| 1 | /* |
| 2 | * IBM Accurate Mathematical Library |
| 3 | * Written by International Business Machines Corp. |
| 4 | * Copyright (C) 2001-2016 Free Software Foundation, Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU Lesser General Public License as published by |
| 8 | * the Free Software Foundation; either version 2.1 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU Lesser General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Lesser General Public License |
| 17 | * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | |
| 20 | /******************************************************************/ |
| 21 | /* */ |
| 22 | /* MODULE_NAME:ulog.h */ |
| 23 | /* */ |
| 24 | /* common data and variables prototype and definition */ |
| 25 | /******************************************************************/ |
| 26 | |
| 27 | #ifndef ULOG_H |
| 28 | #define ULOG_H |
| 29 | |
| 30 | #ifdef BIG_ENDI |
| 31 | static const number |
| 32 | /* polynomial I */ |
| 33 | /**/ a2 = {{0xbfe00000, 0x0001aa8f} }, /* -0.500... */ |
| 34 | /**/ a3 = {{0x3fd55555, 0x55588d2e} }, /* 0.333... */ |
| 35 | /* polynomial II */ |
| 36 | /**/ b0 = {{0x3fd55555, 0x55555555} }, /* 0.333... */ |
| 37 | /**/ b1 = {{0xbfcfffff, 0xffffffbb} }, /* -0.249... */ |
| 38 | /**/ b2 = {{0x3fc99999, 0x9999992f} }, /* 0.199... */ |
| 39 | /**/ b3 = {{0xbfc55555, 0x556503fd} }, /* -0.166... */ |
| 40 | /**/ b4 = {{0x3fc24924, 0x925b3d62} }, /* 0.142... */ |
| 41 | /**/ b5 = {{0xbfbffffe, 0x160472fc} }, /* -0.124... */ |
| 42 | /**/ b6 = {{0x3fbc71c5, 0x25db58ac} }, /* 0.111... */ |
| 43 | /**/ b7 = {{0xbfb9a4ac, 0x11a2a61c} }, /* -0.100... */ |
| 44 | /**/ b8 = {{0x3fb75077, 0x0df2b591} }, /* 0.091... */ |
| 45 | /* polynomial III */ |
| 46 | #if 0 |
| 47 | /**/ c1 = {{0x3ff00000, 0x00000000} }, /* 1 */ |
| 48 | #endif |
| 49 | /**/ c2 = {{0xbfe00000, 0x00000000} }, /* -1/2 */ |
| 50 | /**/ c3 = {{0x3fd55555, 0x55555555} }, /* 1/3 */ |
| 51 | /**/ c4 = {{0xbfd00000, 0x00000000} }, /* -1/4 */ |
| 52 | /**/ c5 = {{0x3fc99999, 0x9999999a} }, /* 1/5 */ |
| 53 | /* polynomial IV */ |
| 54 | /**/ d2 = {{0xbfe00000, 0x00000000} }, /* -1/2 */ |
| 55 | /**/ dd2 = {{0x00000000, 0x00000000} }, /* -1/2-d2 */ |
| 56 | /**/ d3 = {{0x3fd55555, 0x55555555} }, /* 1/3 */ |
| 57 | /**/ dd3 = {{0x3c755555, 0x55555555} }, /* 1/3-d3 */ |
