708763E2), |
470 | L(3.489131397281030947405287112726059221934E2), |
471 | L(8.848641738570783406484348434387611713070E1), |
472 | L(3.132269062552392974833215844236160958502E1), |
473 | L(4.430131663290563523933419966185230513168E0) |
474 | /* 1.0E0 */ |
475 | }; |
476 | /* erfc(1.125) = C20a + C20b to extra precision. */ |
477 | static const _Float128 C20a = L(0.111602783203125); |
478 | static const _Float128 C20b = L(8.9850951672359304215530728365232161564636E-6); |
479 | |
480 | /* erfc(1/x) = 1/x exp (-1/x^2 - 0.5625 + R(1/x^2)) |
481 | 7/8 <= 1/x < 1 |
482 | Peak relative error 1.4e-35 */ |
483 | #define NRNr8 9 |
484 | static const _Float128 RNr8[NRNr8 + 1] = |
485 | { |
486 | L(3.587451489255356250759834295199296936784E1), |
487 | L(5.406249749087340431871378009874875889602E2), |
488 | L(2.931301290625250886238822286506381194157E3), |
489 | L(7.359254185241795584113047248898753470923E3), |
490 | L(9.201031849810636104112101947312492532314E3), |
491 | L(5.749697096193191467751650366613289284777E3), |
492 | L(1.710415234419860825710780802678697889231E3), |
493 | L(2.150753982543378580859546706243022719599E2), |
494 | L(8.740953582272147335100537849981160931197E0), |
495 | L(4.876422978828717219629814794707963640913E-2) |
496 | }; |
497 | #define NRDr8 8 |
498 | static const _Float128 RDr8[NRDr8 + 1] = |
499 | { |
500 | L(6.358593134096908350929496535931630140282E1), |
501 | L(9.900253816552450073757174323424051765523E2), |
502 | L(5.642928777856801020545245437089490805186E3), |
503 | L(1.524195375199570868195152698617273739609E4), |
504 | L(2.113829644500006749947332935305800887345E4), |
505 | L(1.526438562626465706267943737310282977138E4), |
506 | L(5.561370922149241457131421914140039411782E3), |
507 | L(9.394035530179705051609070428036834496942E2), |
508 | L(6.147019596150394577984175188032707343615E1) |
509 | /* 1.0E0 */ |
510 | }; |
511 | |
512 | /* erfc(1/x) = 1/x exp (-1/x^2 - 0.5625 + R(1/x^2)) |
513 | 0.75 <= 1/x <= 0.875 |
514 | Peak relative error 2.0e-36 */ |
515 | #define NRNr7 9 |
516 | static const _Float128 RNr7[NRNr7 + 1] = |
517 | { |
518 | L(1.686222193385987690785945787708644476545E1), |
519 | L(1.178224543567604215602418571310612066594E3), |
520 | L(1.764550584290149466653899886088166091093E4), |
521 | L(1.073758321890334822002849369898232811561E5), |
522 | L(3.132840749205943137619839114451290324371E5), |
523 | L(4.607864939974100224615527007793867585915E5), |
524 | L(3.389781820105852303125270837910972384510E5), |
525 | L(1.174042187110565202875011358512564753399E5), |
526 | L(1.660013606011167144046604892622504338313E4), |
527 | L(6.700393957480661937695573729183733234400E2) |
528 | }; |
529 | #define NRDr7 9 |
530 | static const _Float128 RDr7[NRDr7 + 1] = |
531 | { |
532 | L(-1.709305024718358874701575813642933561169E3), |
533 | L(-3.280033887481333199580464617020514788369E4), |
534 | L(-2.345284228022521885093072363418750835214E5), |
535 | L(-8.086758123097763971926711729242327554917E5), |
536 | L(-1.456900414510108718402423999575992450138E6), |
537 | L(-1.391654264881255068392389037292702041855E6), |
538 | L(-6.842360801869939983674527468509852583855E5), |
539 | L(-1.597430214446573566179675395199807533371E5), |
540 | L(-1.488876130609876681421645314851760773480E4), |
541 | L(-3.511762950935060301403599443436465645703E2) |
542 | /* 1.0E0 */ |
543 | }; |
544 | |
545 | /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) |
546 | 5/8 <= 1/x < 3/4 |
547 | Peak relative error 1.9e-35 */ |
548 | #define NRNr6 9 |
549 | static const _Float128 RNr6[NRNr6 + 1] = |
550 | { |
