| 1 | /* |
| 2 | * ==================================================== |
| 3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 4 | * |
| 5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 6 | * Permission to use, copy, modify, and distribute this |
| 7 | * software is freely granted, provided that this notice |
| 8 | * is preserved. |
| 9 | * ==================================================== |
| 10 | */ |
| 11 | |
| 12 | /* Expansions and modifications for 128-bit long double are |
| 13 | Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> |
| 14 | and are incorporated herein by permission of the author. The author |
| 15 | reserves the right to distribute this material elsewhere under different |
| 16 | copying permissions. These modifications are distributed here under |
| 17 | the following terms: |
| 18 | |
| 19 | This library is free software; you can redistribute it and/or |
| 20 | modify it under the terms of the GNU Lesser General Public |
| 21 | License as published by the Free Software Foundation; either |
| 22 | version 2.1 of the License, or (at your option) any later version. |
| 23 | |
| 24 | This library is distributed in the hope that it will be useful, |
| 25 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 26 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 27 | Lesser General Public License for more details. |
| 28 | |
| 29 | You should have received a copy of the GNU Lesser General Public |
| 30 | License along with this library; if not, see |
| 31 | <http://www.gnu.org/licenses/>. */ |
| 32 | |
| 33 | /* __ieee754_powl(x,y) return x**y |
| 34 | * |
| 35 | * n |
| 36 | * Method: Let x = 2 * (1+f) |
| 37 | * 1. Compute and return log2(x) in two pieces: |
| 38 | * log2(x) = w1 + w2, |
| 39 | * where w1 has 113-53 = 60 bit trailing zeros. |
| 40 | * 2. Perform y*log2(x) = n+y' by simulating muti-precision |
| 41 | * arithmetic, where |y'|<=0.5. |
| 42 | * 3. Return x**y = 2**n*exp(y'*log2) |
| 43 | * |
| 44 | * Special cases: |
| 45 | * 1. (anything) ** 0 is 1 |
| 46 | * 2. (anything) ** 1 is itself |
| 47 | * 3. (anything) ** NAN is NAN |
| 48 | * 4. NAN ** (anything except 0) is NAN |
| 49 | * 5. +-(|x| > 1) ** +INF is +INF |
| 50 | * 6. +-(|x| > 1) ** -INF is +0 |
| 51 | * 7. +-(|x| < 1) ** +INF is +0 |
| 52 | * 8. +-(|x| < 1) ** -INF is +INF |
| 53 | * 9. +-1 ** +-INF is NAN |
| 54 | * 10. +0 ** (+anything except 0, NAN) is +0 |
| 55 | * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 |
| 56 | * 12. +0 ** (-anything except 0, NAN) is +INF |
| 57 | * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF |
| 58 | * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) |
| 59 | * 15. +INF ** (+anything except 0,NAN) is +INF |
| 60 | * 16. +INF ** (-anything except 0,NAN) is +0 |
| 61 | * 17. -INF ** (anything) = -0 ** (-anything) |
| 62 | * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) |
| 63 | * 19. (-anything except 0 and inf) ** (non-integer) is NAN |
| 64 | * |
| 65 | */ |
| 66 | |
| 67 | #include <math.h> |
| 68 | #include <math_private.h> |
| 69 | |
| 70 | static const _Float128 bp[] = { |
| 71 | 1, |