| 58 | /**/ d4 = {{0xbfd00000, 0x00000000} }, /* -1/4 */ |
| 59 | /**/ dd4 = {{0x00000000, 0x00000000} }, /* -1/4-d4 */ |
| 60 | /**/ d5 = {{0x3fc99999, 0x9999999a} }, /* 1/5 */ |
| 61 | /**/ dd5 = {{0xbc699999, 0x9999999a} }, /* 1/5-d5 */ |
| 62 | /**/ d6 = {{0xbfc55555, 0x55555555} }, /* -1/6 */ |
| 63 | /**/ dd6 = {{0xbc655555, 0x55555555} }, /* -1/6-d6 */ |
| 64 | /**/ d7 = {{0x3fc24924, 0x92492492} }, /* 1/7 */ |
| 65 | /**/ dd7 = {{0x3c624924, 0x92492492} }, /* 1/7-d7 */ |
| 66 | /**/ d8 = {{0xbfc00000, 0x00000000} }, /* -1/8 */ |
| 67 | /**/ dd8 = {{0x00000000, 0x00000000} }, /* -1/8-d8 */ |
| 68 | /**/ d9 = {{0x3fbc71c7, 0x1c71c71c} }, /* 1/9 */ |
| 69 | /**/ dd9 = {{0x3c5c71c7, 0x1c71c71c} }, /* 1/9-d9 */ |
| 70 | /**/ d10 = {{0xbfb99999, 0x9999999a} }, /* -1/10 */ |
| 71 | /**/ dd10 = {{0x3c599999, 0x9999999a} }, /* -1/10-d10 */ |
| 72 | /**/ d11 = {{0x3fb745d1, 0x745d1746} }, /* 1/11 */ |
| 73 | /**/ d12 = {{0xbfb55555, 0x55555555} }, /* -1/12 */ |
| 74 | /**/ d13 = {{0x3fb3b13b, 0x13b13b14} }, /* 1/13 */ |
| 75 | /**/ d14 = {{0xbfb24924, 0x92492492} }, /* -1/14 */ |
| 76 | /**/ d15 = {{0x3fb11111, 0x11111111} }, /* 1/15 */ |
| 77 | /**/ d16 = {{0xbfb00000, 0x00000000} }, /* -1/16 */ |
| 78 | /**/ d17 = {{0x3fae1e1e, 0x1e1e1e1e} }, /* 1/17 */ |
| 79 | /**/ d18 = {{0xbfac71c7, 0x1c71c71c} }, /* -1/18 */ |
| 80 | /**/ d19 = {{0x3faaf286, 0xbca1af28} }, /* 1/19 */ |
| 81 | /**/ d20 = {{0xbfa99999, 0x9999999a} }, /* -1/20 */ |
| 82 | /* constants */ |
| 83 | /**/ sqrt_2 = {{0x3ff6a09e, 0x667f3bcc} }, /* sqrt(2) */ |
| 84 | /**/ h1 = {{0x3fd2e000, 0x00000000} }, /* 151/2**9 */ |
| 85 | /**/ h2 = {{0x3f669000, 0x00000000} }, /* 361/2**17 */ |
| 86 | /**/ delu = {{0x3f700000, 0x00000000} }, /* 1/2**8 */ |
| 87 | /**/ delv = {{0x3ef00000, 0x00000000} }, /* 1/2**16 */ |
| 88 | /**/ ln2a = {{0x3fe62e42, 0xfefa3800} }, /* ln(2) 43 bits */ |
| 89 | /**/ ln2b = {{0x3d2ef357, 0x93c76730} }, /* ln(2)-ln2a */ |
| 90 | /**/ e1 = {{0x3bbcc868, 0x00000000} }, /* 6.095e-21 */ |
| 91 | /**/ e2 = {{0x3c1138ce, 0x00000000} }, /* 2.334e-19 */ |
| 92 | /**/ e3 = {{0x3aa1565d, 0x00000000} }, /* 2.801e-26 */ |
| 93 | /**/ e4 = {{0x39809d88, 0x00000000} }, /* 1.024e-31 */ |
| 94 | /**/ e[M] ={{{0x37da223a, 0x00000000} }, /* 1.2e-39 */ |
| 95 | /**/ {{0x35c851c4, 0x00000000} }, /* 1.3e-49 */ |
