| 1 | /* |
| 2 | * IBM Accurate Mathematical Library |
| 3 | * written by International Business Machines Corp. |
| 4 | * Copyright (C) 2001-2017 Free Software Foundation, Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU Lesser General Public License as published by |
| 8 | * the Free Software Foundation; either version 2.1 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU Lesser General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Lesser General Public License |
| 17 | * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | /***************************************************************************/ |
| 20 | /* MODULE_NAME: upow.c */ |
| 21 | /* */ |
| 22 | /* FUNCTIONS: upow */ |
| 23 | /* power1 */ |
| 24 | /* my_log2 */ |
| 25 | /* log1 */ |
| 26 | /* checkint */ |
| 27 | /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h */ |
| 28 | /* halfulp.c mpexp.c mplog.c slowexp.c slowpow.c mpa.c */ |
| 29 | /* uexp.c upow.c */ |
| 30 | /* root.tbl uexp.tbl upow.tbl */ |
| 31 | /* An ultimate power routine. Given two IEEE double machine numbers y,x */ |
| 32 | /* it computes the correctly rounded (to nearest) value of x^y. */ |
| 33 | /* Assumption: Machine arithmetic operations are performed in */ |
| 34 | /* round to nearest mode of IEEE 754 standard. */ |
| 35 | /* */ |
| 36 | /***************************************************************************/ |
| 37 | #include <math.h> |
| 38 | #include "endian.h" |
| 39 | #include "upow.h" |
| 40 | #include <dla.h> |
| 41 | #include "mydefs.h" |
| 42 | #include "MathLib.h" |
| 43 | #include "upow.tbl" |
| 44 | #include <math_private.h> |
| 45 | #include <fenv.h> |
| 46 | |
| 47 | #ifndef SECTION |
| 48 | # define SECTION |
| 49 | #endif |
| 50 | |
| 51 | static const double huge = 1.0e300, tiny = 1.0e-300; |
| 52 | |
| 53 | double __exp1 (double x, double xx, double error); |
| 54 | static double log1 (double x, double *delta, double *error); |
| 55 | static double my_log2 (double x, double *delta, double *error); |
| 56 | double __slowpow (double x, double y, double z); |
| 57 | static double power1 (double x, double y); |
| 58 | static int checkint (double x); |
| 59 | |
| 60 | /* An ultimate power routine. Given two IEEE double machine numbers y, x it |
| 61 | computes the correctly rounded (to nearest) value of X^y. */ |
| 62 | double |
| 63 | SECTION |
| 64 | __ieee754_pow (double x, double y) |
| 65 | { |
| 66 | double z, a, aa, error, t, a1, a2, y1, y2; |
| 67 | mynumber u, v; |
| 68 | int k; |
| 69 | int4 qx, qy; |
| 70 | v.x = y; |
| 71 | u.x = x; |
| 72 | if (v.i[LOW_HALF] == 0) |
