1 | /* e_sinhl.c -- long double version of e_sinh.c. |
2 | * Conversion to long double by Ulrich Drepper, |
3 | * Cygnus Support, drepper@cygnus.com. |
4 | */ |
5 | |
6 | /* |
7 | * ==================================================== |
8 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
9 | * |
10 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
11 | * Permission to use, copy, modify, and distribute this |
12 | * software is freely granted, provided that this notice |
13 | * is preserved. |
14 | * ==================================================== |
15 | */ |
16 | |
17 | /* Changes for 128-bit long double are |
18 | Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> |
19 | and are incorporated herein by permission of the author. The author |
20 | reserves the right to distribute this material elsewhere under different |
21 | copying permissions. These modifications are distributed here under |
22 | the following terms: |
23 | |
24 | This library is free software; you can redistribute it and/or |
25 | modify it under the terms of the GNU Lesser General Public |
26 | License as published by the Free Software Foundation; either |
27 | version 2.1 of the License, or (at your option) any later version. |
28 | |
29 | This library is distributed in the hope that it will be useful, |
30 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
31 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
32 | Lesser General Public License for more details. |
33 | |
34 | You should have received a copy of the GNU Lesser General Public |
35 | License along with this library; if not, see |
36 | <http://www.gnu.org/licenses/>. */ |
37 | |
38 | /* __ieee754_sinhl(x) |
39 | * Method : |
40 | * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 |
41 | * 1. Replace x by |x| (sinhl(-x) = -sinhl(x)). |
42 | * 2. |
43 | * E + E/(E+1) |
44 | * 0 <= x <= 25 : sinhl(x) := --------------, E=expm1l(x) |
45 | * 2 |
46 | * |
47 | * 25 <= x <= lnovft : sinhl(x) := expl(x)/2 |
48 | * lnovft <= x <= ln2ovft: sinhl(x) := expl(x/2)/2 * expl(x/2) |
49 | * ln2ovft < x : sinhl(x) := x*shuge (overflow) |
50 | * |
51 | * Special cases: |
52 | * sinhl(x) is |x| if x is +INF, -INF, or NaN. |
53 | * only sinhl(0)=0 is exact for finite x. |
54 | */ |
55 | |
56 | #include <float.h> |
57 | #include <math.h> |
58 | #include <math_private.h> |
59 | |
60 | static const _Float128 one = 1.0, shuge = L(1.0e4931), |
61 | ovf_thresh = L(1.1357216553474703894801348310092223067821E4); |
62 | |
63 | _Float128 |
64 | __ieee754_sinhl (_Float128 x) |
65 | { |
66 | _Float128 t, w, h; |
67 | u_int32_t jx, ix; |
68 | ieee854_long_double_shape_type u; |
69 | |
70 | /* Words of |x|. */ |
71 | u.value = x; |
72 | jx = u.parts32.w0; |
73 | ix = jx & 0x7fffffff; |
74 | |
75 | /* x is INF or NaN */ |
76 | if (ix >= 0x7fff0000) |
77 | return x + x; |
78 | |
79 | h = 0.5; |
80 | if (jx & 0x80000000) |
81 | h = -h; |
82 | |
83 | /* Absolute value of x. */ |
84 | u.parts32.w0 = ix; |
85 | |
86 | /* |x| in [0,40], return sign(x)*0.5*(E+E/(E+1))) */ |
87 | if (ix <= 0x40044000) |
88 | { |
89 | if (ix < 0x3fc60000) /* |x| < 2^-57 */ |
90 | { |
91 | math_check_force_underflow (x); |
92 | if (shuge + x > one) |
93 | return x; /* sinh(tiny) = tiny with inexact */ |
94 | } |
95 | t = __expm1l (u.value); |
96 | if (ix < 0x3fff0000) |
97 | return h * (2.0 * t - t * t / (t + one)); |
98 | return h * (t + t / (t + one)); |
99 | } |
100 | |
101 | /* |x| in [40, log(maxdouble)] return 0.5*exp(|x|) */ |
102 | if (ix <= 0x400c62e3) /* 11356.375 */ |
103 | return h * __ieee754_expl (u.value); |
104 | |
105 | /* |x| in [log(maxdouble), overflowthreshold] |
106 | Overflow threshold is log(2 * maxdouble). */ |
107 | if (u.value <= ovf_thresh) |
108 | { |
109 | w = __ieee754_expl (0.5 * u.value); |
110 | t = h * w; |
111 | return t * w; |
112 | } |
113 | |
114 | /* |x| > overflowthreshold, sinhl(x) overflow */ |
115 | return x * shuge; |
116 | } |
117 | strong_alias (__ieee754_sinhl, __sinhl_finite) |
118 | |