| 96 | /**/ {{0x2ab85e51, 0x00000000} }, /* 6.8e-103 */ |
| 97 | /**/ {{0x17383827, 0x00000000} }},/* 8.1e-197 */ |
| 98 | /**/ two54 = {{0x43500000, 0x00000000} }, /* 2**54 */ |
| 99 | /**/ u03 = {{0x3f9eb851, 0xeb851eb8} }; /* 0.03 */ |
| 100 | |
| 101 | #else |
| 102 | #ifdef LITTLE_ENDI |
| 103 | static const number |
| 104 | /* polynomial I */ |
| 105 | /**/ a2 = {{0x0001aa8f, 0xbfe00000} }, /* -0.500... */ |
| 106 | /**/ a3 = {{0x55588d2e, 0x3fd55555} }, /* 0.333... */ |
| 107 | /* polynomial II */ |
| 108 | /**/ b0 = {{0x55555555, 0x3fd55555} }, /* 0.333... */ |
| 109 | /**/ b1 = {{0xffffffbb, 0xbfcfffff} }, /* -0.249... */ |
| 110 | /**/ b2 = {{0x9999992f, 0x3fc99999} }, /* 0.199... */ |
| 111 | /**/ b3 = {{0x556503fd, 0xbfc55555} }, /* -0.166... */ |
| 112 | /**/ b4 = {{0x925b3d62, 0x3fc24924} }, /* 0.142... */ |
| 113 | /**/ b5 = {{0x160472fc, 0xbfbffffe} }, /* -0.124... */ |
| 114 | /**/ b6 = {{0x25db58ac, 0x3fbc71c5} }, /* 0.111... */ |
| 115 | /**/ b7 = {{0x11a2a61c, 0xbfb9a4ac} }, /* -0.100... */ |
| 116 | /**/ b8 = {{0x0df2b591, 0x3fb75077} }, /* 0.091... */ |
| 117 | /* polynomial III */ |
| 118 | #if 0 |
| 119 | /**/ c1 = {{0x00000000, 0x3ff00000} }, /* 1 */ |
| 120 | #endif |
| 121 | /**/ c2 = {{0x00000000, 0xbfe00000} }, /* -1/2 */ |
| 122 | /**/ c3 = {{0x55555555, 0x3fd55555} }, /* 1/3 */ |
| 123 | /**/ c4 = {{0x00000000, 0xbfd00000} }, /* -1/4 */ |
| 124 | /**/ c5 = {{0x9999999a, 0x3fc99999} }, /* 1/5 */ |
| 125 | /* polynomial IV */ |
| 126 | /**/ d2 = {{0x00000000, 0xbfe00000} }, /* -1/2 */ |
| 127 | /**/ dd2 = {{0x00000000, 0x00000000} }, /* -1/2-d2 */ |
| 128 | /**/ d3 = {{0x55555555, 0x3fd55555} }, /* 1/3 */ |
| 129 | /**/ dd3 = {{0x55555555, 0x3c755555} }, /* 1/3-d3 */ |
| 130 | /**/ d4 = {{0x00000000, 0xbfd00000} }, /* -1/4 */ |
| 131 | /**/ dd4 = {{0x00000000, 0x00000000} }, /* -1/4-d4 */ |
| 132 | /**/ d5 = {{0x9999999a, 0x3fc99999} }, /* 1/5 */ |
| 133 | /**/ dd5 = {{0x9999999a, 0xbc699999} }, /* 1/5-d5 */ |
| 134 | /**/ d6 = {{0x55555555, 0xbfc55555} }, /* -1/6 */ |
| 135 | /**/ dd6 = {{0x55555555, 0xbc655555} }, /* -1/6-d6 */ |
| 136 | /**/ d7 = {{0x92492492, 0x3fc24924} }, /* 1/7 */ |
| 137 | /**/ dd7 = {{0x92492492, 0x3c624924} }, /* 1/7-d7 */ |
| 138 | /**/ d8 = {{0x00000000, 0xbfc00000} }, /* -1/8 */ |
| 139 | /**/ dd8 = {{0x00000000, 0x00000000} }, /* -1/8-d8 */ |