| 73 | { /* of y */ |
| 74 | qx = u.i[HIGH_HALF] & 0x7fffffff; |
| 75 | /* Is x a NaN? */ |
| 76 | if ((((qx == 0x7ff00000) && (u.i[LOW_HALF] != 0)) || (qx > 0x7ff00000)) |
| 77 | && (y != 0 || issignaling (x))) |
| 78 | return x + x; |
| 79 | if (y == 1.0) |
| 80 | return x; |
| 81 | if (y == 2.0) |
| 82 | return x * x; |
| 83 | if (y == -1.0) |
| 84 | return 1.0 / x; |
| 85 | if (y == 0) |
| 86 | return 1.0; |
| 87 | } |
| 88 | /* else */ |
| 89 | if (((u.i[HIGH_HALF] > 0 && u.i[HIGH_HALF] < 0x7ff00000) || /* x>0 and not x->0 */ |
| 90 | (u.i[HIGH_HALF] == 0 && u.i[LOW_HALF] != 0)) && |
| 91 | /* 2^-1023< x<= 2^-1023 * 0x1.0000ffffffff */ |
| 92 | (v.i[HIGH_HALF] & 0x7fffffff) < 0x4ff00000) |
| 93 | { /* if y<-1 or y>1 */ |
| 94 | double retval; |
| 95 | |
| 96 | { |
| 97 | SET_RESTORE_ROUND (FE_TONEAREST); |
| 98 | |
| 99 | /* Avoid internal underflow for tiny y. The exact value of y does |
| 100 | not matter if |y| <= 2**-64. */ |
| 101 | if (fabs (y) < 0x1p-64) |
| 102 | y = y < 0 ? -0x1p-64 : 0x1p-64; |
| 103 | z = log1 (x, &aa, &error); /* x^y =e^(y log (X)) */ |
| 104 | t = y * CN; |
| 105 | y1 = t - (t - y); |
| 106 | y2 = y - y1; |
| 107 | t = z * CN; |
| 108 | a1 = t - (t - z); |
| 109 | a2 = (z - a1) + aa; |
| 110 | a = y1 * a1; |
| 111 | aa = y2 * a1 + y * a2; |
| 112 | a1 = a + aa; |
| 113 | a2 = (a - a1) + aa; |
| 114 | error = error * fabs (y); |
| 115 | t = __exp1 (a1, a2, 1.9e16 * error); /* return -10 or 0 if wasn't computed exactly */ |
| 116 | retval = (t > 0) ? t : power1 (x, y); |
| 117 | } |
| 118 | |
| 119 | if (isinf (retval)) |
| 120 | retval = huge * huge; |
| 121 | else if (retval == 0) |
| 122 | retval = tiny * tiny; |
| 123 | else |
| 124 | math_check_force_underflow_nonneg (retval); |
| 125 | return retval; |
| 126 | } |
| 127 | |
| 128 | if (x == 0) |
| 129 | { |
| 130 | if (((v.i[HIGH_HALF] & 0x7fffffff) == 0x7ff00000 && v.i[LOW_HALF] != 0) |
| 131 | || (v.i[HIGH_HALF] & 0x7fffffff) > 0x7ff00000) /* NaN */ |
| 132 | return y + y; |
| 133 | if (fabs (y) > 1.0e20) |
| 134 | return (y > 0) ? 0 : 1.0 / 0.0; |
| 135 | k = checkint (y); |
| 136 | if (k == -1) |
| 137 | return y < 0 ? 1.0 / x : x; |
| 138 | else |
| 139 | return y < 0 ? 1.0 / 0.0 : 0.0; /* return 0 */ |
| 140 | } |
| 141 | |
| 142 | qx = u.i[HIGH_HALF] & 0x7fffffff; /* no sign */ |
| 143 | qy = v.i[HIGH_HALF] & 0x7fffffff; /* no sign */ |
| 144 | |
| 145 | if (qx >= 0x7ff00000 && (qx > 0x7ff00000 || u.i[LOW_HALF] != 0)) /* NaN */ |
| 146 | return x + y; |
| 147 | if (qy >= 0x7ff00000 && (qy > 0x7ff00000 || v.i[LOW_HALF] != 0)) /* NaN */ |
| 148 | return x == 1.0 && !issignaling (y) ? 1.0 : y + y; |
