1 | /* Copyright (C) 2002-2017 Free Software Foundation, Inc. |
2 | This file is part of the GNU C Library. |
3 | Contributed by Ulrich Drepper <drepper@redhat.com>, 2002. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <http://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <assert.h> |
20 | #include <errno.h> |
21 | #include <stdlib.h> |
22 | #include <unistd.h> |
23 | #include <sys/param.h> |
24 | #include <not-cancel.h> |
25 | #include "pthreadP.h" |
26 | #include <atomic.h> |
27 | #include <lowlevellock.h> |
28 | #include <stap-probe.h> |
29 | |
30 | #ifndef lll_lock_elision |
31 | #define lll_lock_elision(lock, try_lock, private) ({ \ |
32 | lll_lock (lock, private); 0; }) |
33 | #endif |
34 | |
35 | #ifndef lll_trylock_elision |
36 | #define lll_trylock_elision(a,t) lll_trylock(a) |
37 | #endif |
38 | |
39 | /* Some of the following definitions differ when pthread_mutex_cond_lock.c |
40 | includes this file. */ |
41 | #ifndef LLL_MUTEX_LOCK |
42 | # define LLL_MUTEX_LOCK(mutex) \ |
43 | lll_lock ((mutex)->__data.__lock, PTHREAD_MUTEX_PSHARED (mutex)) |
44 | # define LLL_MUTEX_TRYLOCK(mutex) \ |
45 | lll_trylock ((mutex)->__data.__lock) |
46 | # define LLL_ROBUST_MUTEX_LOCK_MODIFIER 0 |
47 | # define LLL_MUTEX_LOCK_ELISION(mutex) \ |
48 | lll_lock_elision ((mutex)->__data.__lock, (mutex)->__data.__elision, \ |
49 | PTHREAD_MUTEX_PSHARED (mutex)) |
50 | # define LLL_MUTEX_TRYLOCK_ELISION(mutex) \ |
51 | lll_trylock_elision((mutex)->__data.__lock, (mutex)->__data.__elision, \ |
52 | PTHREAD_MUTEX_PSHARED (mutex)) |
53 | #endif |
54 | |
55 | #ifndef FORCE_ELISION |
56 | #define FORCE_ELISION(m, s) |
57 | #endif |
58 | |
59 | static int __pthread_mutex_lock_full (pthread_mutex_t *mutex) |
60 | __attribute_noinline__; |
61 | |
62 | int |
63 | __pthread_mutex_lock (pthread_mutex_t *mutex) |
64 | { |
65 | assert (sizeof (mutex->__size) >= sizeof (mutex->__data)); |
66 | |
67 | unsigned int type = PTHREAD_MUTEX_TYPE_ELISION (mutex); |
68 | |
69 | LIBC_PROBE (mutex_entry, 1, mutex); |
70 | |
71 | if (__builtin_expect (type & ~(PTHREAD_MUTEX_KIND_MASK_NP |
72 | | PTHREAD_MUTEX_ELISION_FLAGS_NP), 0)) |
73 | return __pthread_mutex_lock_full (mutex); |
74 | |
75 | if (__glibc_likely (type == PTHREAD_MUTEX_TIMED_NP)) |
76 | { |
77 | FORCE_ELISION (mutex, goto elision); |
78 | simple: |
79 | /* Normal mutex. */ |
80 | LLL_MUTEX_LOCK (mutex); |
81 | assert (mutex->__data.__owner == 0); |
82 | } |
83 | #ifdef HAVE_ELISION |
84 | else if (__glibc_likely (type == PTHREAD_MUTEX_TIMED_ELISION_NP)) |
85 | { |
86 | elision: __attribute__((unused)) |
87 | /* This case can never happen on a system without elision, |
88 | as the mutex type initialization functions will not |
89 | allow to set the elision flags. */ |
90 | /* Don't record owner or users for elision case. This is a |
91 | tail call. */ |
92 | return LLL_MUTEX_LOCK_ELISION (mutex); |
93 | } |
94 | #endif |
95 | else if (__builtin_expect (PTHREAD_MUTEX_TYPE (mutex) |
96 | == PTHREAD_MUTEX_RECURSIVE_NP, 1)) |
97 | { |
98 | /* Recursive mutex. */ |
99 | pid_t id = THREAD_GETMEM (THREAD_SELF, tid); |
100 | |
101 | /* Check whether we already hold the mutex. */ |
102 | if (mutex->__data.__owner == id) |
103 | { |
104 | /* Just bump the counter. */ |
105 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
106 | /* Overflow of the counter. */ |
107 | return EAGAIN; |
108 | |
109 | ++mutex->__data.__count; |
110 | |
111 | return 0; |
112 | } |
113 | |