551 | L(1.642076876176834390623842732352935761108E0), |
552 | L(1.207150003611117689000664385596211076662E2), |
553 | L(2.119260779316389904742873816462800103939E3), |
554 | L(1.562942227734663441801452930916044224174E4), |
555 | L(5.656779189549710079988084081145693580479E4), |
556 | L(1.052166241021481691922831746350942786299E5), |
557 | L(9.949798524786000595621602790068349165758E4), |
558 | L(4.491790734080265043407035220188849562856E4), |
559 | L(8.377074098301530326270432059434791287601E3), |
560 | L(4.506934806567986810091824791963991057083E2) |
561 | }; |
562 | #define NRDr6 9 |
563 | static const _Float128 RDr6[NRDr6 + 1] = |
564 | { |
565 | L(-1.664557643928263091879301304019826629067E2), |
566 | L(-3.800035902507656624590531122291160668452E3), |
567 | L(-3.277028191591734928360050685359277076056E4), |
568 | L(-1.381359471502885446400589109566587443987E5), |
569 | L(-3.082204287382581873532528989283748656546E5), |
570 | L(-3.691071488256738343008271448234631037095E5), |
571 | L(-2.300482443038349815750714219117566715043E5), |
572 | L(-6.873955300927636236692803579555752171530E4), |
573 | L(-8.262158817978334142081581542749986845399E3), |
574 | L(-2.517122254384430859629423488157361983661E2) |
575 | /* 1.00 */ |
576 | }; |
577 | |
578 | /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) |
579 | 1/2 <= 1/x < 5/8 |
580 | Peak relative error 4.6e-36 */ |
581 | #define NRNr5 10 |
582 | static const _Float128 RNr5[NRNr5 + 1] = |
583 | { |
584 | L(-3.332258927455285458355550878136506961608E-3), |
585 | L(-2.697100758900280402659586595884478660721E-1), |
586 | L(-6.083328551139621521416618424949137195536E0), |
587 | L(-6.119863528983308012970821226810162441263E1), |
588 | L(-3.176535282475593173248810678636522589861E2), |
589 | L(-8.933395175080560925809992467187963260693E2), |
590 | L(-1.360019508488475978060917477620199499560E3), |
591 | L(-1.075075579828188621541398761300910213280E3), |
592 | L(-4.017346561586014822824459436695197089916E2), |
593 | L(-5.857581368145266249509589726077645791341E1), |
594 | L(-2.077715925587834606379119585995758954399E0) |
595 | }; |
596 | #define NRDr5 9 |
597 | static const _Float128 RDr5[NRDr5 + 1] = |
598 | { |
599 | L(3.377879570417399341550710467744693125385E-1), |
600 | L(1.021963322742390735430008860602594456187E1), |
601 | L(1.200847646592942095192766255154827011939E2), |
602 | L(7.118915528142927104078182863387116942836E2), |
603 | L(2.318159380062066469386544552429625026238E3), |
604 | L(4.238729853534009221025582008928765281620E3), |
605 | L(4.279114907284825886266493994833515580782E3), |
606 | L(2.257277186663261531053293222591851737504E3), |
607 | L(5.570475501285054293371908382916063822957E2), |
608 | L(5.142189243856288981145786492585432443560E1) |
609 | /* 1.0E0 */ |
610 | }; |
611 | |
612 | /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) |
613 | 3/8 <= 1/x < 1/2 |
614 | Peak relative error 2.0e-36 */ |
615 | #define NRNr4 10 |
616 | static const _Float128 RNr4[NRNr4 + 1] = |
617 | { |
618 | L(3.258530712024527835089319075288494524465E-3), |
619 | L(2.987056016877277929720231688689431056567E-1), |
620 | L(8.738729089340199750734409156830371528862E0), |
621 | L(1.207211160148647782396337792426311125923E2), |
622 | L(8.997558632489032902250523945248208224445E2), |
623 | L(3.798025197699757225978410230530640879762E3), |
624 | L(9.113203668683080975637043118209210146846E3), |
625 | L(1.203285891339933238608683715194034900149E4), |
626 | L(8.100647057919140328536743641735339740855E3), |
627 | L(2.383888249907144945837976899822927411769E3), |
628 | L(2.127493573166454249221983582495245662319E2) |
