1 | /* e_fmodl.c -- long double version of e_fmod.c. |
2 | * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz. |
3 | */ |
4 | /* |
5 | * ==================================================== |
6 | * Copyright (C) 1993, 2011 by Sun Microsystems, Inc. All rights reserved. |
7 | * |
8 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
9 | * Permission to use, copy, modify, and distribute this |
10 | * software is freely granted, provided that this notice |
11 | * is preserved. |
12 | * ==================================================== |
13 | */ |
14 | |
15 | /* |
16 | * __ieee754_fmodl(x,y) |
17 | * Return x mod y in exact arithmetic |
18 | * Method: shift and subtract |
19 | */ |
20 | |
21 | #include <math.h> |
22 | #include <math_private.h> |
23 | |
24 | static const _Float128 one = 1.0, Zero[] = {0.0, -0.0,}; |
25 | |
26 | _Float128 |
27 | __ieee754_fmodl (_Float128 x, _Float128 y) |
28 | { |
29 | int64_t n,hx,hy,hz,ix,iy,sx,i; |
30 | u_int64_t lx,ly,lz; |
31 | |
32 | GET_LDOUBLE_WORDS64(hx,lx,x); |
33 | GET_LDOUBLE_WORDS64(hy,ly,y); |
34 | sx = hx&0x8000000000000000ULL; /* sign of x */ |
35 | hx ^=sx; /* |x| */ |
36 | hy &= 0x7fffffffffffffffLL; /* |y| */ |
37 | |
38 | /* purge off exception values */ |
39 | if((hy|ly)==0||(hx>=0x7fff000000000000LL)|| /* y=0,or x not finite */ |
40 | ((hy|((ly|-ly)>>63))>0x7fff000000000000LL)) /* or y is NaN */ |
41 | return (x*y)/(x*y); |
42 | if(hx<=hy) { |
43 | if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */ |
44 | if(lx==ly) |
45 | return Zero[(u_int64_t)sx>>63]; /* |x|=|y| return x*0*/ |
46 | } |
47 | |
48 | /* determine ix = ilogb(x) */ |
49 | if(hx<0x0001000000000000LL) { /* subnormal x */ |
50 | if(hx==0) { |
51 | for (ix = -16431, i=lx; i>0; i<<=1) ix -=1; |
52 | } else { |
53 | for (ix = -16382, i=hx<<15; i>0; i<<=1) ix -=1; |
54 | } |
55 | } else ix = (hx>>48)-0x3fff; |
56 | |
57 | /* determine iy = ilogb(y) */ |
58 | if(hy<0x0001000000000000LL) { /* subnormal y */ |
59 | if(hy==0) { |
60 | for (iy = -16431, i=ly; i>0; i<<=1) iy -=1; |
61 | } else { |
62 | for (iy = -16382, i=hy<<15; i>0; i<<=1) iy -=1; |
63 | } |
64 | } else iy = (hy>>48)-0x3fff; |
65 | |
66 | /* set up {hx,lx}, {hy,ly} and align y to x */ |
67 | if(ix >= -16382) |
68 | hx = 0x0001000000000000LL|(0x0000ffffffffffffLL&hx); |
69 | else { /* subnormal x, shift x to normal */ |
70 | n = -16382-ix; |
71 | if(n<=63) { |
72 | hx = (hx<<n)|(lx>>(64-n)); |
73 | lx <<= n; |
74 | } else { |
75 | hx = lx<<(n-64); |
76 | lx = 0; |
77 | } |
78 | } |
79 | if(iy >= -16382) |
80 | hy = 0x0001000000000000LL|(0x0000ffffffffffffLL&hy); |
81 | else { /* subnormal y, shift y to normal */ |
82 | n = -16382-iy; |
83 | if(n<=63) { |
84 | hy = (hy<<n)|(ly>>(64-n)); |
85 | ly <<= n; |
86 | } else { |
87 | hy = ly<<(n-64); |
88 | ly = 0; |
89 | } |
90 | } |
91 | |
92 | /* fix point fmod */ |
93 | n = ix - iy; |
94 | while(n--) { |
95 | hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; |
96 | if(hz<0){hx = hx+hx+(lx>>63); lx = lx+lx;} |
97 | else { |
98 | if((hz|lz)==0) /* return sign(x)*0 */ |
99 | return Zero[(u_int64_t)sx>>63]; |
100 | hx = hz+hz+(lz>>63); lx = lz+lz; |
101 | } |
102 | } |
103 | hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; |
104 | if(hz>=0) {hx=hz;lx=lz;} |
105 | |
106 | /* convert back to floating value and restore the sign */ |
107 | if((hx|lx)==0) /* return sign(x)*0 */ |
108 | return Zero[(u_int64_t)sx>>63]; |
109 | while(hx<0x0001000000000000LL) { /* normalize x */ |
110 | hx = hx+hx+(lx>>63); lx = lx+lx; |
111 | iy -= 1; |
112 | } |
113 | if(iy>= -16382) { /* normalize output */ |
114 | hx = ((hx-0x0001000000000000LL)|((iy+16383)<<48)); |
115 | SET_LDOUBLE_WORDS64(x,hx|sx,lx); |
116 | } else { /* subnormal output */ |
117 | n = -16382 - iy; |
118 | if(n<=48) { |
119 | lx = (lx>>n)|((u_int64_t)hx<<(64-n)); |
120 | hx >>= n; |
121 | } else if (n<=63) { |
122 | lx = (hx<<(64-n))|(lx>>n); hx = sx; |
123 | } else { |
124 | lx = hx>>(n-64); hx = sx; |
125 | } |
126 | SET_LDOUBLE_WORDS64(x,hx|sx,lx); |
127 | x *= one; /* create necessary signal */ |
128 | } |
129 | return x; /* exact output */ |
130 | } |
131 | strong_alias (__ieee754_fmodl, __fmodl_finite) |
132 | |