| 149 | |
| 150 | /* if x<0 */ |
| 151 | if (u.i[HIGH_HALF] < 0) |
| 152 | { |
| 153 | k = checkint (y); |
| 154 | if (k == 0) |
| 155 | { |
| 156 | if (qy == 0x7ff00000) |
| 157 | { |
| 158 | if (x == -1.0) |
| 159 | return 1.0; |
| 160 | else if (x > -1.0) |
| 161 | return v.i[HIGH_HALF] < 0 ? INF.x : 0.0; |
| 162 | else |
| 163 | return v.i[HIGH_HALF] < 0 ? 0.0 : INF.x; |
| 164 | } |
| 165 | else if (qx == 0x7ff00000) |
| 166 | return y < 0 ? 0.0 : INF.x; |
| 167 | return (x - x) / (x - x); /* y not integer and x<0 */ |
| 168 | } |
| 169 | else if (qx == 0x7ff00000) |
| 170 | { |
| 171 | if (k < 0) |
| 172 | return y < 0 ? nZERO.x : nINF.x; |
| 173 | else |
| 174 | return y < 0 ? 0.0 : INF.x; |
| 175 | } |
| 176 | /* if y even or odd */ |
| 177 | if (k == 1) |
| 178 | return __ieee754_pow (-x, y); |
| 179 | else |
| 180 | { |
| 181 | double retval; |
| 182 | { |
| 183 | SET_RESTORE_ROUND (FE_TONEAREST); |
| 184 | retval = -__ieee754_pow (-x, y); |
| 185 | } |
| 186 | if (isinf (retval)) |
| 187 | retval = -huge * huge; |
| 188 | else if (retval == 0) |
| 189 | retval = -tiny * tiny; |
| 190 | return retval; |
| 191 | } |
| 192 | } |
| 193 | /* x>0 */ |
| 194 | |
| 195 | if (qx == 0x7ff00000) /* x= 2^-0x3ff */ |
| 196 | return y > 0 ? x : 0; |
| 197 | |
| 198 | if (qy > 0x45f00000 && qy < 0x7ff00000) |
| 199 | { |
| 200 | if (x == 1.0) |
| 201 | return 1.0; |
| 202 | if (y > 0) |
| 203 | return (x > 1.0) ? huge * huge : tiny * tiny; |
| 204 | if (y < 0) |
| 205 | return (x < 1.0) ? huge * huge : tiny * tiny; |
| 206 | } |
| 207 | |
| 208 | if (x == 1.0) |
| 209 | return 1.0; |
| 210 | if (y > 0) |
| 211 | return (x > 1.0) ? INF.x : 0; |
| 212 | if (y < 0) |
| 213 | return (x < 1.0) ? INF.x : 0; |
| 214 | return 0; /* unreachable, to make the compiler happy */ |
| 215 | } |
| 216 | |
| 217 | #ifndef __ieee754_pow |
| 218 | strong_alias (__ieee754_pow, __pow_finite) |
| 219 | #endif |
| 220 | |
| 221 | /* Compute x^y using more accurate but more slow log routine. */ |
| 222 | static double |
| 223 | SECTION |
| 224 | power1 (double x, double y) |
| 225 | { |
| 226 | double z, a, aa, error, t, a1, a2, y1, y2; |
| 227 | z = my_log2 (x, &aa, &error); |
| 228 | t = y * CN; |
| 229 | y1 = t - (t - y); |
| 230 | y2 = y - y1; |
| 231 | t = z * CN; |
| 232 | a1 = t - (t - z); |
| 233 | a2 = z - a1; |
| 234 | a = y * z; |
| 235 | aa = ((y1 * a1 - a) + y1 * a2 + y2 * a1) + y2 * a2 + aa * y; |
| 236 | a1 = a + aa; |
| 237 | a2 = (a - a1) + aa; |
| 238 | error = error * fabs (y); |
| 239 | t = __exp1 (a1, a2, 1.9e16 * error); |
| 240 | return (t >= 0) ? t : __slowpow (x, y, z); |
