1 | /* |
2 | * ==================================================== |
3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
4 | * |
5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
6 | * Permission to use, copy, modify, and distribute this |
7 | * software is freely granted, provided that this notice |
8 | * is preserved. |
9 | * ==================================================== |
10 | */ |
11 | |
12 | /* Expansions and modifications for 128-bit long double are |
13 | Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> |
14 | and are incorporated herein by permission of the author. The author |
15 | reserves the right to distribute this material elsewhere under different |
16 | copying permissions. These modifications are distributed here under |
17 | the following terms: |
18 | |
19 | This library is free software; you can redistribute it and/or |
20 | modify it under the terms of the GNU Lesser General Public |
21 | License as published by the Free Software Foundation; either |
22 | version 2.1 of the License, or (at your option) any later version. |
23 | |
24 | This library is distributed in the hope that it will be useful, |
25 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
26 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
27 | Lesser General Public License for more details. |
28 | |
29 | You should have received a copy of the GNU Lesser General Public |
30 | License along with this library; if not, see |
31 | <http://www.gnu.org/licenses/>. */ |
32 | |
33 | /* __ieee754_powl(x,y) return x**y |
34 | * |
35 | * n |
36 | * Method: Let x = 2 * (1+f) |
37 | * 1. Compute and return log2(x) in two pieces: |
38 | * log2(x) = w1 + w2, |
39 | * where w1 has 113-53 = 60 bit trailing zeros. |
40 | * 2. Perform y*log2(x) = n+y' by simulating muti-precision |
41 | * arithmetic, where |y'|<=0.5. |
42 | * 3. Return x**y = 2**n*exp(y'*log2) |
43 | * |
44 | * Special cases: |
45 | * 1. (anything) ** 0 is 1 |
46 | * 2. (anything) ** 1 is itself |
47 | * 3. (anything) ** NAN is NAN |
48 | * 4. NAN ** (anything except 0) is NAN |
49 | * 5. +-(|x| > 1) ** +INF is +INF |
50 | * 6. +-(|x| > 1) ** -INF is +0 |
51 | * 7. +-(|x| < 1) ** +INF is +0 |
52 | * 8. +-(|x| < 1) ** -INF is +INF |
53 | * 9. +-1 ** +-INF is NAN |
54 | * 10. +0 ** (+anything except 0, NAN) is +0 |
55 | * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 |
56 | * 12. +0 ** (-anything except 0, NAN) is +INF |
57 | * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF |
58 | * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) |
59 | * 15. +INF ** (+anything except 0,NAN) is +INF |
60 | * 16. +INF ** (-anything except 0,NAN) is +0 |
61 | * 17. -INF ** (anything) = -0 ** (-anything) |
62 | * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) |
63 | * 19. (-anything except 0 and inf) ** (non-integer) is NAN |
64 | * |
65 | */ |
66 | |
67 | #include <math.h> |
68 | #include <math_private.h> |
69 | |
70 | static const _Float128 bp[] = { |
71 | 1, |
72 | L(1.5), |
73 | }; |
74 | |
75 | /* log_2(1.5) */ |
76 | static const _Float128 dp_h[] = { |
77 | 0.0, |
78 | L(5.8496250072115607565592654282227158546448E-1) |
79 | }; |
80 | |
81 | /* Low part of log_2(1.5) */ |
82 | static const _Float128 dp_l[] = { |
83 | 0.0, |
84 | L(1.0579781240112554492329533686862998106046E-16) |
85 | }; |
86 | |
87 | static const _Float128 zero = 0, |
88 | one = 1, |
89 | two = 2, |
90 | two113 = L(1.0384593717069655257060992658440192E34), |
91 | huge = L(1.0e3000), |
92 | tiny = L(1.0e-3000); |
93 | |
94 | /* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2)) |
95 | z = (x-1)/(x+1) |
96 | 1 <= x <= 1.25 |
97 | Peak relative error 2.3e-37 */ |
