1 | /* j0l.c |
2 | * |
3 | * Bessel function of order zero |
4 | * |
5 | * |
6 | * |
7 | * SYNOPSIS: |
8 | * |
9 | * long double x, y, j0l(); |
10 | * |
11 | * y = j0l( x ); |
12 | * |
13 | * |
14 | * |
15 | * DESCRIPTION: |
16 | * |
17 | * Returns Bessel function of first kind, order zero of the argument. |
18 | * |
19 | * The domain is divided into two major intervals [0, 2] and |
20 | * (2, infinity). In the first interval the rational approximation |
21 | * is J0(x) = 1 - x^2 / 4 + x^4 R(x^2) |
22 | * The second interval is further partitioned into eight equal segments |
23 | * of 1/x. |
24 | * |
25 | * J0(x) = sqrt(2/(pi x)) (P0(x) cos(X) - Q0(x) sin(X)), |
26 | * X = x - pi/4, |
27 | * |
28 | * and the auxiliary functions are given by |
29 | * |
30 | * J0(x)cos(X) + Y0(x)sin(X) = sqrt( 2/(pi x)) P0(x), |
31 | * P0(x) = 1 + 1/x^2 R(1/x^2) |
32 | * |
33 | * Y0(x)cos(X) - J0(x)sin(X) = sqrt( 2/(pi x)) Q0(x), |
34 | * Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2)) |
35 | * |
36 | * |
37 | * |
38 | * ACCURACY: |
39 | * |
40 | * Absolute error: |
41 | * arithmetic domain # trials peak rms |
42 | * IEEE 0, 30 100000 1.7e-34 2.4e-35 |
43 | * |
44 | * |
45 | */ |
46 | |
47 | /* y0l.c |
48 | * |
49 | * Bessel function of the second kind, order zero |
50 | * |
51 | * |
52 | * |
53 | * SYNOPSIS: |
54 | * |
55 | * double x, y, y0l(); |
56 | * |
57 | * y = y0l( x ); |
58 | * |
59 | * |
60 | * |
61 | * DESCRIPTION: |
62 | * |
63 | * Returns Bessel function of the second kind, of order |
64 | * zero, of the argument. |
65 | * |
66 | * The approximation is the same as for J0(x), and |
67 | * Y0(x) = sqrt(2/(pi x)) (P0(x) sin(X) + Q0(x) cos(X)). |
68 | * |
69 | * ACCURACY: |
70 | * |
71 | * Absolute error, when y0(x) < 1; else relative error: |
72 | * |
73 | * arithmetic domain # trials peak rms |
74 | * IEEE 0, 30 100000 3.0e-34 2.7e-35 |
75 | * |
76 | */ |
77 | |
78 | /* Copyright 2001 by Stephen L. Moshier (moshier@na-net.ornl.gov). |
79 | |
80 | This library is free software; you can redistribute it and/or |
81 | modify it under the terms of the GNU Lesser General Public |
82 | License as published by the Free Software Foundation; either |
83 | version 2.1 of the License, or (at your option) any later version. |
84 | |
85 | This library is distributed in the hope that it will be useful, |
86 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
87 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
88 | Lesser General Public License for more details. |
89 | |
90 | You should have received a copy of the GNU Lesser General Public |
91 | License along with this library; if not, see |
92 | <http://www.gnu.org/licenses/>. */ |
93 | |
94 | #include <math.h> |
95 | #include <math_private.h> |
96 | #include <float.h> |
97 | |
98 | /* 1 / sqrt(pi) */ |
99 | static const _Float128 ONEOSQPI = L(5.6418958354775628694807945156077258584405E-1); |
100 | /* 2 / pi */ |
101 | static const _Float128 TWOOPI = L(6.3661977236758134307553505349005744813784E-1); |
102 | static const _Float128 zero = 0; |
103 | |
104 | /* J0(x) = 1 - x^2/4 + x^2 x^2 R(x^2) |
105 | Peak relative error 3.4e-37 |
106 | 0 <= x <= 2 */ |
107 | #define NJ0_2N 6 |
108 | static const _Float128 J0_2N[NJ0_2N + 1] = { |
109 | L(3.133239376997663645548490085151484674892E16), |
110 | L(-5.479944965767990821079467311839107722107E14), |
111 | L(6.290828903904724265980249871997551894090E12), |
112 | L(-3.633750176832769659849028554429106299915E10), |
113 | L(1.207743757532429576399485415069244807022E8), |
114 | L(-2.107485999925074577174305650549367415465E5), |
115 | L(1.562826808020631846245296572935547005859E2), |
116 | }; |
117 | #define NJ0_2D 6 |
118 | static const _Float128 J0_2D[NJ0_2D + 1] = { |
119 | L(2.005273201278504733151033654496928968261E18), |
120 | L(2.063038558793221244373123294054149790864E16), |
121 | L(1.053350447931127971406896594022010524994E14), |
122 | L(3.496556557558702583143527876385508882310E11), |
123 | L(8.249114511878616075860654484367133976306E8), |
124 | L(1.402965782449571800199759247964242790589E6), |
125 | L(1.619910762853439600957801751815074787351E3), |
126 | /* 1.000000000000000000000000000000000000000E0 */ |
127 | }; |
128 | |
129 | /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2), |
130 | 0 <= 1/x <= .0625 |
131 | Peak relative error 3.3e-36 */ |
132 | #define NP16_IN 9 |
133 | static const _Float128 P16_IN[NP16_IN + 1] = { |
134 | L(-1.901689868258117463979611259731176301065E-16), |
135 | L(-1.798743043824071514483008340803573980931E-13), |
136 | L(-6.481746687115262291873324132944647438959E-11), |
137 | L(-1.150651553745409037257197798528294248012E-8), |
138 | L(-1.088408467297401082271185599507222695995E-6), |
139 | L(-5.551996725183495852661022587879817546508E-5), |