| 241 | } |
| 242 | |
| 243 | /* Compute log(x) (x is left argument). The result is the returned double + the |
| 244 | parameter DELTA. The result is bounded by ERROR. */ |
| 245 | static double |
| 246 | SECTION |
| 247 | log1 (double x, double *delta, double *error) |
| 248 | { |
| 249 | unsigned int i, j; |
| 250 | int m; |
| 251 | double uu, vv, eps, nx, e, e1, e2, t, t1, t2, res, add = 0; |
| 252 | mynumber u, v; |
| 253 | #ifdef BIG_ENDI |
| 254 | mynumber /**/ two52 = {{0x43300000, 0x00000000}}; /* 2**52 */ |
| 255 | #else |
| 256 | # ifdef LITTLE_ENDI |
| 257 | mynumber /**/ two52 = {{0x00000000, 0x43300000}}; /* 2**52 */ |
| 258 | # endif |
| 259 | #endif |
| 260 | |
| 261 | u.x = x; |
| 262 | m = u.i[HIGH_HALF]; |
| 263 | *error = 0; |
| 264 | *delta = 0; |
| 265 | if (m < 0x00100000) /* 1<x<2^-1007 */ |
| 266 | { |
| 267 | x = x * t52.x; |
| 268 | add = -52.0; |
| 269 | u.x = x; |
| 270 | m = u.i[HIGH_HALF]; |
| 271 | } |
| 272 | |
| 273 | if ((m & 0x000fffff) < 0x0006a09e) |
| 274 | { |
| 275 | u.i[HIGH_HALF] = (m & 0x000fffff) | 0x3ff00000; |
| 276 | two52.i[LOW_HALF] = (m >> 20); |
| 277 | } |
| 278 | else |
| 279 | { |
| 280 | u.i[HIGH_HALF] = (m & 0x000fffff) | 0x3fe00000; |
| 281 | two52.i[LOW_HALF] = (m >> 20) + 1; |
| 282 | } |
| 283 | |
| 284 | v.x = u.x + bigu.x; |
| 285 | uu = v.x - bigu.x; |
| 286 | i = (v.i[LOW_HALF] & 0x000003ff) << 2; |
| 287 | if (two52.i[LOW_HALF] == 1023) /* nx = 0 */ |
| 288 | { |
| 289 | if (i > 1192 && i < 1208) /* |x-1| < 1.5*2**-10 */ |
| 290 | { |
| 291 | t = x - 1.0; |
| 292 | t1 = (t + 5.0e6) - 5.0e6; |
| 293 | t2 = t - t1; |
| 294 | e1 = t - 0.5 * t1 * t1; |
| 295 | e2 = (t * t * t * (r3 + t * (r4 + t * (r5 + t * (r6 + t |
| 296 | * (r7 + t * r8))))) |
| 297 | - 0.5 * t2 * (t + t1)); |
| 298 | res = e1 + e2; |
| 299 | *error = 1.0e-21 * fabs (t); |
| 300 | *delta = (e1 - res) + e2; |
| 301 | return res; |
| 302 | } /* |x-1| < 1.5*2**-10 */ |
| 303 | else |
| 304 | { |
| 305 | v.x = u.x * (ui.x[i] + ui.x[i + 1]) + bigv.x; |
| 306 | vv = v.x - bigv.x; |
| 307 | j = v.i[LOW_HALF] & 0x0007ffff; |
| 308 | j = j + j + j; |
| 309 | eps = u.x - uu * vv; |
| 310 | e1 = eps * ui.x[i]; |
| 311 | e2 = eps * (ui.x[i + 1] + vj.x[j] * (ui.x[i] + ui.x[i + 1])); |
| 312 | e = e1 + e2; |
| 313 | e2 = ((e1 - e) + e2); |
| 314 | t = ui.x[i + 2] + vj.x[j + 1]; |
| 315 | t1 = t + e; |
| 316 | t2 = ((((t - t1) + e) + (ui.x[i + 3] + vj.x[j + 2])) + e2 + e * e |
| 317 | * (p2 + e * (p3 + e * p4))); |
| 318 | res = t1 + t2; |
| 319 | *error = 1.0e-24; |
| 320 | *delta = (t1 - res) + t2; |
| 321 | return res; |