| 72 | L(1.5), |
| 73 | }; |
| 74 | |
| 75 | /* log_2(1.5) */ |
| 76 | static const _Float128 dp_h[] = { |
| 77 | 0.0, |
| 78 | L(5.8496250072115607565592654282227158546448E-1) |
| 79 | }; |
| 80 | |
| 81 | /* Low part of log_2(1.5) */ |
| 82 | static const _Float128 dp_l[] = { |
| 83 | 0.0, |
| 84 | L(1.0579781240112554492329533686862998106046E-16) |
| 85 | }; |
| 86 | |
| 87 | static const _Float128 zero = 0, |
| 88 | one = 1, |
| 89 | two = 2, |
| 90 | two113 = L(1.0384593717069655257060992658440192E34), |
| 91 | huge = L(1.0e3000), |
| 92 | tiny = L(1.0e-3000); |
| 93 | |
| 94 | /* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2)) |
| 95 | z = (x-1)/(x+1) |
| 96 | 1 <= x <= 1.25 |
| 97 | Peak relative error 2.3e-37 */ |
| 98 | static const _Float128 LN[] = |
| 99 | { |
| 100 | L(-3.0779177200290054398792536829702930623200E1), |
| 101 | L(6.5135778082209159921251824580292116201640E1), |
| 102 | L(-4.6312921812152436921591152809994014413540E1), |
| 103 | L(1.2510208195629420304615674658258363295208E1), |
| 104 | L(-9.9266909031921425609179910128531667336670E-1) |
| 105 | }; |
| 106 | static const _Float128 LD[] = |
| 107 | { |
| 108 | L(-5.129862866715009066465422805058933131960E1), |
| 109 | L(1.452015077564081884387441590064272782044E2), |
| 110 | L(-1.524043275549860505277434040464085593165E2), |
| 111 | L(7.236063513651544224319663428634139768808E1), |
| 112 | L(-1.494198912340228235853027849917095580053E1) |
| 113 | /* 1.0E0 */ |
| 114 | }; |
| 115 | |
| 116 | /* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2))) |
| 117 | 0 <= x <= 0.5 |
| 118 | Peak relative error 5.7e-38 */ |
| 119 | static const _Float128 PN[] = |
| 120 | { |
| 121 | L(5.081801691915377692446852383385968225675E8), |
| 122 | L(9.360895299872484512023336636427675327355E6), |
| 123 | L(4.213701282274196030811629773097579432957E4), |
| 124 | L(5.201006511142748908655720086041570288182E1), |
| 125 | L(9.088368420359444263703202925095675982530E-3), |
| 126 | }; |
| 127 | static const _Float128 PD[] = |
| 128 | { |
| 129 | L(3.049081015149226615468111430031590411682E9), |
| 130 | L(1.069833887183886839966085436512368982758E8), |
| 131 | L(8.259257717868875207333991924545445705394E5), |
| 132 | L(1.872583833284143212651746812884298360922E3), |
| 133 | /* 1.0E0 */ |
| 134 | }; |
| 135 | |
| 136 | static const _Float128 |
| 137 | /* ln 2 */ |
| 138 | lg2 = L(6.9314718055994530941723212145817656807550E-1), |
| 139 | lg2_h = L(6.9314718055994528622676398299518041312695E-1), |
| 140 | lg2_l = L(2.3190468138462996154948554638754786504121E-17), |
| 141 | ovt = L(8.0085662595372944372e-0017), |
| 142 | /* 2/(3*log(2)) */ |
| 143 | cp = L(9.6179669392597560490661645400126142495110E-1), |
| 144 | cp_h = L(9.6179669392597555432899980587535537779331E-1), |
| 145 | cp_l = L(5.0577616648125906047157785230014751039424E-17); |
| 146 | |
| 147 | _Float128 |
| 148 | __ieee754_powl (_Float128 x, _Float128 y) |
| 149 | { |
| 150 | _Float128 z, ax, z_h, z_l, p_h, p_l; |
| 151 | _Float128 y1, t1, t2, r, s, sgn, t, u, v, w; |
| 152 | _Float128 s2, s_h, s_l, t_h, t_l, ay; |
| 153 | int32_t i, j, k, yisint, n; |