140 | L(-1.477286941214245433866838787454880214736E-3), |
141 | L(-1.882877976157714592017345347609200402472E-2), |
142 | L(-9.620983176855405325086530374317855880515E-2), |
143 | L(-1.271468546258855781530458854476627766233E-1), |
144 | }; |
145 | #define NP16_ID 9 |
146 | static const _Float128 P16_ID[NP16_ID + 1] = { |
147 | L(2.704625590411544837659891569420764475007E-15), |
148 | L(2.562526347676857624104306349421985403573E-12), |
149 | L(9.259137589952741054108665570122085036246E-10), |
150 | L(1.651044705794378365237454962653430805272E-7), |
151 | L(1.573561544138733044977714063100859136660E-5), |
152 | L(8.134482112334882274688298469629884804056E-4), |
153 | L(2.219259239404080863919375103673593571689E-2), |
154 | L(2.976990606226596289580242451096393862792E-1), |
155 | L(1.713895630454693931742734911930937246254E0), |
156 | L(3.231552290717904041465898249160757368855E0), |
157 | /* 1.000000000000000000000000000000000000000E0 */ |
158 | }; |
159 | |
160 | /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2) |
161 | 0.0625 <= 1/x <= 0.125 |
162 | Peak relative error 2.4e-35 */ |
163 | #define NP8_16N 10 |
164 | static const _Float128 P8_16N[NP8_16N + 1] = { |
165 | L(-2.335166846111159458466553806683579003632E-15), |
166 | L(-1.382763674252402720401020004169367089975E-12), |
167 | L(-3.192160804534716696058987967592784857907E-10), |
168 | L(-3.744199606283752333686144670572632116899E-8), |
169 | L(-2.439161236879511162078619292571922772224E-6), |
170 | L(-9.068436986859420951664151060267045346549E-5), |
171 | L(-1.905407090637058116299757292660002697359E-3), |
172 | L(-2.164456143936718388053842376884252978872E-2), |
173 | L(-1.212178415116411222341491717748696499966E-1), |
174 | L(-2.782433626588541494473277445959593334494E-1), |
175 | L(-1.670703190068873186016102289227646035035E-1), |
176 | }; |
177 | #define NP8_16D 10 |
178 | static const _Float128 P8_16D[NP8_16D + 1] = { |
179 | L(3.321126181135871232648331450082662856743E-14), |
180 | L(1.971894594837650840586859228510007703641E-11), |
181 | L(4.571144364787008285981633719513897281690E-9), |
182 | L(5.396419143536287457142904742849052402103E-7), |
183 | L(3.551548222385845912370226756036899901549E-5), |
184 | L(1.342353874566932014705609788054598013516E-3), |
185 | L(2.899133293006771317589357444614157734385E-2), |
186 | L(3.455374978185770197704507681491574261545E-1), |
187 | L(2.116616964297512311314454834712634820514E0), |
188 | L(5.850768316827915470087758636881584174432E0), |
189 | L(5.655273858938766830855753983631132928968E0), |
190 | /* 1.000000000000000000000000000000000000000E0 */ |
191 | }; |
192 | |
193 | /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2) |
194 | 0.125 <= 1/x <= 0.1875 |
195 | Peak relative error 2.7e-35 */ |
196 | #define NP5_8N 10 |
197 | static const _Float128 P5_8N[NP5_8N + 1] = { |
198 | L(-1.270478335089770355749591358934012019596E-12), |
199 | L(-4.007588712145412921057254992155810347245E-10), |
200 | L(-4.815187822989597568124520080486652009281E-8), |
201 | L(-2.867070063972764880024598300408284868021E-6), |
202 | L(-9.218742195161302204046454768106063638006E-5), |
203 | L(-1.635746821447052827526320629828043529997E-3), |
204 | L(-1.570376886640308408247709616497261011707E-2), |
205 | L(-7.656484795303305596941813361786219477807E-2), |
206 | L(-1.659371030767513274944805479908858628053E-1), |
207 | L(-1.185340550030955660015841796219919804915E-1), |
208 | L(-8.920026499909994671248893388013790366712E-3), |
209 | }; |
210 | #define NP5_8D 9 |
211 | static const _Float128 P5_8D[NP5_8D + 1] = { |
212 | L(1.806902521016705225778045904631543990314E-11), |
213 | L(5.728502760243502431663549179135868966031E-9), |
214 | L(6.938168504826004255287618819550667978450E-7), |
215 | L(4.183769964807453250763325026573037785902E-5), |
216 | L(1.372660678476925468014882230851637878587E-3), |
217 | L(2.516452105242920335873286419212708961771E-2), |
218 | L(2.550502712902647803796267951846557316182E-1), |
219 | L(1.365861559418983216913629123778747617072E0), |
220 | L(3.523825618308783966723472468855042541407E0), |
221 | L(3.656365803506136165615111349150536282434E0), |
222 | /* 1.000000000000000000000000000000000000000E0 */ |
223 | }; |
224 | |
225 | /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2) |
226 | Peak relative error 3.5e-35 |
227 | 0.1875 <= 1/x <= 0.25 */ |
228 | #define NP4_5N 9 |
229 | static const _Float128 P4_5N[NP4_5N + 1] = { |
230 | L(-9.791405771694098960254468859195175708252E-10), |
231 | L(-1.917193059944531970421626610188102836352E-7), |
232 | L(-1.393597539508855262243816152893982002084E-5), |
233 | L(-4.881863490846771259880606911667479860077E-4), |
234 | L(-8.946571245022470127331892085881699269853E-3), |
235 | L(-8.707474232568097513415336886103899434251E-2), |
236 | L(-4.362042697474650737898551272505525973766E-1), |