629 | }; |
630 | #define NRDr4 10 |
631 | static const _Float128 RDr4[NRDr4 + 1] = |
632 | { |
633 | L(-3.303141981514540274165450687270180479586E-1), |
634 | L(-1.353768629363605300707949368917687066724E1), |
635 | L(-2.206127630303621521950193783894598987033E2), |
636 | L(-1.861800338758066696514480386180875607204E3), |
637 | L(-8.889048775872605708249140016201753255599E3), |
638 | L(-2.465888106627948210478692168261494857089E4), |
639 | L(-3.934642211710774494879042116768390014289E4), |
640 | L(-3.455077258242252974937480623730228841003E4), |
641 | L(-1.524083977439690284820586063729912653196E4), |
642 | L(-2.810541887397984804237552337349093953857E3), |
643 | L(-1.343929553541159933824901621702567066156E2) |
644 | /* 1.0E0 */ |
645 | }; |
646 | |
647 | /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) |
648 | 1/4 <= 1/x < 3/8 |
649 | Peak relative error 8.4e-37 */ |
650 | #define NRNr3 11 |
651 | static const _Float128 RNr3[NRNr3 + 1] = |
652 | { |
653 | L(-1.952401126551202208698629992497306292987E-6), |
654 | L(-2.130881743066372952515162564941682716125E-4), |
655 | L(-8.376493958090190943737529486107282224387E-3), |
656 | L(-1.650592646560987700661598877522831234791E-1), |
657 | L(-1.839290818933317338111364667708678163199E0), |
658 | L(-1.216278715570882422410442318517814388470E1), |
659 | L(-4.818759344462360427612133632533779091386E1), |
660 | L(-1.120994661297476876804405329172164436784E2), |
661 | L(-1.452850765662319264191141091859300126931E2), |
662 | L(-9.485207851128957108648038238656777241333E1), |
663 | L(-2.563663855025796641216191848818620020073E1), |
664 | L(-1.787995944187565676837847610706317833247E0) |
665 | }; |
666 | #define NRDr3 10 |
667 | static const _Float128 RDr3[NRDr3 + 1] = |
668 | { |
669 | L(1.979130686770349481460559711878399476903E-4), |
670 | L(1.156941716128488266238105813374635099057E-2), |
671 | L(2.752657634309886336431266395637285974292E-1), |
672 | L(3.482245457248318787349778336603569327521E0), |
673 | L(2.569347069372696358578399521203959253162E1), |
674 | L(1.142279000180457419740314694631879921561E2), |
675 | L(3.056503977190564294341422623108332700840E2), |
676 | L(4.780844020923794821656358157128719184422E2), |
677 | L(4.105972727212554277496256802312730410518E2), |
678 | L(1.724072188063746970865027817017067646246E2), |
679 | L(2.815939183464818198705278118326590370435E1) |
680 | /* 1.0E0 */ |
681 | }; |
682 | |
683 | /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) |
684 | 1/8 <= 1/x < 1/4 |
685 | Peak relative error 1.5e-36 */ |
686 | #define NRNr2 11 |
687 | static const _Float128 RNr2[NRNr2 + 1] = |
688 | { |
689 | L(-2.638914383420287212401687401284326363787E-8), |
690 | L(-3.479198370260633977258201271399116766619E-6), |
691 | L(-1.783985295335697686382487087502222519983E-4), |
692 | L(-4.777876933122576014266349277217559356276E-3), |
693 | L(-7.450634738987325004070761301045014986520E-2), |
694 | L(-7.068318854874733315971973707247467326619E-1), |
695 | L(-4.113919921935944795764071670806867038732E0), |
696 | L(-1.440447573226906222417767283691888875082E1), |
697 | L(-2.883484031530718428417168042141288943905E1), |
698 | L(-2.990886974328476387277797361464279931446E1), |
699 | L(-1.325283914915104866248279787536128997331E1), |
700 | L(-1.572436106228070195510230310658206154374E0) |
701 | }; |
702 | #define NRDr2 10 |
703 | static const _Float128 RDr2[NRDr2 + 1] = |
704 | { |
705 | L(2.675042728136731923554119302571867799673E-6), |
706 | L(2.170997868451812708585443282998329996268E-4), |
707 | L(7.249969752687540289422684951196241427445E-3), |