| 154 | u_int32_t ix, iy; |
| 155 | int32_t hx, hy; |
| 156 | ieee854_long_double_shape_type o, p, q; |
| 157 | |
| 158 | p.value = x; |
| 159 | hx = p.parts32.w0; |
| 160 | ix = hx & 0x7fffffff; |
| 161 | |
| 162 | q.value = y; |
| 163 | hy = q.parts32.w0; |
| 164 | iy = hy & 0x7fffffff; |
| 165 | |
| 166 | |
| 167 | /* y==zero: x**0 = 1 */ |
| 168 | if ((iy | q.parts32.w1 | q.parts32.w2 | q.parts32.w3) == 0 |
| 169 | && !issignaling (x)) |
| 170 | return one; |
| 171 | |
| 172 | /* 1.0**y = 1; -1.0**+-Inf = 1 */ |
| 173 | if (x == one && !issignaling (y)) |
| 174 | return one; |
| 175 | if (x == -1 && iy == 0x7fff0000 |
| 176 | && (q.parts32.w1 | q.parts32.w2 | q.parts32.w3) == 0) |
| 177 | return one; |
| 178 | |
| 179 | /* +-NaN return x+y */ |
| 180 | if ((ix > 0x7fff0000) |
| 181 | || ((ix == 0x7fff0000) |
| 182 | && ((p.parts32.w1 | p.parts32.w2 | p.parts32.w3) != 0)) |
| 183 | || (iy > 0x7fff0000) |
| 184 | || ((iy == 0x7fff0000) |
| 185 | && ((q.parts32.w1 | q.parts32.w2 | q.parts32.w3) != 0))) |
| 186 | return x + y; |
| 187 | |
| 188 | /* determine if y is an odd int when x < 0 |
| 189 | * yisint = 0 ... y is not an integer |
| 190 | * yisint = 1 ... y is an odd int |
| 191 | * yisint = 2 ... y is an even int |
| 192 | */ |
| 193 | yisint = 0; |
| 194 | if (hx < 0) |
| 195 | { |
| 196 | if (iy >= 0x40700000) /* 2^113 */ |
| 197 | yisint = 2; /* even integer y */ |
| 198 | else if (iy >= 0x3fff0000) /* 1.0 */ |
| 199 | { |
| 200 | if (__floorl (y) == y) |
| 201 | { |
| 202 | z = 0.5 * y; |
| 203 | if (__floorl (z) == z) |
| 204 | yisint = 2; |
| 205 | else |
| 206 | yisint = 1; |
| 207 | } |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | /* special value of y */ |
| 212 | if ((q.parts32.w1 | q.parts32.w2 | q.parts32.w3) == 0) |
| 213 | { |
| 214 | if (iy == 0x7fff0000) /* y is +-inf */ |
| 215 | { |
| 216 | if (((ix - 0x3fff0000) | p.parts32.w1 | p.parts32.w2 | p.parts32.w3) |
| 217 | == 0) |
| 218 | return y - y; /* +-1**inf is NaN */ |
| 219 | else if (ix >= 0x3fff0000) /* (|x|>1)**+-inf = inf,0 */ |
| 220 | return (hy >= 0) ? y : zero; |
| 221 | else /* (|x|<1)**-,+inf = inf,0 */ |
| 222 | return (hy < 0) ? -y : zero; |
| 223 | } |
| 224 | if (iy == 0x3fff0000) |
| 225 | { /* y is +-1 */ |
| 226 | if (hy < 0) |
| 227 | return one / x; |
| 228 | else |
| 229 | return x; |
| 230 | } |
| 231 | if (hy == 0x40000000) |
| 232 | return x * x; /* y is 2 */ |
| 233 | if (hy == 0x3ffe0000) |
| 234 | { /* y is 0.5 */ |
| 235 | if (hx >= 0) /* x >= +0 */ |
| 236 | return __ieee754_sqrtl (x); |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | ax = fabsl (x); |
| 241 | /* special value of x */ |
| 242 | if ((p.parts32.w1 | p.parts32.w2 | p.parts32.w3) == 0) |
| 243 | { |
| 244 | if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000) |
| 245 | { |
| 246 | z = ax; /*x is +-0,+-inf,+-1 */ |
| 247 | if (hy < 0) |
| 248 | z = one / z; /* z = (1/|x|) */ |
| 249 | if (hx < 0) |
| 250 | { |
| 251 | if (((ix - 0x3fff0000) | yisint) == 0) |
| 252 | { |
| 253 | z = (z - z) / (z - z); /* (-1)**non-int is NaN */ |
| 254 | } |
| 255 | else if (yisint == 1) |