237 | L(-1.032712171267523975431451359962375617386E0), |
238 | L(-9.630502683169895107062182070514713702346E-1), |
239 | L(-2.251804386252969656586810309252357233320E-1), |
240 | }; |
241 | #define NP4_5D 9 |
242 | static const _Float128 P4_5D[NP4_5D + 1] = { |
243 | L(1.392555487577717669739688337895791213139E-8), |
244 | L(2.748886559120659027172816051276451376854E-6), |
245 | L(2.024717710644378047477189849678576659290E-4), |
246 | L(7.244868609350416002930624752604670292469E-3), |
247 | L(1.373631762292244371102989739300382152416E-1), |
248 | L(1.412298581400224267910294815260613240668E0), |
249 | L(7.742495637843445079276397723849017617210E0), |
250 | L(2.138429269198406512028307045259503811861E1), |
251 | L(2.651547684548423476506826951831712762610E1), |
252 | L(1.167499382465291931571685222882909166935E1), |
253 | /* 1.000000000000000000000000000000000000000E0 */ |
254 | }; |
255 | |
256 | /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2) |
257 | Peak relative error 2.3e-36 |
258 | 0.25 <= 1/x <= 0.3125 */ |
259 | #define NP3r2_4N 9 |
260 | static const _Float128 P3r2_4N[NP3r2_4N + 1] = { |
261 | L(-2.589155123706348361249809342508270121788E-8), |
262 | L(-3.746254369796115441118148490849195516593E-6), |
263 | L(-1.985595497390808544622893738135529701062E-4), |
264 | L(-5.008253705202932091290132760394976551426E-3), |
265 | L(-6.529469780539591572179155511840853077232E-2), |
266 | L(-4.468736064761814602927408833818990271514E-1), |
267 | L(-1.556391252586395038089729428444444823380E0), |
268 | L(-2.533135309840530224072920725976994981638E0), |
269 | L(-1.605509621731068453869408718565392869560E0), |
270 | L(-2.518966692256192789269859830255724429375E-1), |
271 | }; |
272 | #define NP3r2_4D 9 |
273 | static const _Float128 P3r2_4D[NP3r2_4D + 1] = { |
274 | L(3.682353957237979993646169732962573930237E-7), |
275 | L(5.386741661883067824698973455566332102029E-5), |
276 | L(2.906881154171822780345134853794241037053E-3), |
277 | L(7.545832595801289519475806339863492074126E-2), |
278 | L(1.029405357245594877344360389469584526654E0), |
279 | L(7.565706120589873131187989560509757626725E0), |
280 | L(2.951172890699569545357692207898667665796E1), |
281 | L(5.785723537170311456298467310529815457536E1), |
282 | L(5.095621464598267889126015412522773474467E1), |
283 | L(1.602958484169953109437547474953308401442E1), |
284 | /* 1.000000000000000000000000000000000000000E0 */ |
285 | }; |
286 | |
287 | /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2) |
288 | Peak relative error 1.0e-35 |
289 | 0.3125 <= 1/x <= 0.375 */ |
290 | #define NP2r7_3r2N 9 |
291 | static const _Float128 P2r7_3r2N[NP2r7_3r2N + 1] = { |
292 | L(-1.917322340814391131073820537027234322550E-7), |
293 | L(-1.966595744473227183846019639723259011906E-5), |
294 | L(-7.177081163619679403212623526632690465290E-4), |
295 | L(-1.206467373860974695661544653741899755695E-2), |
296 | L(-1.008656452188539812154551482286328107316E-1), |
297 | L(-4.216016116408810856620947307438823892707E-1), |
298 | L(-8.378631013025721741744285026537009814161E-1), |
299 | L(-6.973895635309960850033762745957946272579E-1), |
300 | L(-1.797864718878320770670740413285763554812E-1), |
301 | L(-4.098025357743657347681137871388402849581E-3), |
302 | }; |
303 | #define NP2r7_3r2D 8 |
304 | static const _Float128 P2r7_3r2D[NP2r7_3r2D + 1] = { |
305 | L(2.726858489303036441686496086962545034018E-6), |
306 | L(2.840430827557109238386808968234848081424E-4), |
307 | L(1.063826772041781947891481054529454088832E-2), |
308 | L(1.864775537138364773178044431045514405468E-1), |
309 | L(1.665660052857205170440952607701728254211E0), |
310 | L(7.723745889544331153080842168958348568395E0), |
311 | L(1.810726427571829798856428548102077799835E1), |
312 | L(1.986460672157794440666187503833545388527E1), |
313 | L(8.645503204552282306364296517220055815488E0), |
314 | /* 1.000000000000000000000000000000000000000E0 */ |
315 | }; |
316 | |
317 | /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2) |
318 | Peak relative error 1.3e-36 |
319 | 0.3125 <= 1/x <= 0.4375 */ |
320 | #define NP2r3_2r7N 9 |
321 | static const _Float128 P2r3_2r7N[NP2r3_2r7N + 1] = { |
322 | L(-1.594642785584856746358609622003310312622E-6), |
323 | L(-1.323238196302221554194031733595194539794E-4), |
324 | L(-3.856087818696874802689922536987100372345E-3), |
325 | L(-5.113241710697777193011470733601522047399E-2), |
326 | L(-3.334229537209911914449990372942022350558E-1), |
327 | L(-1.075703518198127096179198549659283422832E0), |
328 | L(-1.634174803414062725476343124267110981807E0), |
329 | L(-1.030133247434119595616826842367268304880E0), |
330 | L(-1.989811539080358501229347481000707289391E-1), |
331 | L(-3.246859189246653459359775001466924610236E-3), |
332 | }; |
333 | #define NP2r3_2r7D 8 |