708 | L(1.302040375859768674620410563307838448508E-1), |
709 | L(1.380202483082910888897654537144485285549E0), |
710 | L(8.926594113174165352623847870299170069350E0), |
711 | L(3.521089584782616472372909095331572607185E1), |
712 | L(8.233547427533181375185259050330809105570E1), |
713 | L(1.072971579885803033079469639073292840135E2), |
714 | L(6.943803113337964469736022094105143158033E1), |
715 | L(1.775695341031607738233608307835017282662E1) |
716 | /* 1.0E0 */ |
717 | }; |
718 | |
719 | /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) |
720 | 1/128 <= 1/x < 1/8 |
721 | Peak relative error 2.2e-36 */ |
722 | #define NRNr1 9 |
723 | static const _Float128 RNr1[NRNr1 + 1] = |
724 | { |
725 | L(-4.250780883202361946697751475473042685782E-8), |
726 | L(-5.375777053288612282487696975623206383019E-6), |
727 | L(-2.573645949220896816208565944117382460452E-4), |
728 | L(-6.199032928113542080263152610799113086319E-3), |
729 | L(-8.262721198693404060380104048479916247786E-2), |
730 | L(-6.242615227257324746371284637695778043982E-1), |
731 | L(-2.609874739199595400225113299437099626386E0), |
732 | L(-5.581967563336676737146358534602770006970E0), |
733 | L(-5.124398923356022609707490956634280573882E0), |
734 | L(-1.290865243944292370661544030414667556649E0) |
735 | }; |
736 | #define NRDr1 8 |
737 | static const _Float128 RDr1[NRDr1 + 1] = |
738 | { |
739 | L(4.308976661749509034845251315983612976224E-6), |
740 | L(3.265390126432780184125233455960049294580E-4), |
741 | L(9.811328839187040701901866531796570418691E-3), |
742 | L(1.511222515036021033410078631914783519649E-1), |
743 | L(1.289264341917429958858379585970225092274E0), |
744 | L(6.147640356182230769548007536914983522270E0), |
745 | L(1.573966871337739784518246317003956180750E1), |
746 | L(1.955534123435095067199574045529218238263E1), |
747 | L(9.472613121363135472247929109615785855865E0) |
748 | /* 1.0E0 */ |
749 | }; |
750 | |
751 | |
752 | _Float128 |
753 | __erfl (_Float128 x) |
754 | { |
755 | _Float128 a, y, z; |
756 | int32_t i, ix, sign; |
757 | ieee854_long_double_shape_type u; |
758 | |
759 | u.value = x; |
760 | sign = u.parts32.w0; |
761 | ix = sign & 0x7fffffff; |
762 | |
763 | if (ix >= 0x7fff0000) |
764 | { /* erf(nan)=nan */ |
765 | i = ((sign & 0xffff0000) >> 31) << 1; |
766 | return (_Float128) (1 - i) + one / x; /* erf(+-inf)=+-1 */ |
767 | } |
768 | |
769 | if (ix >= 0x3fff0000) /* |x| >= 1.0 */ |
770 | { |
771 | if (ix >= 0x40030000 && sign > 0) |
772 | return one; /* x >= 16, avoid spurious underflow from erfc. */ |
773 | y = __erfcl (x); |
774 | return (one - y); |
775 | /* return (one - __erfcl (x)); */ |
776 | } |
777 | u.parts32.w0 = ix; |
778 | a = u.value; |
779 | z = x * x; |
780 | if (ix < 0x3ffec000) /* a < 0.875 */ |
781 | { |
782 | if (ix < 0x3fc60000) /* |x|<2**-57 */ |
783 | { |
784 | if (ix < 0x00080000) |
785 | { |
786 | /* Avoid spurious underflow. */ |
787 | _Float128 ret = 0.0625 * (16.0 * x + (16.0 * efx) * x); |
788 | math_check_force_underflow (ret); |
789 | return ret; |
790 | } |
791 | return x + efx * x; |
792 | } |
793 | y = a + a * neval (z, TN1, NTN1) / deval (z, TD1, NTD1); |
794 | } |
795 | else |
796 | { |
797 | a = a - one; |
798 | y = erf_const + neval (a, TN2, NTN2) / deval (a, TD2, NTD2); |
799 | } |
800 | |
801 | if (sign & 0x80000000) /* x < 0 */ |
802 | y = -y; |
803 | return( y ); |
804 | } |
805 | |
806 | weak_alias (__erfl, erfl) |
807 | _Float128 |
808 | __erfcl (_Float128 x) |
809 | { |
810 | _Float128 y, z, p, r; |
811 | int32_t i, ix, sign; |
812 | ieee854_long_double_shape_type u; |
813 | |