114 | /* We have to get the mutex. */ |
115 | LLL_MUTEX_LOCK (mutex); |
116 | |
117 | assert (mutex->__data.__owner == 0); |
118 | mutex->__data.__count = 1; |
119 | } |
120 | else if (__builtin_expect (PTHREAD_MUTEX_TYPE (mutex) |
121 | == PTHREAD_MUTEX_ADAPTIVE_NP, 1)) |
122 | { |
123 | if (! __is_smp) |
124 | goto simple; |
125 | |
126 | if (LLL_MUTEX_TRYLOCK (mutex) != 0) |
127 | { |
128 | int cnt = 0; |
129 | int max_cnt = MIN (MAX_ADAPTIVE_COUNT, |
130 | mutex->__data.__spins * 2 + 10); |
131 | do |
132 | { |
133 | if (cnt++ >= max_cnt) |
134 | { |
135 | LLL_MUTEX_LOCK (mutex); |
136 | break; |
137 | } |
138 | atomic_spin_nop (); |
139 | } |
140 | while (LLL_MUTEX_TRYLOCK (mutex) != 0); |
141 | |
142 | mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8; |
143 | } |
144 | assert (mutex->__data.__owner == 0); |
145 | } |
146 | else |
147 | { |
148 | pid_t id = THREAD_GETMEM (THREAD_SELF, tid); |
149 | assert (PTHREAD_MUTEX_TYPE (mutex) == PTHREAD_MUTEX_ERRORCHECK_NP); |
150 | /* Check whether we already hold the mutex. */ |
151 | if (__glibc_unlikely (mutex->__data.__owner == id)) |
152 | return EDEADLK; |
153 | goto simple; |
154 | } |
155 | |
156 | pid_t id = THREAD_GETMEM (THREAD_SELF, tid); |
157 | |
158 | /* Record the ownership. */ |
159 | mutex->__data.__owner = id; |
160 | #ifndef NO_INCR |
161 | ++mutex->__data.__nusers; |
162 | #endif |
163 | |
164 | LIBC_PROBE (mutex_acquired, 1, mutex); |
165 | |
166 | return 0; |
167 | } |
168 | |
169 | static int |
170 | __pthread_mutex_lock_full (pthread_mutex_t *mutex) |
171 | { |
172 | int oldval; |
173 | pid_t id = THREAD_GETMEM (THREAD_SELF, tid); |
174 | |
175 | switch (PTHREAD_MUTEX_TYPE (mutex)) |
176 | { |
177 | case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP: |
178 | case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP: |
179 | case PTHREAD_MUTEX_ROBUST_NORMAL_NP: |
180 | case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP: |
181 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
182 | &mutex->__data.__list.__next); |
183 | /* We need to set op_pending before starting the operation. Also |
184 | see comments at ENQUEUE_MUTEX. */ |
185 | __asm ("" ::: "memory" ); |
186 | |
187 | oldval = mutex->__data.__lock; |
188 | /* This is set to FUTEX_WAITERS iff we might have shared the |
189 | FUTEX_WAITERS flag with other threads, and therefore need to keep it |
190 | set to avoid lost wake-ups. We have the same requirement in the |
191 | simple mutex algorithm. |
192 | We start with value zero for a normal mutex, and FUTEX_WAITERS if we |
193 | are building the special case mutexes for use from within condition |
194 | variables. */ |
195 | unsigned int assume_other_futex_waiters = LLL_ROBUST_MUTEX_LOCK_MODIFIER; |
196 | while (1) |
197 | { |
198 | /* Try to acquire the lock through a CAS from 0 (not acquired) to |
199 | our TID | assume_other_futex_waiters. */ |
200 | if (__glibc_likely ((oldval == 0) |
201 | && (atomic_compare_and_exchange_bool_acq |
202 | (&mutex->__data.__lock, |
203 | id | assume_other_futex_waiters, 0) == 0))) |
204 | break; |
205 | |
206 | if ((oldval & FUTEX_OWNER_DIED) != 0) |
207 | { |
208 | /* The previous owner died. Try locking the mutex. */ |
209 | int newval = id; |
210 | #ifdef NO_INCR |
211 | /* We are not taking assume_other_futex_waiters into accoount |
212 | here simply because we'll set FUTEX_WAITERS anyway. */ |
213 | newval |= FUTEX_WAITERS; |
214 | #else |