| 256 | z = -z; /* (x<0)**odd = -(|x|**odd) */ |
| 257 | } |
| 258 | return z; |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | /* (x<0)**(non-int) is NaN */ |
| 263 | if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0) |
| 264 | return (x - x) / (x - x); |
| 265 | |
| 266 | /* sgn (sign of result -ve**odd) = -1 else = 1 */ |
| 267 | sgn = one; |
| 268 | if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0) |
| 269 | sgn = -one; /* (-ve)**(odd int) */ |
| 270 | |
| 271 | /* |y| is huge. |
| 272 | 2^-16495 = 1/2 of smallest representable value. |
| 273 | If (1 - 1/131072)^y underflows, y > 1.4986e9 */ |
| 274 | if (iy > 0x401d654b) |
| 275 | { |
| 276 | /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */ |
| 277 | if (iy > 0x407d654b) |
| 278 | { |
| 279 | if (ix <= 0x3ffeffff) |
| 280 | return (hy < 0) ? huge * huge : tiny * tiny; |
| 281 | if (ix >= 0x3fff0000) |
| 282 | return (hy > 0) ? huge * huge : tiny * tiny; |
| 283 | } |
| 284 | /* over/underflow if x is not close to one */ |
| 285 | if (ix < 0x3ffeffff) |
| 286 | return (hy < 0) ? sgn * huge * huge : sgn * tiny * tiny; |
| 287 | if (ix > 0x3fff0000) |
| 288 | return (hy > 0) ? sgn * huge * huge : sgn * tiny * tiny; |
| 289 | } |
| 290 | |
| 291 | ay = y > 0 ? y : -y; |
| 292 | if (ay < 0x1p-128) |
| 293 | y = y < 0 ? -0x1p-128 : 0x1p-128; |
| 294 | |
| 295 | n = 0; |
| 296 | /* take care subnormal number */ |
| 297 | if (ix < 0x00010000) |
| 298 | { |
| 299 | ax *= two113; |
| 300 | n -= 113; |
| 301 | o.value = ax; |
| 302 | ix = o.parts32.w0; |
| 303 | } |
| 304 | n += ((ix) >> 16) - 0x3fff; |
| 305 | j = ix & 0x0000ffff; |
| 306 | /* determine interval */ |
| 307 | ix = j | 0x3fff0000; /* normalize ix */ |
| 308 | if (j <= 0x3988) |
| 309 | k = 0; /* |x|<sqrt(3/2) */ |
| 310 | else if (j < 0xbb67) |
| 311 | k = 1; /* |x|<sqrt(3) */ |
| 312 | else |
| 313 | { |
| 314 | k = 0; |
| 315 | n += 1; |
| 316 | ix -= 0x00010000; |
| 317 | } |
| 318 | |
| 319 | o.value = ax; |
| 320 | o.parts32.w0 = ix; |
| 321 | ax = o.value; |
| 322 | |
| 323 | /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ |
| 324 | u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ |
| 325 | v = one / (ax + bp[k]); |
| 326 | s = u * v; |
| 327 | s_h = s; |
| 328 | |
| 329 | o.value = s_h; |
| 330 | o.parts32.w3 = 0; |
| 331 | o.parts32.w2 &= 0xf8000000; |
| 332 | s_h = o.value; |
| 333 | /* t_h=ax+bp[k] High */ |
| 334 | t_h = ax + bp[k]; |
| 335 | o.value = t_h; |
| 336 | o.parts32.w3 = 0; |
| 337 | o.parts32.w2 &= 0xf8000000; |
| 338 | t_h = o.value; |
| 339 | t_l = ax - (t_h - bp[k]); |
| 340 | s_l = v * ((u - s_h * t_h) - s_h * t_l); |
| 341 | /* compute log(ax) */ |
| 342 | s2 = s * s; |
| 343 | u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4]))); |
| 344 | v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2)))); |
| 345 | r = s2 * s2 * u / v; |
| 346 | r += s_l * (s_h + s); |
| 347 | s2 = s_h * s_h; |
| 348 | t_h = 3.0 + s2 + r; |
| 349 | o.value = t_h; |
| 350 | o.parts32.w3 = 0; |
| 351 | o.parts32.w2 &= 0xf8000000; |
| 352 | t_h = o.value; |
| 353 | t_l = r - ((t_h - 3.0) - s2); |