814 | u.value = x; |
815 | sign = u.parts32.w0; |
816 | ix = sign & 0x7fffffff; |
817 | u.parts32.w0 = ix; |
818 | |
819 | if (ix >= 0x7fff0000) |
820 | { /* erfc(nan)=nan */ |
821 | /* erfc(+-inf)=0,2 */ |
822 | return (_Float128) (((u_int32_t) sign >> 31) << 1) + one / x; |
823 | } |
824 | |
825 | if (ix < 0x3ffd0000) /* |x| <1/4 */ |
826 | { |
827 | if (ix < 0x3f8d0000) /* |x|<2**-114 */ |
828 | return one - x; |
829 | return one - __erfl (x); |
830 | } |
831 | if (ix < 0x3fff4000) /* 1.25 */ |
832 | { |
833 | x = u.value; |
834 | i = 8.0 * x; |
835 | switch (i) |
836 | { |
837 | case 2: |
838 | z = x - L(0.25); |
839 | y = C13b + z * neval (z, RNr13, NRNr13) / deval (z, RDr13, NRDr13); |
840 | y += C13a; |
841 | break; |
842 | case 3: |
843 | z = x - L(0.375); |
844 | y = C14b + z * neval (z, RNr14, NRNr14) / deval (z, RDr14, NRDr14); |
845 | y += C14a; |
846 | break; |
847 | case 4: |
848 | z = x - L(0.5); |
849 | y = C15b + z * neval (z, RNr15, NRNr15) / deval (z, RDr15, NRDr15); |
850 | y += C15a; |
851 | break; |
852 | case 5: |
853 | z = x - L(0.625); |
854 | y = C16b + z * neval (z, RNr16, NRNr16) / deval (z, RDr16, NRDr16); |
855 | y += C16a; |
856 | break; |
857 | case 6: |
858 | z = x - L(0.75); |
859 | y = C17b + z * neval (z, RNr17, NRNr17) / deval (z, RDr17, NRDr17); |
860 | y += C17a; |
861 | break; |
862 | case 7: |
863 | z = x - L(0.875); |
864 | y = C18b + z * neval (z, RNr18, NRNr18) / deval (z, RDr18, NRDr18); |
865 | y += C18a; |
866 | break; |
867 | case 8: |
868 | z = x - 1; |
869 | y = C19b + z * neval (z, RNr19, NRNr19) / deval (z, RDr19, NRDr19); |
870 | y += C19a; |
871 | break; |
872 | default: /* i == 9. */ |
873 | z = x - L(1.125); |
874 | y = C20b + z * neval (z, RNr20, NRNr20) / deval (z, RDr20, NRDr20); |
875 | y += C20a; |
876 | break; |
877 | } |
878 | if (sign & 0x80000000) |
879 | y = 2 - y; |
880 | return y; |
881 | } |
882 | /* 1.25 < |x| < 107 */ |
883 | if (ix < 0x4005ac00) |
884 | { |
885 | /* x < -9 */ |
886 | if ((ix >= 0x40022000) && (sign & 0x80000000)) |
887 | return two - tiny; |
888 | |
889 | x = fabsl (x); |
890 | z = one / (x * x); |
891 | i = 8.0 / x; |
892 | switch (i) |
893 | { |
894 | default: |
895 | case 0: |
896 | p = neval (z, RNr1, NRNr1) / deval (z, RDr1, NRDr1); |
897 | break; |
898 | case 1: |
899 | p = neval (z, RNr2, NRNr2) / deval (z, RDr2, NRDr2); |
900 | break; |
901 | case 2: |
902 | p = neval (z, RNr3, NRNr3) / deval (z, RDr3, NRDr3); |
903 | break; |
904 | case 3: |
905 | p = neval (z, RNr4, NRNr4) / deval (z, RDr4, NRDr4); |
906 | break; |
907 | case 4: |
908 | p = neval (z, RNr5, NRNr5) / deval (z, RDr5, NRDr5); |
909 | break; |
910 | case 5: |
911 | p = neval (z, RNr6, NRNr6) / deval (z, RDr6, NRDr6); |
912 | break; |
913 | case 6: |
914 | p = neval (z, RNr7, NRNr7) / deval (z, RDr7, NRDr7); |
915 | break; |
916 | case 7: |
917 | p = neval (z, RNr8, NRNr8) / deval (z, RDr8, NRDr8); |
918 | break; |
919 | } |
920 | u.value = x; |
921 | u.parts32.w3 = 0; |
922 | u.parts32.w2 &= 0xfe000000; |
923 | z = u.value; |
924 | r = __ieee754_expl (-z * z - 0.5625) * |
925 | __ieee754_expl ((z - x) * (z + x) + p); |
926 | if ((sign & 0x80000000) == 0) |
927 | { |
928 | _Float128 ret = r / x; |
929 | if (ret == 0) |
930 | __set_errno (ERANGE); |
931 | return ret; |
932 | } |
933 | else |
934 | return two - r / x; |
935 | } |
936 | else |
937 | { |
938 | if ((sign & 0x80000000) == 0) |
939 | { |
940 | __set_errno (ERANGE); |
941 | return tiny * tiny; |
942 | } |
943 | else |
944 | return two - tiny; |
945 | } |
946 | } |
947 | |
948 | weak_alias (__erfcl, erfcl) |
949 | |