215 | newval |= (oldval & FUTEX_WAITERS) | assume_other_futex_waiters; |
216 | #endif |
217 | |
218 | newval |
219 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
220 | newval, oldval); |
221 | |
222 | if (newval != oldval) |
223 | { |
224 | oldval = newval; |
225 | continue; |
226 | } |
227 | |
228 | /* We got the mutex. */ |
229 | mutex->__data.__count = 1; |
230 | /* But it is inconsistent unless marked otherwise. */ |
231 | mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; |
232 | |
233 | /* We must not enqueue the mutex before we have acquired it. |
234 | Also see comments at ENQUEUE_MUTEX. */ |
235 | __asm ("" ::: "memory" ); |
236 | ENQUEUE_MUTEX (mutex); |
237 | /* We need to clear op_pending after we enqueue the mutex. */ |
238 | __asm ("" ::: "memory" ); |
239 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
240 | |
241 | /* Note that we deliberately exit here. If we fall |
242 | through to the end of the function __nusers would be |
243 | incremented which is not correct because the old |
244 | owner has to be discounted. If we are not supposed |
245 | to increment __nusers we actually have to decrement |
246 | it here. */ |
247 | #ifdef NO_INCR |
248 | --mutex->__data.__nusers; |
249 | #endif |
250 | |
251 | return EOWNERDEAD; |
252 | } |
253 | |
254 | /* Check whether we already hold the mutex. */ |
255 | if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id)) |
256 | { |
257 | int kind = PTHREAD_MUTEX_TYPE (mutex); |
258 | if (kind == PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP) |
259 | { |
260 | /* We do not need to ensure ordering wrt another memory |
261 | access. Also see comments at ENQUEUE_MUTEX. */ |
262 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
263 | NULL); |
264 | return EDEADLK; |
265 | } |
266 | |
267 | if (kind == PTHREAD_MUTEX_ROBUST_RECURSIVE_NP) |
268 | { |
269 | /* We do not need to ensure ordering wrt another memory |
270 | access. */ |
271 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
272 | NULL); |
273 | |
274 | /* Just bump the counter. */ |
275 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
276 | /* Overflow of the counter. */ |
277 | return EAGAIN; |
278 | |
279 | ++mutex->__data.__count; |
280 | |
281 | return 0; |
282 | } |
283 | } |
284 | |
285 | /* We cannot acquire the mutex nor has its owner died. Thus, try |
286 | to block using futexes. Set FUTEX_WAITERS if necessary so that |
287 | other threads are aware that there are potentially threads |
288 | blocked on the futex. Restart if oldval changed in the |
289 | meantime. */ |
290 | if ((oldval & FUTEX_WAITERS) == 0) |
291 | { |
292 | if (atomic_compare_and_exchange_bool_acq (&mutex->__data.__lock, |
293 | oldval | FUTEX_WAITERS, |
294 | oldval) |
295 | != 0) |
296 | { |
297 | oldval = mutex->__data.__lock; |
298 | continue; |
299 | } |
300 | oldval |= FUTEX_WAITERS; |
301 | } |
302 | |
303 | /* It is now possible that we share the FUTEX_WAITERS flag with |
304 | another thread; therefore, update assume_other_futex_waiters so |
305 | that we do not forget about this when handling other cases |
306 | above and thus do not cause lost wake-ups. */ |
307 | assume_other_futex_waiters |= FUTEX_WAITERS; |
308 | |
309 | /* Block using the futex and reload current lock value. */ |
310 | lll_futex_wait (&mutex->__data.__lock, oldval, |
311 | PTHREAD_ROBUST_MUTEX_PSHARED (mutex)); |
312 | oldval = mutex->__data.__lock; |
313 | } |
314 | |