| 322 | } |
| 323 | } /* nx = 0 */ |
| 324 | else /* nx != 0 */ |
| 325 | { |
| 326 | eps = u.x - uu; |
| 327 | nx = (two52.x - two52e.x) + add; |
| 328 | e1 = eps * ui.x[i]; |
| 329 | e2 = eps * ui.x[i + 1]; |
| 330 | e = e1 + e2; |
| 331 | e2 = (e1 - e) + e2; |
| 332 | t = nx * ln2a.x + ui.x[i + 2]; |
| 333 | t1 = t + e; |
| 334 | t2 = ((((t - t1) + e) + nx * ln2b.x + ui.x[i + 3] + e2) + e * e |
| 335 | * (q2 + e * (q3 + e * (q4 + e * (q5 + e * q6))))); |
| 336 | res = t1 + t2; |
| 337 | *error = 1.0e-21; |
| 338 | *delta = (t1 - res) + t2; |
| 339 | return res; |
| 340 | } /* nx != 0 */ |
| 341 | } |
| 342 | |
| 343 | /* Slower but more accurate routine of log. The returned result is double + |
| 344 | DELTA. The result is bounded by ERROR. */ |
| 345 | static double |
| 346 | SECTION |
| 347 | my_log2 (double x, double *delta, double *error) |
| 348 | { |
| 349 | unsigned int i, j; |
| 350 | int m; |
| 351 | double uu, vv, eps, nx, e, e1, e2, t, t1, t2, res, add = 0; |
| 352 | double ou1, ou2, lu1, lu2, ov, lv1, lv2, a, a1, a2; |
| 353 | double y, yy, z, zz, j1, j2, j7, j8; |
| 354 | #ifndef DLA_FMS |
| 355 | double j3, j4, j5, j6; |
| 356 | #endif |
| 357 | mynumber u, v; |
| 358 | #ifdef BIG_ENDI |
| 359 | mynumber /**/ two52 = {{0x43300000, 0x00000000}}; /* 2**52 */ |
| 360 | #else |
| 361 | # ifdef LITTLE_ENDI |
| 362 | mynumber /**/ two52 = {{0x00000000, 0x43300000}}; /* 2**52 */ |
| 363 | # endif |
| 364 | #endif |
| 365 | |
| 366 | u.x = x; |
| 367 | m = u.i[HIGH_HALF]; |
| 368 | *error = 0; |
| 369 | *delta = 0; |
| 370 | add = 0; |
| 371 | if (m < 0x00100000) |
| 372 | { /* x < 2^-1022 */ |
| 373 | x = x * t52.x; |
| 374 | add = -52.0; |
| 375 | u.x = x; |
| 376 | m = u.i[HIGH_HALF]; |
| 377 | } |
| 378 | |
| 379 | if ((m & 0x000fffff) < 0x0006a09e) |
| 380 | { |
| 381 | u.i[HIGH_HALF] = (m & 0x000fffff) | 0x3ff00000; |
| 382 | two52.i[LOW_HALF] = (m >> 20); |
| 383 | } |
| 384 | else |
| 385 | { |
| 386 | u.i[HIGH_HALF] = (m & 0x000fffff) | 0x3fe00000; |
| 387 | two52.i[LOW_HALF] = (m >> 20) + 1; |
| 388 | } |
| 389 | |
| 390 | v.x = u.x + bigu.x; |
| 391 | uu = v.x - bigu.x; |
| 392 | i = (v.i[LOW_HALF] & 0x000003ff) << 2; |
| 393 | /*------------------------------------- |x-1| < 2**-11------------------------------- */ |
| 394 | if ((two52.i[LOW_HALF] == 1023) && (i == 1200)) |
| 395 | { |
| 396 | t = x - 1.0; |
| 397 | EMULV (t, s3, y, yy, j1, j2, j3, j4, j5); |
| 398 | ADD2 (-0.5, 0, y, yy, z, zz, j1, j2); |
| 399 | MUL2 (t, 0, z, zz, y, yy, j1, j2, j3, j4, j5, j6, j7, j8); |
| 400 | MUL2 (t, 0, y, yy, z, zz, j1, j2, j3, j4, j5, j6, j7, j8); |
| 401 | |