| 140 | /**/ d9 = {{0x1c71c71c, 0x3fbc71c7} }, /* 1/9 */ |
| 141 | /**/ dd9 = {{0x1c71c71c, 0x3c5c71c7} }, /* 1/9-d9 */ |
| 142 | /**/ d10 = {{0x9999999a, 0xbfb99999} }, /* -1/10 */ |
| 143 | /**/ dd10 = {{0x9999999a, 0x3c599999} }, /* -1/10-d10 */ |
| 144 | /**/ d11 = {{0x745d1746, 0x3fb745d1} }, /* 1/11 */ |
| 145 | /**/ d12 = {{0x55555555, 0xbfb55555} }, /* -1/12 */ |
| 146 | /**/ d13 = {{0x13b13b14, 0x3fb3b13b} }, /* 1/13 */ |
| 147 | /**/ d14 = {{0x92492492, 0xbfb24924} }, /* -1/14 */ |
| 148 | /**/ d15 = {{0x11111111, 0x3fb11111} }, /* 1/15 */ |
| 149 | /**/ d16 = {{0x00000000, 0xbfb00000} }, /* -1/16 */ |
| 150 | /**/ d17 = {{0x1e1e1e1e, 0x3fae1e1e} }, /* 1/17 */ |
| 151 | /**/ d18 = {{0x1c71c71c, 0xbfac71c7} }, /* -1/18 */ |
| 152 | /**/ d19 = {{0xbca1af28, 0x3faaf286} }, /* 1/19 */ |
| 153 | /**/ d20 = {{0x9999999a, 0xbfa99999} }, /* -1/20 */ |
| 154 | /* constants */ |
| 155 | /**/ sqrt_2 = {{0x667f3bcc, 0x3ff6a09e} }, /* sqrt(2) */ |
| 156 | /**/ h1 = {{0x00000000, 0x3fd2e000} }, /* 151/2**9 */ |
| 157 | /**/ h2 = {{0x00000000, 0x3f669000} }, /* 361/2**17 */ |
| 158 | /**/ delu = {{0x00000000, 0x3f700000} }, /* 1/2**8 */ |
| 159 | /**/ delv = {{0x00000000, 0x3ef00000} }, /* 1/2**16 */ |
| 160 | /**/ ln2a = {{0xfefa3800, 0x3fe62e42} }, /* ln(2) 43 bits */ |
| 161 | /**/ ln2b = {{0x93c76730, 0x3d2ef357} }, /* ln(2)-ln2a */ |
| 162 | /**/ e1 = {{0x00000000, 0x3bbcc868} }, /* 6.095e-21 */ |
| 163 | /**/ e2 = {{0x00000000, 0x3c1138ce} }, /* 2.334e-19 */ |
| 164 | /**/ e3 = {{0x00000000, 0x3aa1565d} }, /* 2.801e-26 */ |
| 165 | /**/ e4 = {{0x00000000, 0x39809d88} }, /* 1.024e-31 */ |
| 166 | /**/ e[M] ={{{0x00000000, 0x37da223a} }, /* 1.2e-39 */ |
| 167 | /**/ {{0x00000000, 0x35c851c4} }, /* 1.3e-49 */ |
| 168 | /**/ {{0x00000000, 0x2ab85e51} }, /* 6.8e-103 */ |
| 169 | /**/ {{0x00000000, 0x17383827} }},/* 8.1e-197 */ |
| 170 | /**/ two54 = {{0x00000000, 0x43500000} }, /* 2**54 */ |
| 171 | /**/ u03 = {{0xeb851eb8, 0x3f9eb851} }; /* 0.03 */ |
| 172 | |
| 173 | #endif |
| 174 | #endif |
| 175 | |
| 176 | #define SQRT_2 sqrt_2.d |
| 177 | #define DEL_U delu.d |
| 178 | #define DEL_V delv.d |
| 179 | #define LN2A ln2a.d |
| 180 | #define LN2B ln2b.d |
| 181 | #define E1 e1.d |
| 182 | #define E2 e2.d |
| 183 | #define E3 e3.d |
| 184 | #define E4 e4.d |
| 185 | #define U03 u03.d |
| 186 | |
| 187 | #endif |
| 188 | |