| 1 | /* |
| 2 | * ==================================================== |
| 3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 4 | * |
| 5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 6 | * Permission to use, copy, modify, and distribute this |
| 7 | * software is freely granted, provided that this notice |
| 8 | * is preserved. |
| 9 | * ==================================================== |
| 10 | */ |
| 11 | |
| 12 | /* __ieee754_log2(x) |
| 13 | * Return the logarithm to base 2 of x |
| 14 | * |
| 15 | * Method : |
| 16 | * 1. Argument Reduction: find k and f such that |
| 17 | * x = 2^k * (1+f), |
| 18 | * where sqrt(2)/2 < 1+f < sqrt(2) . |
| 19 | * |
| 20 | * 2. Approximation of log(1+f). |
| 21 | * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) |
| 22 | * = 2s + 2/3 s**3 + 2/5 s**5 + ....., |
| 23 | * = 2s + s*R |
| 24 | * We use a special Reme algorithm on [0,0.1716] to generate |
| 25 | * a polynomial of degree 14 to approximate R The maximum error |
| 26 | * of this polynomial approximation is bounded by 2**-58.45. In |
| 27 | * other words, |
| 28 | * 2 4 6 8 10 12 14 |
| 29 | * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s |
| 30 | * (the values of Lg1 to Lg7 are listed in the program) |
| 31 | * and |
| 32 | * | 2 14 | -58.45 |
| 33 | * | Lg1*s +...+Lg7*s - R(z) | <= 2 |
| 34 | * | | |
| 35 | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. |
| 36 | * In order to guarantee error in log below 1ulp, we compute log |
| 37 | * by |
| 38 | * log(1+f) = f - s*(f - R) (if f is not too large) |
| 39 | * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) |
| 40 | * |
| 41 | * 3. Finally, log(x) = k + log(1+f). |
| 42 | * = k+(f-(hfsq-(s*(hfsq+R)))) |
| 43 | * |
| 44 | * Special cases: |
| 45 | * log2(x) is NaN with signal if x < 0 (including -INF) ; |
| 46 | * log2(+INF) is +INF; log(0) is -INF with signal; |
| 47 | * log2(NaN) is that NaN with no signal. |
| 48 | * |
| 49 | * Constants: |
| 50 | * The hexadecimal values are the intended ones for the following |
| 51 | * constants. The decimal values may be used, provided that the |
| 52 | * compiler will convert from decimal to binary accurately enough |
| 53 | * to produce the hexadecimal values shown. |
| 54 | */ |
| 55 | |
| 56 | #include <math.h> |
| 57 | #include <math_private.h> |
| 58 | |
| 59 | static const double ln2 = 0.69314718055994530942; |
| 60 | static const double two54 = 1.80143985094819840000e+16; /* 4350000000000000 */ |
| 61 | static const double Lg1 = 6.666666666666735130e-01; /* 3FE5555555555593 */ |
| 62 | static const double Lg2 = 3.999999999940941908e-01; /* 3FD999999997FA04 */ |
| 63 | static const double Lg3 = 2.857142874366239149e-01; /* 3FD2492494229359 */ |
| 64 | static const double Lg4 = 2.222219843214978396e-01; /* 3FCC71C51D8E78AF */ |
| 65 | static const double Lg5 = 1.818357216161805012e-01; /* 3FC7466496CB03DE */ |
| 66 | static const double Lg6 = 1.531383769920937332e-01; /* 3FC39A09D078C69F */ |
| 67 | static const double Lg7 = 1.479819860511658591e-01; /* 3FC2F112DF3E5244 */ |
| 68 | |
| 69 | static const double zero = 0.0; |
| 70 | |
| 71 | double |
| 72 | __ieee754_log2 (double x) |
| 73 | { |
| 74 | double hfsq, f, s, z, R, w, t1, t2, dk; |
| 75 | int64_t hx, i, j; |
| 76 | int32_t k; |
| 77 | |
| 78 | EXTRACT_WORDS64 (hx, x); |
| 79 | |
| 80 | k = 0; |
| 81 | if (hx < INT64_C(0x0010000000000000)) |
| 82 | { /* x < 2**-1022 */ |
| 83 | if (__glibc_unlikely ((hx & UINT64_C(0x7fffffffffffffff)) == 0)) |
| 84 | return -two54 / (x - x); /* log(+-0)=-inf */ |
| 85 | if (__glibc_unlikely (hx < 0)) |
| 86 | return (x - x) / (x - x); /* log(-#) = NaN */ |
| 87 | k -= 54; |
| 88 | x *= two54; /* subnormal number, scale up x */ |
| 89 | EXTRACT_WORDS64 (hx, x); |
| 90 | } |
| 91 | if (__glibc_unlikely (hx >= UINT64_C(0x7ff0000000000000))) |
| 92 | return x + x; |
| 93 | k += (hx >> 52) - 1023; |
| 94 | hx &= UINT64_C(0x000fffffffffffff); |
| 95 | i = (hx + UINT64_C(0x95f6400000000)) & UINT64_C(0x10000000000000); |
| 96 | /* normalize x or x/2 */ |
| 97 | INSERT_WORDS64 (x, hx | (i ^ UINT64_C(0x3ff0000000000000))); |
| 98 | k += (i >> 52); |
| 99 | dk = (double) k; |
| 100 | f = x - 1.0; |
| 101 | if ((UINT64_C(0x000fffffffffffff) & (2 + hx)) < 3) |
| 102 | { /* |f| < 2**-20 */ |
| 103 | if (f == zero) |
| 104 | return dk; |
| 105 | R = f * f * (0.5 - 0.33333333333333333 * f); |
| 106 | return dk - (R - f) / ln2; |
| 107 | } |
| 108 | s = f / (2.0 + f); |
| 109 | z = s * s; |
| 110 | i = hx - UINT64_C(0x6147a00000000); |
| 111 | w = z * z; |
| 112 | j = UINT64_C(0x6b85100000000) - hx; |
| 113 | t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); |
| 114 | t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); |
| 115 | i |= j; |
| 116 | R = t2 + t1; |
| 117 | if (i > 0) |
| 118 | { |
| 119 | hfsq = 0.5 * f * f; |
| 120 | return dk - ((hfsq - (s * (hfsq + R))) - f) / ln2; |
| 121 | } |
| 122 | else |
| 123 | { |
| 124 | return dk - ((s * (f - R)) - f) / ln2; |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | strong_alias (__ieee754_log2, __log2_finite) |
| 129 | |