315 | /* We have acquired the mutex; check if it is still consistent. */ |
316 | if (__builtin_expect (mutex->__data.__owner |
317 | == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) |
318 | { |
319 | /* This mutex is now not recoverable. */ |
320 | mutex->__data.__count = 0; |
321 | int private = PTHREAD_ROBUST_MUTEX_PSHARED (mutex); |
322 | lll_unlock (mutex->__data.__lock, private); |
323 | /* FIXME This violates the mutex destruction requirements. See |
324 | __pthread_mutex_unlock_full. */ |
325 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
326 | return ENOTRECOVERABLE; |
327 | } |
328 | |
329 | mutex->__data.__count = 1; |
330 | /* We must not enqueue the mutex before we have acquired it. |
331 | Also see comments at ENQUEUE_MUTEX. */ |
332 | __asm ("" ::: "memory" ); |
333 | ENQUEUE_MUTEX (mutex); |
334 | /* We need to clear op_pending after we enqueue the mutex. */ |
335 | __asm ("" ::: "memory" ); |
336 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
337 | break; |
338 | |
339 | /* The PI support requires the Linux futex system call. If that's not |
340 | available, pthread_mutex_init should never have allowed the type to |
341 | be set. So it will get the default case for an invalid type. */ |
342 | #ifdef __NR_futex |
343 | case PTHREAD_MUTEX_PI_RECURSIVE_NP: |
344 | case PTHREAD_MUTEX_PI_ERRORCHECK_NP: |
345 | case PTHREAD_MUTEX_PI_NORMAL_NP: |
346 | case PTHREAD_MUTEX_PI_ADAPTIVE_NP: |
347 | case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP: |
348 | case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP: |
349 | case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP: |
350 | case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP: |
351 | { |
352 | int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP; |
353 | int robust = mutex->__data.__kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP; |
354 | |
355 | if (robust) |
356 | { |
357 | /* Note: robust PI futexes are signaled by setting bit 0. */ |
358 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
359 | (void *) (((uintptr_t) &mutex->__data.__list.__next) |
360 | | 1)); |
361 | /* We need to set op_pending before starting the operation. Also |
362 | see comments at ENQUEUE_MUTEX. */ |
363 | __asm ("" ::: "memory" ); |
364 | } |
365 | |
366 | oldval = mutex->__data.__lock; |
367 | |
368 | /* Check whether we already hold the mutex. */ |
369 | if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id)) |
370 | { |
371 | if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) |
372 | { |
373 | /* We do not need to ensure ordering wrt another memory |
374 | access. */ |
375 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
376 | return EDEADLK; |
377 | } |
378 | |
379 | if (kind == PTHREAD_MUTEX_RECURSIVE_NP) |
380 | { |
381 | /* We do not need to ensure ordering wrt another memory |
382 | access. */ |
383 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
384 | |
385 | /* Just bump the counter. */ |
386 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
387 | /* Overflow of the counter. */ |
388 | return EAGAIN; |
389 | |
390 | ++mutex->__data.__count; |
391 | |
392 | return 0; |
393 | } |
394 | } |
395 | |
396 | int newval = id; |
397 | # ifdef NO_INCR |
398 | newval |= FUTEX_WAITERS; |
399 | # endif |
400 | oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
401 | newval, 0); |
402 | |
403 | if (oldval != 0) |
404 | { |
405 | /* The mutex is locked. The kernel will now take care of |
