| 1 | /* |
| 2 | * IBM Accurate Mathematical Library |
| 3 | * written by International Business Machines Corp. |
| 4 | * Copyright (C) 2001-2017 Free Software Foundation, Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU Lesser General Public License as published by |
| 8 | * the Free Software Foundation; either version 2.1 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU Lesser General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Lesser General Public License |
| 17 | * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | /*************************************************************************/ |
| 20 | /* MODULE_NAME:mpexp.c */ |
| 21 | /* */ |
| 22 | /* FUNCTIONS: mpexp */ |
| 23 | /* */ |
| 24 | /* FILES NEEDED: mpa.h endian.h mpexp.h */ |
| 25 | /* mpa.c */ |
| 26 | /* */ |
| 27 | /* Multi-Precision exponential function subroutine */ |
| 28 | /* ( for p >= 4, 2**(-55) <= abs(x) <= 1024 ). */ |
| 29 | /*************************************************************************/ |
| 30 | |
| 31 | #include "endian.h" |
| 32 | #include "mpa.h" |
| 33 | #include <assert.h> |
| 34 | |
| 35 | #ifndef SECTION |
| 36 | # define SECTION |
| 37 | #endif |
| 38 | |
| 39 | /* Multi-Precision exponential function subroutine (for p >= 4, |
| 40 | 2**(-55) <= abs(x) <= 1024). */ |
| 41 | void |
| 42 | SECTION |
| 43 | __mpexp (mp_no *x, mp_no *y, int p) |
| 44 | { |
| 45 | int i, j, k, m, m1, m2, n; |
| 46 | mantissa_t b; |
| 47 | static const int np[33] = |
| 48 | { |
| 49 | 0, 0, 0, 0, 3, 3, 4, 4, 5, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, |
| 50 | 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8 |
| 51 | }; |
| 52 | |
| 53 | static const int m1p[33] = |
| 54 | { |
| 55 | 0, 0, 0, 0, |
| 56 | 17, 23, 23, 28, |
| 57 | 27, 38, 42, 39, |
| 58 | 43, 47, 43, 47, |
| 59 | 50, 54, 57, 60, |
| 60 | 64, 67, 71, 74, |
| 61 | 68, 71, 74, 77, |
| 62 | 70, 73, 76, 78, |
| 63 | 81 |
| 64 | }; |
| 65 | static const int m1np[7][18] = |
| 66 | { |
| 67 | {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
| 68 | {0, 0, 0, 0, 36, 48, 60, 72, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
| 69 | {0, 0, 0, 0, 24, 32, 40, 48, 56, 64, 72, 0, 0, 0, 0, 0, 0, 0}, |
| 70 | {0, 0, 0, 0, 17, 23, 29, 35, 41, 47, 53, 59, 65, 0, 0, 0, 0, 0}, |
| 71 | {0, 0, 0, 0, 0, 0, 23, 28, 33, 38, 42, 47, 52, 57, 62, 66, 0, 0}, |
| 72 | {0, 0, 0, 0, 0, 0, 0, 0, 27, 0, 0, 39, 43, 47, 51, 55, 59, 63}, |
| 73 | {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 43, 47, 50, 54} |
| 74 | }; |
| 75 | mp_no mps, mpk, mpt1, mpt2; |
| 76 | |
| 77 | /* Choose m,n and compute a=2**(-m). */ |
| 78 | n = np[p]; |
| 79 | m1 = m1p[p]; |
| 80 | b = X[1]; |
| 81 | m2 = 24 * EX; |
| 82 | for (; b < HALFRAD; m2--) |
| 83 | b *= 2; |
| 84 | if (b == HALFRAD) |
| 85 | { |
| 86 | for (i = 2; i <= p; i++) |
| 87 | { |
| 88 | if (X[i] != 0) |
| 89 | break; |
| 90 | } |
| 91 | if (i == p + 1) |
| 92 | m2--; |
| 93 | } |
| 94 | |
| 95 | m = m1 + m2; |
| 96 | if (__glibc_unlikely (m <= 0)) |
| 97 | { |
| 98 | /* The m1np array which is used to determine if we can reduce the |
| 99 | polynomial expansion iterations, has only 18 elements. Besides, |
| 100 | numbers smaller than those required by p >= 18 should not come here |
| 101 | at all since the fast phase of exp returns 1.0 for anything less |
| 102 | than 2^-55. */ |
| 103 | assert (p < 18); |
| 104 | m = 0; |
| 105 | for (i = n - 1; i > 0; i--, n--) |
| 106 | if (m1np[i][p] + m2 > 0) |
| 107 | break; |
| 108 | } |
| 109 | |
| 110 | /* Compute s=x*2**(-m). Put result in mps. This is the range-reduced input |
| 111 | that we will use to compute e^s. For the final result, simply raise it |
| 112 | to 2^m. */ |
| 113 | __pow_mp (-m, &mpt1, p); |
| 114 | __mul (x, &mpt1, &mps, p); |
| 115 | |
| 116 | /* Compute the Taylor series for e^s: |
| 117 | |
| 118 | 1 + x/1! + x^2/2! + x^3/3! ... |
| 119 | |
| 120 | for N iterations. We compute this as: |
| 121 | |
| 122 | e^x = 1 + (x * n!/1! + x^2 * n!/2! + x^3 * n!/3!) / n! |
| 123 | = 1 + (x * (n!/1! + x * (n!/2! + x * (n!/3! + x ...)))) / n! |
| 124 | |
| 125 | k! is computed on the fly as KF and at the end of the polynomial loop, KF |
| 126 | is n!, which can be used directly. */ |
| 127 | __cpy (&mps, &mpt2, p); |
| 128 | |
| 129 | double kf = 1.0; |
| 130 | |
| 131 | /* Evaluate the rest. The result will be in mpt2. */ |
| 132 | for (k = n - 1; k > 0; k--) |
| 133 | { |
| 134 | /* n! / k! = n * (n - 1) ... * (n - k + 1) */ |
| 135 | kf *= k + 1; |
| 136 | |
| 137 | __dbl_mp (kf, &mpk, p); |
| 138 | __add (&mpt2, &mpk, &mpt1, p); |
| 139 | __mul (&mps, &mpt1, &mpt2, p); |
| 140 | } |
| 141 | __dbl_mp (kf, &mpk, p); |
| 142 | __dvd (&mpt2, &mpk, &mpt1, p); |
| 143 | __add (&__mpone, &mpt1, &mpt2, p); |
| 144 | |
| 145 | /* Raise polynomial value to the power of 2**m. Put result in y. */ |
| 146 | for (k = 0, j = 0; k < m;) |
| 147 | { |
| 148 | __sqr (&mpt2, &mpt1, p); |
| 149 | k++; |
| 150 | if (k == m) |
| 151 | { |
| 152 | j = 1; |
| 153 | break; |
| 154 | } |
| 155 | __sqr (&mpt1, &mpt2, p); |
| 156 | k++; |
| 157 | } |
| 158 | if (j) |
| 159 | __cpy (&mpt1, y, p); |
| 160 | else |
| 161 | __cpy (&mpt2, y, p); |
| 162 | return; |
| 163 | } |
| 164 | |