334 | static const _Float128 P2r3_2r7D[NP2r3_2r7D + 1] = { |
335 | L(2.267936634217251403663034189684284173018E-5), |
336 | L(1.918112982168673386858072491437971732237E-3), |
337 | L(5.771704085468423159125856786653868219522E-2), |
338 | L(8.056124451167969333717642810661498890507E-1), |
339 | L(5.687897967531010276788680634413789328776E0), |
340 | L(2.072596760717695491085444438270778394421E1), |
341 | L(3.801722099819929988585197088613160496684E1), |
342 | L(3.254620235902912339534998592085115836829E1), |
343 | L(1.104847772130720331801884344645060675036E1), |
344 | /* 1.000000000000000000000000000000000000000E0 */ |
345 | }; |
346 | |
347 | /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2) |
348 | Peak relative error 1.2e-35 |
349 | 0.4375 <= 1/x <= 0.5 */ |
350 | #define NP2_2r3N 8 |
351 | static const _Float128 P2_2r3N[NP2_2r3N + 1] = { |
352 | L(-1.001042324337684297465071506097365389123E-4), |
353 | L(-6.289034524673365824853547252689991418981E-3), |
354 | L(-1.346527918018624234373664526930736205806E-1), |
355 | L(-1.268808313614288355444506172560463315102E0), |
356 | L(-5.654126123607146048354132115649177406163E0), |
357 | L(-1.186649511267312652171775803270911971693E1), |
358 | L(-1.094032424931998612551588246779200724257E1), |
359 | L(-3.728792136814520055025256353193674625267E0), |
360 | L(-3.000348318524471807839934764596331810608E-1), |
361 | }; |
362 | #define NP2_2r3D 8 |
363 | static const _Float128 P2_2r3D[NP2_2r3D + 1] = { |
364 | L(1.423705538269770974803901422532055612980E-3), |
365 | L(9.171476630091439978533535167485230575894E-2), |
366 | L(2.049776318166637248868444600215942828537E0), |
367 | L(2.068970329743769804547326701946144899583E1), |
368 | L(1.025103500560831035592731539565060347709E2), |
369 | L(2.528088049697570728252145557167066708284E2), |
370 | L(2.992160327587558573740271294804830114205E2), |
371 | L(1.540193761146551025832707739468679973036E2), |
372 | L(2.779516701986912132637672140709452502650E1), |
373 | /* 1.000000000000000000000000000000000000000E0 */ |
374 | }; |
375 | |
376 | /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x), |
377 | Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2)) |
378 | Peak relative error 2.2e-35 |
379 | 0 <= 1/x <= .0625 */ |
380 | #define NQ16_IN 10 |
381 | static const _Float128 Q16_IN[NQ16_IN + 1] = { |
382 | L(2.343640834407975740545326632205999437469E-18), |
383 | L(2.667978112927811452221176781536278257448E-15), |
384 | L(1.178415018484555397390098879501969116536E-12), |
385 | L(2.622049767502719728905924701288614016597E-10), |
386 | L(3.196908059607618864801313380896308968673E-8), |
387 | L(2.179466154171673958770030655199434798494E-6), |
388 | L(8.139959091628545225221976413795645177291E-5), |
389 | L(1.563900725721039825236927137885747138654E-3), |
390 | L(1.355172364265825167113562519307194840307E-2), |
391 | L(3.928058355906967977269780046844768588532E-2), |
392 | L(1.107891967702173292405380993183694932208E-2), |
393 | }; |
394 | #define NQ16_ID 9 |
395 | static const _Float128 Q16_ID[NQ16_ID + 1] = { |
396 | L(3.199850952578356211091219295199301766718E-17), |
397 | L(3.652601488020654842194486058637953363918E-14), |
398 | L(1.620179741394865258354608590461839031281E-11), |
399 | L(3.629359209474609630056463248923684371426E-9), |
400 | L(4.473680923894354600193264347733477363305E-7), |
401 | L(3.106368086644715743265603656011050476736E-5), |
402 | L(1.198239259946770604954664925153424252622E-3), |
403 | L(2.446041004004283102372887804475767568272E-2), |
404 | L(2.403235525011860603014707768815113698768E-1), |
405 | L(9.491006790682158612266270665136910927149E-1), |
406 | /* 1.000000000000000000000000000000000000000E0 */ |
407 | }; |
408 | |
409 | /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x), |
410 | Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2)) |
411 | Peak relative error 5.1e-36 |
412 | 0.0625 <= 1/x <= 0.125 */ |
413 | #define NQ8_16N 11 |
414 | static const _Float128 Q8_16N[NQ8_16N + 1] = { |
415 | L(1.001954266485599464105669390693597125904E-17), |
416 | L(7.545499865295034556206475956620160007849E-15), |
417 | L(2.267838684785673931024792538193202559922E-12), |
418 | L(3.561909705814420373609574999542459912419E-10), |
419 | L(3.216201422768092505214730633842924944671E-8), |
420 | L(1.731194793857907454569364622452058554314E-6), |
421 | L(5.576944613034537050396518509871004586039E-5), |
422 | L(1.051787760316848982655967052985391418146E-3), |
423 | L(1.102852974036687441600678598019883746959E-2), |
424 | L(5.834647019292460494254225988766702933571E-2), |
425 | L(1.290281921604364618912425380717127576529E-1), |
426 | L(7.598886310387075708640370806458926458301E-2), |
427 | }; |
428 | #define NQ8_16D 11 |
429 | static const _Float128 Q8_16D[NQ8_16D + 1] = { |