406 | everything. */ |
407 | int private = (robust |
408 | ? PTHREAD_ROBUST_MUTEX_PSHARED (mutex) |
409 | : PTHREAD_MUTEX_PSHARED (mutex)); |
410 | INTERNAL_SYSCALL_DECL (__err); |
411 | int e = INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock, |
412 | __lll_private_flag (FUTEX_LOCK_PI, |
413 | private), 1, 0); |
414 | |
415 | if (INTERNAL_SYSCALL_ERROR_P (e, __err) |
416 | && (INTERNAL_SYSCALL_ERRNO (e, __err) == ESRCH |
417 | || INTERNAL_SYSCALL_ERRNO (e, __err) == EDEADLK)) |
418 | { |
419 | assert (INTERNAL_SYSCALL_ERRNO (e, __err) != EDEADLK |
420 | || (kind != PTHREAD_MUTEX_ERRORCHECK_NP |
421 | && kind != PTHREAD_MUTEX_RECURSIVE_NP)); |
422 | /* ESRCH can happen only for non-robust PI mutexes where |
423 | the owner of the lock died. */ |
424 | assert (INTERNAL_SYSCALL_ERRNO (e, __err) != ESRCH || !robust); |
425 | |
426 | /* Delay the thread indefinitely. */ |
427 | while (1) |
428 | pause_not_cancel (); |
429 | } |
430 | |
431 | oldval = mutex->__data.__lock; |
432 | |
433 | assert (robust || (oldval & FUTEX_OWNER_DIED) == 0); |
434 | } |
435 | |
436 | if (__glibc_unlikely (oldval & FUTEX_OWNER_DIED)) |
437 | { |
438 | atomic_and (&mutex->__data.__lock, ~FUTEX_OWNER_DIED); |
439 | |
440 | /* We got the mutex. */ |
441 | mutex->__data.__count = 1; |
442 | /* But it is inconsistent unless marked otherwise. */ |
443 | mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; |
444 | |
445 | /* We must not enqueue the mutex before we have acquired it. |
446 | Also see comments at ENQUEUE_MUTEX. */ |
447 | __asm ("" ::: "memory" ); |
448 | ENQUEUE_MUTEX_PI (mutex); |
449 | /* We need to clear op_pending after we enqueue the mutex. */ |
450 | __asm ("" ::: "memory" ); |
451 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
452 | |
453 | /* Note that we deliberately exit here. If we fall |
454 | through to the end of the function __nusers would be |
455 | incremented which is not correct because the old owner |
456 | has to be discounted. If we are not supposed to |
457 | increment __nusers we actually have to decrement it here. */ |
458 | # ifdef NO_INCR |
459 | --mutex->__data.__nusers; |
460 | # endif |
461 | |
462 | return EOWNERDEAD; |
463 | } |
464 | |
465 | if (robust |
466 | && __builtin_expect (mutex->__data.__owner |
467 | == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) |
468 | { |
469 | /* This mutex is now not recoverable. */ |
470 | mutex->__data.__count = 0; |
471 | |
472 | INTERNAL_SYSCALL_DECL (__err); |
473 | INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock, |
474 | __lll_private_flag (FUTEX_UNLOCK_PI, |
475 | PTHREAD_ROBUST_MUTEX_PSHARED (mutex)), |
476 | 0, 0); |
477 | |
478 | /* To the kernel, this will be visible after the kernel has |
479 | acquired the mutex in the syscall. */ |
480 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
481 | return ENOTRECOVERABLE; |
482 | } |
483 | |
484 | mutex->__data.__count = 1; |
485 | if (robust) |
486 | { |
487 | /* We must not enqueue the mutex before we have acquired it. |
488 | Also see comments at ENQUEUE_MUTEX. */ |
489 | __asm ("" ::: "memory" ); |
490 | ENQUEUE_MUTEX_PI (mutex); |
491 | /* We need to clear op_pending after we enqueue the mutex. */ |
492 | __asm ("" ::: "memory" ); |
493 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
494 | } |
495 | } |
496 | break; |
497 | #endif /* __NR_futex. */ |
498 | |
499 | case PTHREAD_MUTEX_PP_RECURSIVE_NP: |
500 | case PTHREAD_MUTEX_PP_ERRORCHECK_NP: |
