| 1 | /* |
| 2 | * IBM Accurate Mathematical Library |
| 3 | * written by International Business Machines Corp. |
| 4 | * Copyright (C) 2001-2017 Free Software Foundation, Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU Lesser General Public License as published by |
| 8 | * the Free Software Foundation; either version 2.1 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU Lesser General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Lesser General Public License |
| 17 | * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | /************************************************************************/ |
| 20 | /* */ |
| 21 | /* MODULE_NAME:halfulp.c */ |
| 22 | /* */ |
| 23 | /* FUNCTIONS:halfulp */ |
| 24 | /* FILES NEEDED: mydefs.h dla.h endian.h */ |
| 25 | /* uroot.c */ |
| 26 | /* */ |
| 27 | /*Routine halfulp(double x, double y) computes x^y where result does */ |
| 28 | /*not need rounding. If the result is closer to 0 than can be */ |
| 29 | /*represented it returns 0. */ |
| 30 | /* In the following cases the function does not compute anything */ |
| 31 | /*and returns a negative number: */ |
| 32 | /*1. if the result needs rounding, */ |
| 33 | /*2. if y is outside the interval [0, 2^20-1], */ |
| 34 | /*3. if x can be represented by x=2**n for some integer n. */ |
| 35 | /************************************************************************/ |
| 36 | |
| 37 | #include "endian.h" |
| 38 | #include "mydefs.h" |
| 39 | #include <dla.h> |
| 40 | #include <math_private.h> |
| 41 | |
| 42 | #ifndef SECTION |
| 43 | # define SECTION |
| 44 | #endif |
| 45 | |
| 46 | static const int4 tab54[32] = { |
| 47 | 262143, 11585, 1782, 511, 210, 107, 63, 42, |
| 48 | 30, 22, 17, 14, 12, 10, 9, 7, |
| 49 | 7, 6, 5, 5, 5, 4, 4, 4, |
| 50 | 3, 3, 3, 3, 3, 3, 3, 3 |
| 51 | }; |
| 52 | |
| 53 | |
| 54 | double |
| 55 | SECTION |
| 56 | __halfulp (double x, double y) |
| 57 | { |
| 58 | mynumber v; |
| 59 | double z, u, uu; |
| 60 | #ifndef DLA_FMS |
| 61 | double j1, j2, j3, j4, j5; |
| 62 | #endif |
| 63 | int4 k, l, m, n; |
| 64 | if (y <= 0) /*if power is negative or zero */ |
| 65 | { |
| 66 | v.x = y; |
| 67 | if (v.i[LOW_HALF] != 0) |
| 68 | return -10.0; |
| 69 | v.x = x; |
| 70 | if (v.i[LOW_HALF] != 0) |
| 71 | return -10.0; |
| 72 | if ((v.i[HIGH_HALF] & 0x000fffff) != 0) |
| 73 | return -10; /* if x =2 ^ n */ |
| 74 | k = ((v.i[HIGH_HALF] & 0x7fffffff) >> 20) - 1023; /* find this n */ |
| 75 | z = (double) k; |
| 76 | return (z * y == -1075.0) ? 0 : -10.0; |
| 77 | } |
| 78 | /* if y > 0 */ |
| 79 | v.x = y; |
| 80 | if (v.i[LOW_HALF] != 0) |
| 81 | return -10.0; |
| 82 | |
| 83 | v.x = x; |
| 84 | /* case where x = 2**n for some integer n */ |
| 85 | if (((v.i[HIGH_HALF] & 0x000fffff) | v.i[LOW_HALF]) == 0) |
| 86 | { |
| 87 | k = (v.i[HIGH_HALF] >> 20) - 1023; |
| 88 | return (((double) k) * y == -1075.0) ? 0 : -10.0; |
| 89 | } |
| 90 | |
| 91 | v.x = y; |
| 92 | k = v.i[HIGH_HALF]; |
| 93 | m = k << 12; |
| 94 | l = 0; |
| 95 | while (m) |
| 96 | { |
| 97 | m = m << 1; l++; |
| 98 | } |
| 99 | n = (k & 0x000fffff) | 0x00100000; |
| 100 | n = n >> (20 - l); /* n is the odd integer of y */ |
| 101 | k = ((k >> 20) - 1023) - l; /* y = n*2**k */ |
| 102 | if (k > 5) |
| 103 | return -10.0; |
| 104 | if (k > 0) |
| 105 | for (; k > 0; k--) |
| 106 | n *= 2; |
| 107 | if (n > 34) |
| 108 | return -10.0; |
| 109 | k = -k; |
| 110 | if (k > 5) |
| 111 | return -10.0; |
| 112 | |
| 113 | /* now treat x */ |
| 114 | while (k > 0) |
| 115 | { |
| 116 | z = __ieee754_sqrt (x); |
| 117 | EMULV (z, z, u, uu, j1, j2, j3, j4, j5); |
| 118 | if (((u - x) + uu) != 0) |
| 119 | break; |
| 120 | x = z; |
| 121 | k--; |
| 122 | } |
| 123 | if (k) |
| 124 | return -10.0; |
| 125 | |
| 126 | /* it is impossible that n == 2, so the mantissa of x must be short */ |
| 127 | |
| 128 | v.x = x; |
| 129 | if (v.i[LOW_HALF]) |
| 130 | return -10.0; |
| 131 | k = v.i[HIGH_HALF]; |
| 132 | m = k << 12; |
| 133 | l = 0; |
| 134 | while (m) |
| 135 | { |
| 136 | m = m << 1; l++; |
| 137 | } |
| 138 | m = (k & 0x000fffff) | 0x00100000; |
| 139 | m = m >> (20 - l); /* m is the odd integer of x */ |
| 140 | |
| 141 | /* now check whether the length of m**n is at most 54 bits */ |
| 142 | |
| 143 | if (m > tab54[n - 3]) |
| 144 | return -10.0; |
| 145 | |
| 146 | /* yes, it is - now compute x**n by simple multiplications */ |
| 147 | |
| 148 | u = x; |
| 149 | for (k = 1; k < n; k++) |
| 150 | u = u * x; |
| 151 | return u; |
| 152 | } |
| 153 | |