430 | L(1.368001558508338469503329967729951830843E-16), |
431 | L(1.034454121857542147020549303317348297289E-13), |
432 | L(3.128109209247090744354764050629381674436E-11), |
433 | L(4.957795214328501986562102573522064468671E-9), |
434 | L(4.537872468606711261992676606899273588899E-7), |
435 | L(2.493639207101727713192687060517509774182E-5), |
436 | L(8.294957278145328349785532236663051405805E-4), |
437 | L(1.646471258966713577374948205279380115839E-2), |
438 | L(1.878910092770966718491814497982191447073E-1), |
439 | L(1.152641605706170353727903052525652504075E0), |
440 | L(3.383550240669773485412333679367792932235E0), |
441 | L(3.823875252882035706910024716609908473970E0), |
442 | /* 1.000000000000000000000000000000000000000E0 */ |
443 | }; |
444 | |
445 | /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x), |
446 | Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2)) |
447 | Peak relative error 3.9e-35 |
448 | 0.125 <= 1/x <= 0.1875 */ |
449 | #define NQ5_8N 10 |
450 | static const _Float128 Q5_8N[NQ5_8N + 1] = { |
451 | L(1.750399094021293722243426623211733898747E-13), |
452 | L(6.483426211748008735242909236490115050294E-11), |
453 | L(9.279430665656575457141747875716899958373E-9), |
454 | L(6.696634968526907231258534757736576340266E-7), |
455 | L(2.666560823798895649685231292142838188061E-5), |
456 | L(6.025087697259436271271562769707550594540E-4), |
457 | L(7.652807734168613251901945778921336353485E-3), |
458 | L(5.226269002589406461622551452343519078905E-2), |
459 | L(1.748390159751117658969324896330142895079E-1), |
460 | L(2.378188719097006494782174902213083589660E-1), |
461 | L(8.383984859679804095463699702165659216831E-2), |
462 | }; |
463 | #define NQ5_8D 10 |
464 | static const _Float128 Q5_8D[NQ5_8D + 1] = { |
465 | L(2.389878229704327939008104855942987615715E-12), |
466 | L(8.926142817142546018703814194987786425099E-10), |
467 | L(1.294065862406745901206588525833274399038E-7), |
468 | L(9.524139899457666250828752185212769682191E-6), |
469 | L(3.908332488377770886091936221573123353489E-4), |
470 | L(9.250427033957236609624199884089916836748E-3), |
471 | L(1.263420066165922645975830877751588421451E-1), |
472 | L(9.692527053860420229711317379861733180654E-1), |
473 | L(3.937813834630430172221329298841520707954E0), |
474 | L(7.603126427436356534498908111445191312181E0), |
475 | L(5.670677653334105479259958485084550934305E0), |
476 | /* 1.000000000000000000000000000000000000000E0 */ |
477 | }; |
478 | |
479 | /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x), |
480 | Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2)) |
481 | Peak relative error 3.2e-35 |
482 | 0.1875 <= 1/x <= 0.25 */ |
483 | #define NQ4_5N 10 |
484 | static const _Float128 Q4_5N[NQ4_5N + 1] = { |
485 | L(2.233870042925895644234072357400122854086E-11), |
486 | L(5.146223225761993222808463878999151699792E-9), |
487 | L(4.459114531468296461688753521109797474523E-7), |
488 | L(1.891397692931537975547242165291668056276E-5), |
489 | L(4.279519145911541776938964806470674565504E-4), |
490 | L(5.275239415656560634702073291768904783989E-3), |
491 | L(3.468698403240744801278238473898432608887E-2), |
492 | L(1.138773146337708415188856882915457888274E-1), |
493 | L(1.622717518946443013587108598334636458955E-1), |
494 | L(7.249040006390586123760992346453034628227E-2), |
495 | L(1.941595365256460232175236758506411486667E-3), |
496 | }; |
497 | #define NQ4_5D 9 |
498 | static const _Float128 Q4_5D[NQ4_5D + 1] = { |
499 | L(3.049977232266999249626430127217988047453E-10), |
500 | L(7.120883230531035857746096928889676144099E-8), |
501 | L(6.301786064753734446784637919554359588859E-6), |
502 | L(2.762010530095069598480766869426308077192E-4), |
503 | L(6.572163250572867859316828886203406361251E-3), |
504 | L(8.752566114841221958200215255461843397776E-2), |
505 | L(6.487654992874805093499285311075289932664E-1), |
506 | L(2.576550017826654579451615283022812801435E0), |
507 | L(5.056392229924022835364779562707348096036E0), |
508 | L(4.179770081068251464907531367859072157773E0), |
509 | /* 1.000000000000000000000000000000000000000E0 */ |
510 | }; |
511 | |
512 | /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x), |
513 | Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2)) |
514 | Peak relative error 1.4e-36 |
515 | 0.25 <= 1/x <= 0.3125 */ |
516 | #define NQ3r2_4N 10 |
517 | static const _Float128 Q3r2_4N[NQ3r2_4N + 1] = { |
518 | L(6.126167301024815034423262653066023684411E-10), |
519 | L(1.043969327113173261820028225053598975128E-7), |
520 | L(6.592927270288697027757438170153763220190E-6), |
521 | L(2.009103660938497963095652951912071336730E-4), |
522 | L(3.220543385492643525985862356352195896964E-3), |
523 | L(2.774405975730545157543417650436941650990E-2), |
524 | L(1.258114008023826384487378016636555041129E-1), |