501 | case PTHREAD_MUTEX_PP_NORMAL_NP: |
502 | case PTHREAD_MUTEX_PP_ADAPTIVE_NP: |
503 | { |
504 | int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP; |
505 | |
506 | oldval = mutex->__data.__lock; |
507 | |
508 | /* Check whether we already hold the mutex. */ |
509 | if (mutex->__data.__owner == id) |
510 | { |
511 | if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) |
512 | return EDEADLK; |
513 | |
514 | if (kind == PTHREAD_MUTEX_RECURSIVE_NP) |
515 | { |
516 | /* Just bump the counter. */ |
517 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
518 | /* Overflow of the counter. */ |
519 | return EAGAIN; |
520 | |
521 | ++mutex->__data.__count; |
522 | |
523 | return 0; |
524 | } |
525 | } |
526 | |
527 | int oldprio = -1, ceilval; |
528 | do |
529 | { |
530 | int ceiling = (oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) |
531 | >> PTHREAD_MUTEX_PRIO_CEILING_SHIFT; |
532 | |
533 | if (__pthread_current_priority () > ceiling) |
534 | { |
535 | if (oldprio != -1) |
536 | __pthread_tpp_change_priority (oldprio, -1); |
537 | return EINVAL; |
538 | } |
539 | |
540 | int retval = __pthread_tpp_change_priority (oldprio, ceiling); |
541 | if (retval) |
542 | return retval; |
543 | |
544 | ceilval = ceiling << PTHREAD_MUTEX_PRIO_CEILING_SHIFT; |
545 | oldprio = ceiling; |
546 | |
547 | oldval |
548 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
549 | #ifdef NO_INCR |
550 | ceilval | 2, |
551 | #else |
552 | ceilval | 1, |
553 | #endif |
554 | ceilval); |
555 | |
556 | if (oldval == ceilval) |
557 | break; |
558 | |
559 | do |
560 | { |
561 | oldval |
562 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
563 | ceilval | 2, |
564 | ceilval | 1); |
565 | |
566 | if ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval) |
567 | break; |
568 | |
569 | if (oldval != ceilval) |
570 | lll_futex_wait (&mutex->__data.__lock, ceilval | 2, |
571 | PTHREAD_MUTEX_PSHARED (mutex)); |
572 | } |
573 | while (atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
574 | ceilval | 2, ceilval) |
575 | != ceilval); |
576 | } |
577 | while ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval); |
578 | |
579 | assert (mutex->__data.__owner == 0); |
580 | mutex->__data.__count = 1; |
581 | } |
582 | break; |
583 | |
584 | default: |
585 | /* Correct code cannot set any other type. */ |
586 | return EINVAL; |
587 | } |
588 | |
589 | /* Record the ownership. */ |
590 | mutex->__data.__owner = id; |
591 | #ifndef NO_INCR |
592 | ++mutex->__data.__nusers; |
593 | #endif |
594 | |
595 | LIBC_PROBE (mutex_acquired, 1, mutex); |
596 | |
597 | return 0; |
598 | } |
599 | #ifndef __pthread_mutex_lock |
600 | strong_alias (__pthread_mutex_lock, pthread_mutex_lock) |
601 | hidden_def (__pthread_mutex_lock) |
602 | #endif |
603 | |
604 | |
605 | #ifdef NO_INCR |
606 | void |
607 | internal_function |
608 | __pthread_mutex_cond_lock_adjust (pthread_mutex_t *mutex) |
609 | { |
610 | assert ((mutex->__data.__kind & PTHREAD_MUTEX_PRIO_INHERIT_NP) != 0); |
611 | assert ((mutex->__data.__kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP) == 0); |
612 | assert ((mutex->__data.__kind & PTHREAD_MUTEX_PSHARED_BIT) == 0); |
613 | |
614 | /* Record the ownership. */ |
615 | pid_t id = THREAD_GETMEM (THREAD_SELF, tid); |
616 | mutex->__data.__owner = id; |
617 | |
618 | if (mutex->__data.__kind == PTHREAD_MUTEX_PI_RECURSIVE_NP) |
619 | ++mutex->__data.__count; |
620 | } |
621 | #endif |
622 | |