98 | static const _Float128 LN[] = |
99 | { |
100 | L(-3.0779177200290054398792536829702930623200E1), |
101 | L(6.5135778082209159921251824580292116201640E1), |
102 | L(-4.6312921812152436921591152809994014413540E1), |
103 | L(1.2510208195629420304615674658258363295208E1), |
104 | L(-9.9266909031921425609179910128531667336670E-1) |
105 | }; |
106 | static const _Float128 LD[] = |
107 | { |
108 | L(-5.129862866715009066465422805058933131960E1), |
109 | L(1.452015077564081884387441590064272782044E2), |
110 | L(-1.524043275549860505277434040464085593165E2), |
111 | L(7.236063513651544224319663428634139768808E1), |
112 | L(-1.494198912340228235853027849917095580053E1) |
113 | /* 1.0E0 */ |
114 | }; |
115 | |
116 | /* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2))) |
117 | 0 <= x <= 0.5 |
118 | Peak relative error 5.7e-38 */ |
119 | static const _Float128 PN[] = |
120 | { |
121 | L(5.081801691915377692446852383385968225675E8), |
122 | L(9.360895299872484512023336636427675327355E6), |
123 | L(4.213701282274196030811629773097579432957E4), |
124 | L(5.201006511142748908655720086041570288182E1), |
125 | L(9.088368420359444263703202925095675982530E-3), |
126 | }; |
127 | static const _Float128 PD[] = |
128 | { |
129 | L(3.049081015149226615468111430031590411682E9), |
130 | L(1.069833887183886839966085436512368982758E8), |
131 | L(8.259257717868875207333991924545445705394E5), |
132 | L(1.872583833284143212651746812884298360922E3), |
133 | /* 1.0E0 */ |
134 | }; |
135 | |
136 | static const _Float128 |
137 | /* ln 2 */ |
138 | lg2 = L(6.9314718055994530941723212145817656807550E-1), |
139 | lg2_h = L(6.9314718055994528622676398299518041312695E-1), |
140 | lg2_l = L(2.3190468138462996154948554638754786504121E-17), |
141 | ovt = L(8.0085662595372944372e-0017), |
142 | /* 2/(3*log(2)) */ |
143 | cp = L(9.6179669392597560490661645400126142495110E-1), |
144 | cp_h = L(9.6179669392597555432899980587535537779331E-1), |
145 | cp_l = L(5.0577616648125906047157785230014751039424E-17); |
146 | |
147 | _Float128 |
148 | __ieee754_powl (_Float128 x, _Float128 y) |
149 | { |
150 | _Float128 z, ax, z_h, z_l, p_h, p_l; |
151 | _Float128 y1, t1, t2, r, s, sgn, t, u, v, w; |
152 | _Float128 s2, s_h, s_l, t_h, t_l, ay; |
153 | int32_t i, j, k, yisint, n; |
154 | u_int32_t ix, iy; |
155 | int32_t hx, hy; |
156 | ieee854_long_double_shape_type o, p, q; |
157 | |
158 | p.value = x; |
159 | hx = p.parts32.w0; |
160 | ix = hx & 0x7fffffff; |
161 | |
162 | q.value = y; |
163 | hy = q.parts32.w0; |
164 | iy = hy & 0x7fffffff; |
165 | |
166 | |
167 | /* y==zero: x**0 = 1 */ |
168 | if ((iy | q.parts32.w1 | q.parts32.w2 | q.parts32.w3) == 0 |
169 | && !issignaling (x)) |
170 | return one; |
171 | |
172 | /* 1.0**y = 1; -1.0**+-Inf = 1 */ |
173 | if (x == one && !issignaling (y)) |
174 | return one; |
175 | if (x == -1 && iy == 0x7fff0000 |
176 | && (q.parts32.w1 | q.parts32.w2 | q.parts32.w3) == 0) |
177 | return one; |
178 | |
179 | /* +-NaN return x+y */ |
180 | if ((ix > 0x7fff0000) |
181 | || ((ix == 0x7fff0000) |
182 | && ((p.parts32.w1 | p.parts32.w2 | p.parts32.w3) != 0)) |
183 | || (iy > 0x7fff0000) |
184 | || ((iy == 0x7fff0000) |
185 | && ((q.parts32.w1 | q.parts32.w2 | q.parts32.w3) != 0))) |
186 | return x + y; |
187 | |
188 | /* determine if y is an odd int when x < 0 |
189 | * yisint = 0 ... y is not an integer |
190 | * yisint = 1 ... y is an odd int |
191 | * yisint = 2 ... y is an even int |
192 | */ |
193 | yisint = 0; |
194 | if (hx < 0) |
195 | { |
196 | if (iy >= 0x40700000) /* 2^113 */ |
197 | yisint = 2; /* even integer y */ |
198 | else if (iy >= 0x3fff0000) /* 1.0 */ |
199 | { |
200 | if (__floorl (y) == y) |