525 | L(2.811724258266902502344701449984698323860E-1), |
526 | L(2.691837665193548059322831687432415014067E-1), |
527 | L(7.949087384900985370683770525312735605034E-2), |
528 | L(1.229509543620976530030153018986910810747E-3), |
529 | }; |
530 | #define NQ3r2_4D 9 |
531 | static const _Float128 Q3r2_4D[NQ3r2_4D + 1] = { |
532 | L(8.364260446128475461539941389210166156568E-9), |
533 | L(1.451301850638956578622154585560759862764E-6), |
534 | L(9.431830010924603664244578867057141839463E-5), |
535 | L(3.004105101667433434196388593004526182741E-3), |
536 | L(5.148157397848271739710011717102773780221E-2), |
537 | L(4.901089301726939576055285374953887874895E-1), |
538 | L(2.581760991981709901216967665934142240346E0), |
539 | L(7.257105880775059281391729708630912791847E0), |
540 | L(1.006014717326362868007913423810737369312E1), |
541 | L(5.879416600465399514404064187445293212470E0), |
542 | /* 1.000000000000000000000000000000000000000E0*/ |
543 | }; |
544 | |
545 | /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x), |
546 | Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2)) |
547 | Peak relative error 3.8e-36 |
548 | 0.3125 <= 1/x <= 0.375 */ |
549 | #define NQ2r7_3r2N 9 |
550 | static const _Float128 Q2r7_3r2N[NQ2r7_3r2N + 1] = { |
551 | L(7.584861620402450302063691901886141875454E-8), |
552 | L(9.300939338814216296064659459966041794591E-6), |
553 | L(4.112108906197521696032158235392604947895E-4), |
554 | L(8.515168851578898791897038357239630654431E-3), |
555 | L(8.971286321017307400142720556749573229058E-2), |
556 | L(4.885856732902956303343015636331874194498E-1), |
557 | L(1.334506268733103291656253500506406045846E0), |
558 | L(1.681207956863028164179042145803851824654E0), |
559 | L(8.165042692571721959157677701625853772271E-1), |
560 | L(9.805848115375053300608712721986235900715E-2), |
561 | }; |
562 | #define NQ2r7_3r2D 9 |
563 | static const _Float128 Q2r7_3r2D[NQ2r7_3r2D + 1] = { |
564 | L(1.035586492113036586458163971239438078160E-6), |
565 | L(1.301999337731768381683593636500979713689E-4), |
566 | L(5.993695702564527062553071126719088859654E-3), |
567 | L(1.321184892887881883489141186815457808785E-1), |
568 | L(1.528766555485015021144963194165165083312E0), |
569 | L(9.561463309176490874525827051566494939295E0), |
570 | L(3.203719484883967351729513662089163356911E1), |
571 | L(5.497294687660930446641539152123568668447E1), |
572 | L(4.391158169390578768508675452986948391118E1), |
573 | L(1.347836630730048077907818943625789418378E1), |
574 | /* 1.000000000000000000000000000000000000000E0 */ |
575 | }; |
576 | |
577 | /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x), |
578 | Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2)) |
579 | Peak relative error 2.2e-35 |
580 | 0.375 <= 1/x <= 0.4375 */ |
581 | #define NQ2r3_2r7N 9 |
582 | static const _Float128 Q2r3_2r7N[NQ2r3_2r7N + 1] = { |
583 | L(4.455027774980750211349941766420190722088E-7), |
584 | L(4.031998274578520170631601850866780366466E-5), |
585 | L(1.273987274325947007856695677491340636339E-3), |
586 | L(1.818754543377448509897226554179659122873E-2), |
587 | L(1.266748858326568264126353051352269875352E-1), |
588 | L(4.327578594728723821137731555139472880414E-1), |
589 | L(6.892532471436503074928194969154192615359E-1), |
590 | L(4.490775818438716873422163588640262036506E-1), |
591 | L(8.649615949297322440032000346117031581572E-2), |
592 | L(7.261345286655345047417257611469066147561E-4), |
593 | }; |
594 | #define NQ2r3_2r7D 8 |
595 | static const _Float128 Q2r3_2r7D[NQ2r3_2r7D + 1] = { |
596 | L(6.082600739680555266312417978064954793142E-6), |
597 | L(5.693622538165494742945717226571441747567E-4), |
598 | L(1.901625907009092204458328768129666975975E-2), |
599 | L(2.958689532697857335456896889409923371570E-1), |
600 | L(2.343124711045660081603809437993368799568E0), |
601 | L(9.665894032187458293568704885528192804376E0), |
602 | L(2.035273104990617136065743426322454881353E1), |
603 | L(2.044102010478792896815088858740075165531E1), |
604 | L(8.445937177863155827844146643468706599304E0), |
605 | /* 1.000000000000000000000000000000000000000E0 */ |
606 | }; |
607 | |
608 | /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x), |
609 | Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2)) |
610 | Peak relative error 3.1e-36 |
611 | 0.4375 <= 1/x <= 0.5 */ |
612 | #define NQ2_2r3N 9 |
613 | static const _Float128 Q2_2r3N[NQ2_2r3N + 1] = { |
614 | L(2.817566786579768804844367382809101929314E-6), |
615 | L(2.122772176396691634147024348373539744935E-4), |
616 | L(5.501378031780457828919593905395747517585E-3), |
617 | L(6.355374424341762686099147452020466524659E-2), |
618 | L(3.539652320122661637429658698954748337223E-1), |
619 | L(9.571721066119617436343740541777014319695E-1), |
620 | L(1.196258777828426399432550698612171955305E0), |