| 354 | /* u+v = s*(1+...) */ |
| 355 | u = s_h * t_h; |
| 356 | v = s_l * t_h + t_l * s; |
| 357 | /* 2/(3log2)*(s+...) */ |
| 358 | p_h = u + v; |
| 359 | o.value = p_h; |
| 360 | o.parts32.w3 = 0; |
| 361 | o.parts32.w2 &= 0xf8000000; |
| 362 | p_h = o.value; |
| 363 | p_l = v - (p_h - u); |
| 364 | z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */ |
| 365 | z_l = cp_l * p_h + p_l * cp + dp_l[k]; |
| 366 | /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
| 367 | t = (_Float128) n; |
| 368 | t1 = (((z_h + z_l) + dp_h[k]) + t); |
| 369 | o.value = t1; |
| 370 | o.parts32.w3 = 0; |
| 371 | o.parts32.w2 &= 0xf8000000; |
| 372 | t1 = o.value; |
| 373 | t2 = z_l - (((t1 - t) - dp_h[k]) - z_h); |
| 374 | |
| 375 | /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ |
| 376 | y1 = y; |
| 377 | o.value = y1; |
| 378 | o.parts32.w3 = 0; |
| 379 | o.parts32.w2 &= 0xf8000000; |
| 380 | y1 = o.value; |
| 381 | p_l = (y - y1) * t1 + y * t2; |
| 382 | p_h = y1 * t1; |
| 383 | z = p_l + p_h; |
| 384 | o.value = z; |
| 385 | j = o.parts32.w0; |
| 386 | if (j >= 0x400d0000) /* z >= 16384 */ |
| 387 | { |
| 388 | /* if z > 16384 */ |
| 389 | if (((j - 0x400d0000) | o.parts32.w1 | o.parts32.w2 | o.parts32.w3) != 0) |
| 390 | return sgn * huge * huge; /* overflow */ |
| 391 | else |
| 392 | { |
| 393 | if (p_l + ovt > z - p_h) |
| 394 | return sgn * huge * huge; /* overflow */ |
| 395 | } |
| 396 | } |
| 397 | else if ((j & 0x7fffffff) >= 0x400d01b9) /* z <= -16495 */ |
| 398 | { |
| 399 | /* z < -16495 */ |
| 400 | if (((j - 0xc00d01bc) | o.parts32.w1 | o.parts32.w2 | o.parts32.w3) |
| 401 | != 0) |
| 402 | return sgn * tiny * tiny; /* underflow */ |
| 403 | else |
| 404 | { |
| 405 | if (p_l <= z - p_h) |
| 406 | return sgn * tiny * tiny; /* underflow */ |
| 407 | } |
| 408 | } |
| 409 | /* compute 2**(p_h+p_l) */ |
| 410 | i = j & 0x7fffffff; |
| 411 | k = (i >> 16) - 0x3fff; |
| 412 | n = 0; |
| 413 | if (i > 0x3ffe0000) |
| 414 | { /* if |z| > 0.5, set n = [z+0.5] */ |
| 415 | n = __floorl (z + L(0.5)); |
| 416 | t = n; |
| 417 | p_h -= t; |
| 418 | } |
| 419 | t = p_l + p_h; |
| 420 | o.value = t; |
| 421 | o.parts32.w3 = 0; |
| 422 | o.parts32.w2 &= 0xf8000000; |
| 423 | t = o.value; |
| 424 | u = t * lg2_h; |
| 425 | v = (p_l - (t - p_h)) * lg2 + t * lg2_l; |
| 426 | z = u + v; |
| 427 | w = v - (z - u); |
| 428 | /* exp(z) */ |
| 429 | t = z * z; |
| 430 | u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4]))); |
| 431 | v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t))); |
| 432 | t1 = z - t * u / v; |
| 433 | r = (z * t1) / (t1 - two) - (w + z * w); |
| 434 | z = one - (r - z); |
| 435 | o.value = z; |
| 436 | j = o.parts32.w0; |
| 437 | j += (n << 16); |
| 438 | if ((j >> 16) <= 0) |
| 439 | { |
| 440 | z = __scalbnl (z, n); /* subnormal output */ |
| 441 | _Float128 force_underflow = z * z; |
| 442 | math_force_eval (force_underflow); |
| 443 | } |
| 444 | else |
| 445 | { |
| 446 | o.parts32.w0 = j; |
| 447 | z = o.value; |
| 448 | } |
| 449 | return sgn * z; |
| 450 | } |
| 451 | strong_alias (__ieee754_powl, __powl_finite) |
| 452 | |