| 402 | e1 = t + z; |
| 403 | e2 = ((((t - e1) + z) + zz) + t * t * t |
| 404 | * (ss3 + t * (s4 + t * (s5 + t * (s6 + t * (s7 + t * s8)))))); |
| 405 | res = e1 + e2; |
| 406 | *error = 1.0e-25 * fabs (t); |
| 407 | *delta = (e1 - res) + e2; |
| 408 | return res; |
| 409 | } |
| 410 | /*----------------------------- |x-1| > 2**-11 -------------------------- */ |
| 411 | else |
| 412 | { /*Computing log(x) according to log table */ |
| 413 | nx = (two52.x - two52e.x) + add; |
| 414 | ou1 = ui.x[i]; |
| 415 | ou2 = ui.x[i + 1]; |
| 416 | lu1 = ui.x[i + 2]; |
| 417 | lu2 = ui.x[i + 3]; |
| 418 | v.x = u.x * (ou1 + ou2) + bigv.x; |
| 419 | vv = v.x - bigv.x; |
| 420 | j = v.i[LOW_HALF] & 0x0007ffff; |
| 421 | j = j + j + j; |
| 422 | eps = u.x - uu * vv; |
| 423 | ov = vj.x[j]; |
| 424 | lv1 = vj.x[j + 1]; |
| 425 | lv2 = vj.x[j + 2]; |
| 426 | a = (ou1 + ou2) * (1.0 + ov); |
| 427 | a1 = (a + 1.0e10) - 1.0e10; |
| 428 | a2 = a * (1.0 - a1 * uu * vv); |
| 429 | e1 = eps * a1; |
| 430 | e2 = eps * a2; |
| 431 | e = e1 + e2; |
| 432 | e2 = (e1 - e) + e2; |
| 433 | t = nx * ln2a.x + lu1 + lv1; |
| 434 | t1 = t + e; |
| 435 | t2 = ((((t - t1) + e) + (lu2 + lv2 + nx * ln2b.x + e2)) + e * e |
| 436 | * (p2 + e * (p3 + e * p4))); |
| 437 | res = t1 + t2; |
| 438 | *error = 1.0e-27; |
| 439 | *delta = (t1 - res) + t2; |
| 440 | return res; |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | /* This function receives a double x and checks if it is an integer. If not, |
| 445 | it returns 0, else it returns 1 if even or -1 if odd. */ |
| 446 | static int |
| 447 | SECTION |
| 448 | checkint (double x) |
| 449 | { |
| 450 | union |
| 451 | { |
| 452 | int4 i[2]; |
| 453 | double x; |
| 454 | } u; |
| 455 | int k, m, n; |
| 456 | u.x = x; |
| 457 | m = u.i[HIGH_HALF] & 0x7fffffff; /* no sign */ |
| 458 | if (m >= 0x7ff00000) |
| 459 | return 0; /* x is +/-inf or NaN */ |
| 460 | if (m >= 0x43400000) |
| 461 | return 1; /* |x| >= 2**53 */ |
| 462 | if (m < 0x40000000) |
| 463 | return 0; /* |x| < 2, can not be 0 or 1 */ |
| 464 | n = u.i[LOW_HALF]; |
| 465 | k = (m >> 20) - 1023; /* 1 <= k <= 52 */ |
| 466 | if (k == 52) |
| 467 | return (n & 1) ? -1 : 1; /* odd or even */ |
| 468 | if (k > 20) |
| 469 | { |
| 470 | if (n << (k - 20) != 0) |
| 471 | return 0; /* if not integer */ |
| 472 | return (n << (k - 21) != 0) ? -1 : 1; |
| 473 | } |
| 474 | if (n) |
| 475 | return 0; /*if not integer */ |
| 476 | if (k == 20) |
| 477 | return (m & 1) ? -1 : 1; |
| 478 | if (m << (k + 12) != 0) |
| 479 | return 0; |
| 480 | return (m << (k + 11) != 0) ? -1 : 1; |
| 481 | } |
| 482 | |