621 | L(6.069388659458926158392384709893753793967E-1), |
622 | L(9.026746127269713176512359976978248763621E-2), |
623 | L(5.317668723070450235320878117210807236375E-4), |
624 | }; |
625 | #define NQ2_2r3D 8 |
626 | static const _Float128 Q2_2r3D[NQ2_2r3D + 1] = { |
627 | L(3.846924354014260866793741072933159380158E-5), |
628 | L(3.017562820057704325510067178327449946763E-3), |
629 | L(8.356305620686867949798885808540444210935E-2), |
630 | L(1.068314930499906838814019619594424586273E0), |
631 | L(6.900279623894821067017966573640732685233E0), |
632 | L(2.307667390886377924509090271780839563141E1), |
633 | L(3.921043465412723970791036825401273528513E1), |
634 | L(3.167569478939719383241775717095729233436E1), |
635 | L(1.051023841699200920276198346301543665909E1), |
636 | /* 1.000000000000000000000000000000000000000E0*/ |
637 | }; |
638 | |
639 | |
640 | /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */ |
641 | |
642 | static _Float128 |
643 | neval (_Float128 x, const _Float128 *p, int n) |
644 | { |
645 | _Float128 y; |
646 | |
647 | p += n; |
648 | y = *p--; |
649 | do |
650 | { |
651 | y = y * x + *p--; |
652 | } |
653 | while (--n > 0); |
654 | return y; |
655 | } |
656 | |
657 | |
658 | /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */ |
659 | |
660 | static _Float128 |
661 | deval (_Float128 x, const _Float128 *p, int n) |
662 | { |
663 | _Float128 y; |
664 | |
665 | p += n; |
666 | y = x + *p--; |
667 | do |
668 | { |
669 | y = y * x + *p--; |
670 | } |
671 | while (--n > 0); |
672 | return y; |
673 | } |
674 | |
675 | |
676 | /* Bessel function of the first kind, order zero. */ |
677 | |
678 | _Float128 |
679 | __ieee754_j0l (_Float128 x) |
680 | { |
681 | _Float128 xx, xinv, z, p, q, c, s, cc, ss; |
682 | |
683 | if (! isfinite (x)) |
684 | { |
685 | if (x != x) |
686 | return x + x; |
687 | else |
688 | return 0; |
689 | } |
690 | if (x == 0) |
691 | return 1; |
692 | |
693 | xx = fabsl (x); |
694 | if (xx <= 2) |
695 | { |
696 | if (xx < L(0x1p-57)) |
697 | return 1; |
698 | /* 0 <= x <= 2 */ |
699 | z = xx * xx; |
700 | p = z * z * neval (z, J0_2N, NJ0_2N) / deval (z, J0_2D, NJ0_2D); |
701 | p -= L(0.25) * z; |
702 | p += 1; |
703 | return p; |
704 | } |
705 | |
706 | /* X = x - pi/4 |
707 | cos(X) = cos(x) cos(pi/4) + sin(x) sin(pi/4) |
708 | = 1/sqrt(2) * (cos(x) + sin(x)) |
709 | sin(X) = sin(x) cos(pi/4) - cos(x) sin(pi/4) |
710 | = 1/sqrt(2) * (sin(x) - cos(x)) |
711 | sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
712 | cf. Fdlibm. */ |
713 | __sincosl (xx, &s, &c); |
714 | ss = s - c; |
715 | cc = s + c; |
716 | if (xx <= LDBL_MAX / 2) |
717 | { |
718 | z = -__cosl (xx + xx); |
719 | if ((s * c) < 0) |
720 | cc = z / ss; |
721 | else |
722 | ss = z / cc; |
723 | } |
724 | |
725 | if (xx > L(0x1p256)) |
726 | return ONEOSQPI * cc / __ieee754_sqrtl (xx); |
727 | |
728 | xinv = 1 / xx; |
729 | z = xinv * xinv; |
730 | if (xinv <= 0.25) |
731 | { |
732 | if (xinv <= 0.125) |
733 | { |
734 | if (xinv <= 0.0625) |
735 | { |
736 | p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID); |
737 | q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID); |
738 | } |
739 | else |
740 | { |
741 | p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D); |
742 | q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D); |
743 | } |
744 | } |
745 | else if (xinv <= 0.1875) |
746 | { |
747 | p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D); |
748 | q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D); |
749 | } |
750 | else |
751 | { |
752 | p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D); |
753 | q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D); |
754 | } |
755 | } /* .25 */ |
756 | else /* if (xinv <= 0.5) */ |
757 | { |
758 | if (xinv <= 0.375) |
759 | { |
760 | if (xinv <= 0.3125) |
761 | { |
762 | p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D); |
763 | q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D); |
764 | } |
765 | else |
766 | { |
767 | p = neval (z, P2r7_3r2N, NP2r7_3r2N) |
768 | / deval (z, P2r7_3r2D, NP2r7_3r2D); |
769 | q = neval (z, Q2r7_3r2N, NQ2r7_3r2N) |
770 | / deval (z, Q2r7_3r2D, NQ2r7_3r2D); |
771 | } |
772 | } |
773 | else if (xinv <= 0.4375) |
774 | { |
775 | p = neval (z, P2r3_2r7N, NP2r3_2r7N) |
776 | / deval (z, P2r3_2r7D, NP2r3_2r7D); |
777 | q = neval (z, Q2r3_2r7N, NQ2r3_2r7N) |
778 | / deval (z, Q2r3_2r7D, NQ2r3_2r7D); |
779 | } |
780 | else |
781 | { |
782 | p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D); |
783 | q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D); |
784 | } |
785 | } |
786 | p = 1 + z * p; |
787 | q = z * xinv * q; |
788 | q = q - L(0.125) * xinv; |
789 | z = ONEOSQPI * (p * cc - q * ss) / __ieee754_sqrtl (xx); |
790 | return z; |
791 | } |