201 | { |
202 | z = 0.5 * y; |
203 | if (__floorl (z) == z) |
204 | yisint = 2; |
205 | else |
206 | yisint = 1; |
207 | } |
208 | } |
209 | } |
210 | |
211 | /* special value of y */ |
212 | if ((q.parts32.w1 | q.parts32.w2 | q.parts32.w3) == 0) |
213 | { |
214 | if (iy == 0x7fff0000) /* y is +-inf */ |
215 | { |
216 | if (((ix - 0x3fff0000) | p.parts32.w1 | p.parts32.w2 | p.parts32.w3) |
217 | == 0) |
218 | return y - y; /* +-1**inf is NaN */ |
219 | else if (ix >= 0x3fff0000) /* (|x|>1)**+-inf = inf,0 */ |
220 | return (hy >= 0) ? y : zero; |
221 | else /* (|x|<1)**-,+inf = inf,0 */ |
222 | return (hy < 0) ? -y : zero; |
223 | } |
224 | if (iy == 0x3fff0000) |
225 | { /* y is +-1 */ |
226 | if (hy < 0) |
227 | return one / x; |
228 | else |
229 | return x; |
230 | } |
231 | if (hy == 0x40000000) |
232 | return x * x; /* y is 2 */ |
233 | if (hy == 0x3ffe0000) |
234 | { /* y is 0.5 */ |
235 | if (hx >= 0) /* x >= +0 */ |
236 | return __ieee754_sqrtl (x); |
237 | } |
238 | } |
239 | |
240 | ax = fabsl (x); |
241 | /* special value of x */ |
242 | if ((p.parts32.w1 | p.parts32.w2 | p.parts32.w3) == 0) |
243 | { |
244 | if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000) |
245 | { |
246 | z = ax; /*x is +-0,+-inf,+-1 */ |
247 | if (hy < 0) |
248 | z = one / z; /* z = (1/|x|) */ |
249 | if (hx < 0) |
250 | { |
251 | if (((ix - 0x3fff0000) | yisint) == 0) |
252 | { |
253 | z = (z - z) / (z - z); /* (-1)**non-int is NaN */ |
254 | } |
255 | else if (yisint == 1) |
256 | z = -z; /* (x<0)**odd = -(|x|**odd) */ |
257 | } |
258 | return z; |
259 | } |
260 | } |
261 | |
262 | /* (x<0)**(non-int) is NaN */ |
263 | if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0) |
264 | return (x - x) / (x - x); |
265 | |
266 | /* sgn (sign of result -ve**odd) = -1 else = 1 */ |
267 | sgn = one; |
268 | if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0) |
269 | sgn = -one; /* (-ve)**(odd int) */ |
270 | |
271 | /* |y| is huge. |
272 | 2^-16495 = 1/2 of smallest representable value. |
273 | If (1 - 1/131072)^y underflows, y > 1.4986e9 */ |
274 | if (iy > 0x401d654b) |
275 | { |
276 | /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */ |
277 | if (iy > 0x407d654b) |
278 | { |
279 | if (ix <= 0x3ffeffff) |
280 | return (hy < 0) ? huge * huge : tiny * tiny; |
281 | if (ix >= 0x3fff0000) |
282 | return (hy > 0) ? huge * huge : tiny * tiny; |
283 | } |
284 | /* over/underflow if x is not close to one */ |
285 | if (ix < 0x3ffeffff) |
286 | return (hy < 0) ? sgn * huge * huge : sgn * tiny * tiny; |
287 | if (ix > 0x3fff0000) |
288 | return (hy > 0) ? sgn * huge * huge : sgn * tiny * tiny; |
289 | } |
290 | |
291 | ay = y > 0 ? y : -y; |
292 | if (ay < 0x1p-128) |
293 | y = y < 0 ? -0x1p-128 : 0x1p-128; |
294 | |
295 | n = 0; |
296 | /* take care subnormal number */ |
297 | if (ix < 0x00010000) |
298 | { |
299 | ax *= two113; |
300 | n -= 113; |
301 | o.value = ax; |
302 | ix = o.parts32.w0; |
303 | } |
304 | n += ((ix) >> 16) - 0x3fff; |
305 | j = ix & 0x0000ffff; |
306 | /* determine interval */ |
307 | ix = j | 0x3fff0000; /* normalize ix */ |
308 | if (j <= 0x3988) |
309 | k = 0; /* |x|<sqrt(3/2) */ |
310 | else if (j < 0xbb67) |
311 | k = 1; /* |x|<sqrt(3) */ |
312 | else |
313 | { |
314 | k = 0; |
315 | n += 1; |
316 | ix -= 0x00010000; |
317 | } |
318 | |
319 | o.value = ax; |
320 | o.parts32.w0 = ix; |
321 | ax = o.value; |
322 | |
323 | /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ |
324 | u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ |
325 | v = one / (ax + bp[k]); |
326 | s = u * v; |
327 | s_h = s; |
328 | |
329 | o.value = s_h; |
330 | o.parts32.w3 = 0; |
