| 1 | /* e_fmodl.c -- long double version of e_fmod.c. | 
| 2 |  * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz. | 
| 3 |  */ | 
| 4 | /* | 
| 5 |  * ==================================================== | 
| 6 |  * Copyright (C) 1993, 2011 by Sun Microsystems, Inc. All rights reserved. | 
| 7 |  * | 
| 8 |  * Developed at SunPro, a Sun Microsystems, Inc. business. | 
| 9 |  * Permission to use, copy, modify, and distribute this | 
| 10 |  * software is freely granted, provided that this notice | 
| 11 |  * is preserved. | 
| 12 |  * ==================================================== | 
| 13 |  */ | 
| 14 |  | 
| 15 | /* | 
| 16 |  * __ieee754_fmodl(x,y) | 
| 17 |  * Return x mod y in exact arithmetic | 
| 18 |  * Method: shift and subtract | 
| 19 |  */ | 
| 20 |  | 
| 21 | #include <math.h> | 
| 22 | #include <math_private.h> | 
| 23 |  | 
| 24 | static const _Float128 one = 1.0, Zero[] = {0.0, -0.0,}; | 
| 25 |  | 
| 26 | _Float128 | 
| 27 | __ieee754_fmodl (_Float128 x, _Float128 y) | 
| 28 | { | 
| 29 | 	int64_t n,hx,hy,hz,ix,iy,sx,i; | 
| 30 | 	u_int64_t lx,ly,lz; | 
| 31 |  | 
| 32 | 	GET_LDOUBLE_WORDS64(hx,lx,x); | 
| 33 | 	GET_LDOUBLE_WORDS64(hy,ly,y); | 
| 34 | 	sx = hx&0x8000000000000000ULL;		/* sign of x */ | 
| 35 | 	hx ^=sx;				/* |x| */ | 
| 36 | 	hy &= 0x7fffffffffffffffLL;		/* |y| */ | 
| 37 |  | 
| 38 |     /* purge off exception values */ | 
| 39 | 	if((hy|ly)==0||(hx>=0x7fff000000000000LL)|| /* y=0,or x not finite */ | 
| 40 | 	  ((hy|((ly|-ly)>>63))>0x7fff000000000000LL))	/* or y is NaN */ | 
| 41 | 	    return (x*y)/(x*y); | 
| 42 | 	if(hx<=hy) { | 
| 43 | 	    if((hx<hy)||(lx<ly)) return x;	/* |x|<|y| return x */ | 
| 44 | 	    if(lx==ly) | 
| 45 | 		return Zero[(u_int64_t)sx>>63];	/* |x|=|y| return x*0*/ | 
| 46 | 	} | 
| 47 |  | 
| 48 |     /* determine ix = ilogb(x) */ | 
| 49 | 	if(hx<0x0001000000000000LL) {	/* subnormal x */ | 
| 50 | 	    if(hx==0) { | 
| 51 | 		for (ix = -16431, i=lx; i>0; i<<=1) ix -=1; | 
| 52 | 	    } else { | 
| 53 | 		for (ix = -16382, i=hx<<15; i>0; i<<=1) ix -=1; | 
| 54 | 	    } | 
| 55 | 	} else ix = (hx>>48)-0x3fff; | 
| 56 |  | 
| 57 |     /* determine iy = ilogb(y) */ | 
| 58 | 	if(hy<0x0001000000000000LL) {	/* subnormal y */ | 
| 59 | 	    if(hy==0) { | 
| 60 | 		for (iy = -16431, i=ly; i>0; i<<=1) iy -=1; | 
| 61 | 	    } else { | 
| 62 | 		for (iy = -16382, i=hy<<15; i>0; i<<=1) iy -=1; | 
| 63 | 	    } | 
| 64 | 	} else iy = (hy>>48)-0x3fff; | 
| 65 |  | 
| 66 |     /* set up {hx,lx}, {hy,ly} and align y to x */ | 
| 67 | 	if(ix >= -16382) | 
| 68 | 	    hx = 0x0001000000000000LL|(0x0000ffffffffffffLL&hx); | 
| 69 | 	else {		/* subnormal x, shift x to normal */ | 
| 70 | 	    n = -16382-ix; | 
| 71 | 	    if(n<=63) { | 
| 72 | 		hx = (hx<<n)|(lx>>(64-n)); | 
| 73 | 		lx <<= n; | 
| 74 | 	    } else { | 
| 75 | 		hx = lx<<(n-64); | 
| 76 | 		lx = 0; | 
| 77 | 	    } | 
| 78 | 	} | 
| 79 | 	if(iy >= -16382) | 
| 80 | 	    hy = 0x0001000000000000LL|(0x0000ffffffffffffLL&hy); | 
| 81 | 	else {		/* subnormal y, shift y to normal */ | 
| 82 | 	    n = -16382-iy; | 
| 83 | 	    if(n<=63) { | 
| 84 | 		hy = (hy<<n)|(ly>>(64-n)); | 
| 85 | 		ly <<= n; | 
| 86 | 	    } else { | 
| 87 | 		hy = ly<<(n-64); | 
| 88 | 		ly = 0; | 
| 89 | 	    } | 
| 90 | 	} | 
| 91 |  | 
| 92 |     /* fix point fmod */ | 
| 93 | 	n = ix - iy; | 
| 94 | 	while(n--) { | 
| 95 | 	    hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; | 
| 96 | 	    if(hz<0){hx = hx+hx+(lx>>63); lx = lx+lx;} | 
| 97 | 	    else { | 
| 98 | 		if((hz|lz)==0)		/* return sign(x)*0 */ | 
| 99 | 		    return Zero[(u_int64_t)sx>>63]; | 
| 100 | 		hx = hz+hz+(lz>>63); lx = lz+lz; | 
| 101 | 	    } | 
| 102 | 	} | 
| 103 | 	hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; | 
| 104 | 	if(hz>=0) {hx=hz;lx=lz;} | 
| 105 |  | 
| 106 |     /* convert back to floating value and restore the sign */ | 
| 107 | 	if((hx|lx)==0)			/* return sign(x)*0 */ | 
| 108 | 	    return Zero[(u_int64_t)sx>>63]; | 
| 109 | 	while(hx<0x0001000000000000LL) {	/* normalize x */ | 
| 110 | 	    hx = hx+hx+(lx>>63); lx = lx+lx; | 
| 111 | 	    iy -= 1; | 
| 112 | 	} | 
| 113 | 	if(iy>= -16382) {	/* normalize output */ | 
| 114 | 	    hx = ((hx-0x0001000000000000LL)|((iy+16383)<<48)); | 
| 115 | 	    SET_LDOUBLE_WORDS64(x,hx|sx,lx); | 
| 116 | 	} else {		/* subnormal output */ | 
| 117 | 	    n = -16382 - iy; | 
| 118 | 	    if(n<=48) { | 
| 119 | 		lx = (lx>>n)|((u_int64_t)hx<<(64-n)); | 
| 120 | 		hx >>= n; | 
| 121 | 	    } else if (n<=63) { | 
| 122 | 		lx = (hx<<(64-n))|(lx>>n); hx = sx; | 
| 123 | 	    } else { | 
| 124 | 		lx = hx>>(n-64); hx = sx; | 
| 125 | 	    } | 
| 126 | 	    SET_LDOUBLE_WORDS64(x,hx|sx,lx); | 
| 127 | 	    x *= one;		/* create necessary signal */ | 
| 128 | 	} | 
| 129 | 	return x;		/* exact output */ | 
| 130 | } | 
| 131 | strong_alias (__ieee754_fmodl, __fmodl_finite) | 
| 132 |  |