792 | strong_alias (__ieee754_j0l, __j0l_finite) |
793 | |
794 | |
795 | /* Y0(x) = 2/pi * log(x) * J0(x) + R(x^2) |
796 | Peak absolute error 1.7e-36 (relative where Y0 > 1) |
797 | 0 <= x <= 2 */ |
798 | #define NY0_2N 7 |
799 | static _Float128 Y0_2N[NY0_2N + 1] = { |
800 | L(-1.062023609591350692692296993537002558155E19), |
801 | L(2.542000883190248639104127452714966858866E19), |
802 | L(-1.984190771278515324281415820316054696545E18), |
803 | L(4.982586044371592942465373274440222033891E16), |
804 | L(-5.529326354780295177243773419090123407550E14), |
805 | L(3.013431465522152289279088265336861140391E12), |
806 | L(-7.959436160727126750732203098982718347785E9), |
807 | L(8.230845651379566339707130644134372793322E6), |
808 | }; |
809 | #define NY0_2D 7 |
810 | static _Float128 Y0_2D[NY0_2D + 1] = { |
811 | L(1.438972634353286978700329883122253752192E20), |
812 | L(1.856409101981569254247700169486907405500E18), |
813 | L(1.219693352678218589553725579802986255614E16), |
814 | L(5.389428943282838648918475915779958097958E13), |
815 | L(1.774125762108874864433872173544743051653E11), |
816 | L(4.522104832545149534808218252434693007036E8), |
817 | L(8.872187401232943927082914504125234454930E5), |
818 | L(1.251945613186787532055610876304669413955E3), |
819 | /* 1.000000000000000000000000000000000000000E0 */ |
820 | }; |
821 | |
822 | static const _Float128 U0 = L(-7.3804295108687225274343927948483016310862e-02); |
823 | |
824 | /* Bessel function of the second kind, order zero. */ |
825 | |
826 | _Float128 |
827 | __ieee754_y0l(_Float128 x) |
828 | { |
829 | _Float128 xx, xinv, z, p, q, c, s, cc, ss; |
830 | |
831 | if (! isfinite (x)) |
832 | return 1 / (x + x * x); |
833 | if (x <= 0) |
834 | { |
835 | if (x < 0) |
836 | return (zero / (zero * x)); |
837 | return -1 / zero; /* -inf and divide by zero exception. */ |
838 | } |
839 | xx = fabsl (x); |
840 | if (xx <= 0x1p-57) |
841 | return U0 + TWOOPI * __ieee754_logl (x); |
842 | if (xx <= 2) |
843 | { |
844 | /* 0 <= x <= 2 */ |
845 | z = xx * xx; |
846 | p = neval (z, Y0_2N, NY0_2N) / deval (z, Y0_2D, NY0_2D); |
847 | p = TWOOPI * __ieee754_logl (x) * __ieee754_j0l (x) + p; |
848 | return p; |
849 | } |
850 | |
851 | /* X = x - pi/4 |
852 | cos(X) = cos(x) cos(pi/4) + sin(x) sin(pi/4) |
853 | = 1/sqrt(2) * (cos(x) + sin(x)) |
854 | sin(X) = sin(x) cos(pi/4) - cos(x) sin(pi/4) |
855 | = 1/sqrt(2) * (sin(x) - cos(x)) |
856 | sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
857 | cf. Fdlibm. */ |
858 | __sincosl (x, &s, &c); |
859 | ss = s - c; |
860 | cc = s + c; |
861 | if (xx <= LDBL_MAX / 2) |
862 | { |
863 | z = -__cosl (x + x); |
864 | if ((s * c) < 0) |
865 | cc = z / ss; |
866 | else |
867 | ss = z / cc; |
868 | } |
869 | |
870 | if (xx > L(0x1p256)) |
871 | return ONEOSQPI * ss / __ieee754_sqrtl (x); |
872 | |
873 | xinv = 1 / xx; |
874 | z = xinv * xinv; |
875 | if (xinv <= 0.25) |
876 | { |
877 | if (xinv <= 0.125) |
878 | { |
879 | if (xinv <= 0.0625) |
880 | { |
881 | p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID); |
882 | q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID); |
883 | } |
884 | else |
885 | { |
886 | p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D); |
887 | q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D); |
888 | } |
889 | } |
890 | else if (xinv <= 0.1875) |
891 | { |
892 | p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D); |
893 | q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D); |
894 | } |
895 | else |
896 | { |
897 | p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D); |
898 | q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D); |
899 | } |
900 | } /* .25 */ |
901 | else /* if (xinv <= 0.5) */ |
902 | { |
903 | if (xinv <= 0.375) |
904 | { |
905 | if (xinv <= 0.3125) |
906 | { |
907 | p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D); |
908 | q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D); |
909 | } |
910 | else |
911 | { |
912 | p = neval (z, P2r7_3r2N, NP2r7_3r2N) |
913 | / deval (z, P2r7_3r2D, NP2r7_3r2D); |
914 | q = neval (z, Q2r7_3r2N, NQ2r7_3r2N) |
915 | / deval (z, Q2r7_3r2D, NQ2r7_3r2D); |
916 | } |
917 | } |
918 | else if (xinv <= 0.4375) |
919 | { |
920 | p = neval (z, P2r3_2r7N, NP2r3_2r7N) |
921 | / deval (z, P2r3_2r7D, NP2r3_2r7D); |
922 | q = neval (z, Q2r3_2r7N, NQ2r3_2r7N) |
923 | / deval (z, Q2r3_2r7D, NQ2r3_2r7D); |
924 | } |
925 | else |
926 | { |
927 | p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D); |
928 | q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D); |
929 | } |
930 | } |
931 | p = 1 + z * p; |
932 | q = z * xinv * q; |
933 | q = q - L(0.125) * xinv; |
934 | z = ONEOSQPI * (p * ss + q * cc) / __ieee754_sqrtl (x); |
935 | return z; |
936 | } |
937 | strong_alias (__ieee754_y0l, __y0l_finite) |
938 | |