331 | o.parts32.w2 &= 0xf8000000; |
332 | s_h = o.value; |
333 | /* t_h=ax+bp[k] High */ |
334 | t_h = ax + bp[k]; |
335 | o.value = t_h; |
336 | o.parts32.w3 = 0; |
337 | o.parts32.w2 &= 0xf8000000; |
338 | t_h = o.value; |
339 | t_l = ax - (t_h - bp[k]); |
340 | s_l = v * ((u - s_h * t_h) - s_h * t_l); |
341 | /* compute log(ax) */ |
342 | s2 = s * s; |
343 | u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4]))); |
344 | v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2)))); |
345 | r = s2 * s2 * u / v; |
346 | r += s_l * (s_h + s); |
347 | s2 = s_h * s_h; |
348 | t_h = 3.0 + s2 + r; |
349 | o.value = t_h; |
350 | o.parts32.w3 = 0; |
351 | o.parts32.w2 &= 0xf8000000; |
352 | t_h = o.value; |
353 | t_l = r - ((t_h - 3.0) - s2); |
354 | /* u+v = s*(1+...) */ |
355 | u = s_h * t_h; |
356 | v = s_l * t_h + t_l * s; |
357 | /* 2/(3log2)*(s+...) */ |
358 | p_h = u + v; |
359 | o.value = p_h; |
360 | o.parts32.w3 = 0; |
361 | o.parts32.w2 &= 0xf8000000; |
362 | p_h = o.value; |
363 | p_l = v - (p_h - u); |
364 | z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */ |
365 | z_l = cp_l * p_h + p_l * cp + dp_l[k]; |
366 | /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
367 | t = (_Float128) n; |
368 | t1 = (((z_h + z_l) + dp_h[k]) + t); |
369 | o.value = t1; |
370 | o.parts32.w3 = 0; |
371 | o.parts32.w2 &= 0xf8000000; |
372 | t1 = o.value; |
373 | t2 = z_l - (((t1 - t) - dp_h[k]) - z_h); |
374 | |
375 | /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ |
376 | y1 = y; |
377 | o.value = y1; |
378 | o.parts32.w3 = 0; |
379 | o.parts32.w2 &= 0xf8000000; |
380 | y1 = o.value; |
381 | p_l = (y - y1) * t1 + y * t2; |
382 | p_h = y1 * t1; |
383 | z = p_l + p_h; |
384 | o.value = z; |
385 | j = o.parts32.w0; |
386 | if (j >= 0x400d0000) /* z >= 16384 */ |
387 | { |
388 | /* if z > 16384 */ |
389 | if (((j - 0x400d0000) | o.parts32.w1 | o.parts32.w2 | o.parts32.w3) != 0) |
390 | return sgn * huge * huge; /* overflow */ |
391 | else |
392 | { |
393 | if (p_l + ovt > z - p_h) |
394 | return sgn * huge * huge; /* overflow */ |
395 | } |
396 | } |
397 | else if ((j & 0x7fffffff) >= 0x400d01b9) /* z <= -16495 */ |
398 | { |
399 | /* z < -16495 */ |
400 | if (((j - 0xc00d01bc) | o.parts32.w1 | o.parts32.w2 | o.parts32.w3) |
401 | != 0) |
402 | return sgn * tiny * tiny; /* underflow */ |
403 | else |
404 | { |
405 | if (p_l <= z - p_h) |
406 | return sgn * tiny * tiny; /* underflow */ |
407 | } |
408 | } |
409 | /* compute 2**(p_h+p_l) */ |
410 | i = j & 0x7fffffff; |
411 | k = (i >> 16) - 0x3fff; |
412 | n = 0; |
413 | if (i > 0x3ffe0000) |
414 | { /* if |z| > 0.5, set n = [z+0.5] */ |
415 | n = __floorl (z + L(0.5)); |
416 | t = n; |
417 | p_h -= t; |
418 | } |
419 | t = p_l + p_h; |
420 | o.value = t; |
421 | o.parts32.w3 = 0; |
422 | o.parts32.w2 &= 0xf8000000; |
423 | t = o.value; |
424 | u = t * lg2_h; |
425 | v = (p_l - (t - p_h)) * lg2 + t * lg2_l; |
426 | z = u + v; |
427 | w = v - (z - u); |
428 | /* exp(z) */ |
429 | t = z * z; |
430 | u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4]))); |
431 | v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t))); |
432 | t1 = z - t * u / v; |
433 | r = (z * t1) / (t1 - two) - (w + z * w); |
434 | z = one - (r - z); |
435 | o.value = z; |
436 | j = o.parts32.w0; |
437 | j += (n << 16); |
438 | if ((j >> 16) <= 0) |
439 | { |
440 | z = __scalbnl (z, n); /* subnormal output */ |
441 | _Float128 force_underflow = z * z; |
442 | math_force_eval (force_underflow); |
443 | } |
444 | else |
445 | { |
446 | o.parts32.w0 = j; |
447 | z = o.value; |
448 | } |
449 | return sgn * z; |
450 | } |
451 | strong_alias (__ieee754_powl, __powl_finite) |
452 | |